Подать статью
Стать рецензентом
Е. С. Федоров
Е. С. Федоров

Публикации

Статьи
  • Дата отправки
    1917-06-13
  • Дата принятия
    1917-08-30
  • Дата публикации
    1917-12-01

Правильная тройственная периодичность объемов параллелоэдров

Читать аннотацию

Если куб тремя взаимно перпендикулярными цент­ральными плоскостями разделим на восемь кубиков, то получим периодическую операцию, которую бесконечно можем продолжать в обе стороны. При этом объем куба уменьшается (или увеличивается) в восемь раз, то есть два в кубе. Но этот период очень просто разделяется на три меньшие периода с уменьшением (или увеличением) объема в два раза. В этой периодичностн особенную роль играют А) центры граней исходного куба и В) центры кубов низшего периода.

Как цитировать: Федоров Е.С. Правильная тройственная периодичность объемов параллелоэдров // Записки Горного института. 1917. Т. № 2 6. С. 160.
Статьи
  • Дата отправки
    1917-06-11
  • Дата принятия
    1917-08-15
  • Дата публикации
    1917-12-01

Основные и фундаментальные параллелоэдры кристаллических веществ

Читать аннотацию

В статье "Результаты первой стадии экспериментального исследования структуры кристаллов» основным параллелоэдром обозначена тот наименьший параллелоэдр с отмеченными в нем расположениями атомов, из которого посредством элементов симметрии связи выводится вся система атомов. В системе атомов имеется поэтому несколько различных ориентировок основных параллелоэдров с их атомами, а именно по величине симметрии связи (см. статью).

Как цитировать: Федоров Е.С. Основные и фундаментальные параллелоэдры кристаллических веществ // Записки Горного института. 1917. Т. № 2 6. С. 161.
Статьи
  • Дата отправки
    1917-06-16
  • Дата принятия
    1917-08-12
  • Дата публикации
    1917-12-01

Предусматривание кристаллизации по расположению атомов

Читать аннотацию

Прямой опыт показывает, что явление кристаллизации есть явление весьма сложное, в котором решающую роль играют различные факторы. Хотя по закону Стено углы между соответственными гранями в кристаллах одного и того же вещества постоянны, но появление форм, обусловливающнх кристаллизацию, далеко не отличается полным постоянством. С первого раза представляется даже нечто обратное. От одного и того же вещества можно иметь кристаллы с очень ограниченным числом пар граней, в исключительных случаях не достигающем даже трех, а можно иметь и кристаллы с очень богатой комбинацией. Формы, слагающие комбинация, также весьма разнообразятся по своему развитию, и те самые формы, которые в одном случае являются преобладающими по своей величине, в других случаях отходят на второй план или даже совершенно подавляются другими формами.

Как цитировать: Федоров Е.С. Предусматривание кристаллизации по расположению атомов // Записки Горного института. 1917. Т. № 2 6. С. 161-163.
Статьи
  • Дата отправки
    1917-06-18
  • Дата принятия
    1917-08-15
  • Дата публикации
    1917-12-01

Новая концепция видов структуры кристаллов и кристаллохимический анализ

Читать аннотацию

Для установления структуры мы и раньше руководствовались не полною суммою комбинаций, какие проявляет данный кристалл, а только небольшим числом важнейших пар граней. В этом отношении, как видим, никакого изменения не произошло. Мы и теперь должны прежде всего отметить эти важнейшие формы, но раньше мы делали расчет плотности этих форм, так как все-таки в основе лежала последовательность граней по важности. Теперь этот расчет отпадает и даже значительно упрощается, потому что остается только по этим формам определить, в какой из трех поясов попадают эти формы.

Как цитировать: Федоров Е.С. Новая концепция видов структуры кристаллов и кристаллохимический анализ // Записки Горного института. 1917. Т. № 2 6. С. 163-164.
Статьи
  • Дата отправки
    1917-06-13
  • Дата принятия
    1917-08-10
  • Дата публикации
    1917-12-01

Нафталин из Куккерских сланцев Финского побережья

Читать аннотацию

Первоначальным материалом послужил горючий сланец, собранный при разведочных работах Н. Ф. Погребова. После отгонки светильнаго газа остается смола, послужившая материалом для данного исследования. При перегонке этого материала в водяной бане в трубке садятся кристаллические, весьма тонкие пластинки перегоняющегося органического вещества со включениями другого вещества с значительно большим преломлением и по-видимому способного к очень хорошей кристаллизации. Эта перегонка производилась г. Вальчисом.

Как цитировать: Федоров Е.С. Нафталин из Куккерских сланцев Финского побережья // Записки Горного института. 1917. Т. № 2 6. С. 164.
Статьи
  • Дата отправки
    1917-06-08
  • Дата принятия
    1917-08-04
  • Дата публикации
    1917-12-01

Еще теоремы о соотношениях между линейною и стереографическою проекциями

Читать аннотацию

Одна теорема состоит в том, что расстояние гномостереографической от линейной проекции в некоторой плоскости равно расстоянию от последней точки схода лучей. Доказательство сводится к тому, что точка схода лучей Z, гномостереографическая проекция Р и средняя точка линейной проекции плоскости О составляют вершины равнобедренного трехугольника, имеющего в основании первые точки, а это, в свою очередь, сводится к доказательству равенства углов при основании.

Как цитировать: Федоров Е.С. Еще теоремы о соотношениях между линейною и стереографическою проекциями // Записки Горного института. 1917. Т. № 2 6. С. 164.
Статьи
  • Дата отправки
    1916-06-16
  • Дата принятия
    1916-08-15
  • Дата публикации
    1916-12-01

Теорема, аналогичная теореме Паскаля, но относящаяся к пространству

Читать аннотацию

Так как на плоскости аналогичная задача разрешается весьма просто на основашн теоремы Паскаля, то весьма естественно, что мысль геометров упорно направлялась на отыскание простого решения вопроса для пространства, а неудача подняла этот вопрос на степень трудной проблемы. Теорему Паскаля можно формулировать различным образом, но, особенно с точки зрения современной reoметрии, для которой она послужила одной из первых основ, эту формулировку приходится связывать с коллинеацией, а именно такою, которая преобразует определяемую пятью точками коноприму, в самое себя. IIocтpoeние по теореме, аналогичной Паскалевской, переносится во все геометрические системы, в частности, и в систему плоскостей, но последняя теорема, как теорема непозиционного характера переносится только на родственные системы, а например, на систему плоскостей не перено­сится, также как для системы лучей на плоскости не применима только что приведенная теорема непозиционного характера.

Как цитировать: Федоров Е.С. Теорема, аналогичная теореме Паскаля, но относящаяся к пространству // Записки Горного института. 1916. Т. № 1 6. С. 54-59.
Статьи
  • Дата отправки
    1916-06-03
  • Дата принятия
    1916-08-15
  • Дата публикации
    1916-12-01

Некоторые следствия из теоремы, аналогичной теореме Паскаля

Читать аннотацию

Обратимся к аналогичным построениям в пространстве, являющимся следствием теоремы, аналогичной теореме Паскаля. Так как в основании построения по этой теореме находится nocтpoeние двух гиперболоидов линейной примы, к которой принадлежит и искомая коносекупда, а для этого нужно построить две гексапримы, то ясно, что данными могут являться такие касательные совокупно с точками касания на них, которые достаточны для построения гексаприм. Чтобы понять, почему теореме Паскаля, а следовательно и ей аналогичной, принадлежит основное значение, достаточно указать на то, что эти теоремы только частные выражения глубочайшей и наиважнейшей основной теоремы новой геометрии, по которой в двух проективных системах линейным совокупностям соответствуют линейные, квадратичным квадратичные, вообще совокупностям n-го порядка совокупности того же порядка. При этом пересечениям соответствуют пересечения, касаниям касания, инволюциям инволюции.

Как цитировать: Федоров Е.С. Некоторые следствия из теоремы, аналогичной теореме Паскаля // Записки Горного института. 1916. Т. № 1 6. С. 59-62.
Статьи
  • Дата отправки
    1916-06-25
  • Дата принятия
    1916-08-28
  • Дата публикации
    1916-12-01

Формула Сезаро и полярно-зоноэдрическая

Читать аннотацию

Автора заинте­ресовало не применение формулы для определения плоскостей симметрии, которое весьма ограничено, так как относится только к случаям, когда плоскости симметрии проходят через все оси симметрии (то есть только к зеркальным видам симметрии, когда симметричные фигуры могутъ быть воспроизведены в гоноэдрических зеркалах), а сама формула с ее численными соотношениями. 15 октября 1915 г. Тем же автором и в том же журнале (April 1916 р. 324) воспроизводится формула Миллера, приведенная в этих Записках (V 233). 4 мая 1916 г.

Как цитировать: Федоров Е.С. Формула Сезаро и полярно-зоноэдрическая // Записки Горного института. 1916. Т. № 1 6. С. 63.
Статьи
  • Дата отправки
    1916-06-28
  • Дата принятия
    1916-08-04
  • Дата публикации
    1916-12-01

Клиновые микроскопические препараты простейшего устройства

Читать аннотацию

Цель этих препаратов—дать возможность во всех случаях, когда лабораторные кристаллы получаются из пересыщенных растворов параллельно гониометрическому произвести и оптическое исследование с возможно точною opиентировкой осей оптического эллипсоида. До последних лет я употреблял самодельные препараты, составляя их из обрезков покровных стеклышек, так нарезанных и наклеенных на предметное стеклышко, чтобы образовалось требуемое клиновое пространство для кристаллизации. Теперь я остановился на сравнительно простом и очень удобном для исследования типе, который вполне уясняется прилагаемым планом и разрезом микроскопического препарата (см. статью).

Как цитировать: Федоров Е.С. Клиновые микроскопические препараты простейшего устройства // Записки Горного института. 1916. Т. № 1 6. С. 64.
Статьи
  • Дата отправки
    1916-06-02
  • Дата принятия
    1916-08-26
  • Дата публикации
    1916-12-01

Тройственность установки тригоналоидных кристаллов

Читать аннотацию

Я имею в виду ограничиться лишь более простыми выводами, употребляемыми мною на лекциях (см. статью). Из этой тройственности мы выводим необходи­мость ограничения для главных чисел символа комплекса, то есть, что для октаэдрической структуры нельзя прини­мать число, большее чем 63 1 / 2 °, для гексаэдрической можно принимать лишь числа в пределах 45° — 63'/ 2 °, а для додекаэдрической только числа больше чем 45°.

Как цитировать: Федоров Е.С. Тройственность установки тригоналоидных кристаллов // Записки Горного института. 1916. Т. № 1 6. С. 65.
Статьи
  • Дата отправки
    1916-06-17
  • Дата принятия
    1916-08-28
  • Дата публикации
    1916-12-01

Новый пример особого структурного изоморфизма

Читать аннотацию

Эти немногие примеры (см. статью) дают в высшей степени важные указания на зависимость кристаллизации от расположения атомов в частицах сложного строения. В таких частицах, следовательно, необходимо отли­чать центральную и периферическую части (в простых частицах напр. ClNa это невозможно) и только послед­няя плотностью расположения атомов определяет положение возможных граней.

Как цитировать: Федоров Е.С. Новый пример особого структурного изоморфизма // Записки Горного института. 1916. Т. № 1 6. С. 65.
Статьи
  • Дата отправки
    1916-06-20
  • Дата принятия
    1916-08-03
  • Дата публикации
    1916-12-01

Символ плоскости, проходящей через три атома

Читать аннотацию

По сущности основного закона кристаллохимии положение каждого отдельного атома выражается в координатах (см. статью), где как числители, так и знаменатели целые числа, и притом знаменатели непременно числа, большие чем числители, если точки находятся внутри элементарного параллелоэдра или на его поверхности. Пользуясь результатами, мы по символам трех точек, легко уже непосредственно можем получить символ проходящей через них грани.

Как цитировать: Федоров Е.С. Символ плоскости, проходящей через три атома // Записки Горного института. 1916. Т. № 1 6. С. 66-67.
Статьи
  • Дата отправки
    1916-06-16
  • Дата принятия
    1916-08-20
  • Дата публикации
    1916-12-01

Важный шаг научной петрографии

Читать аннотацию

(По поводу книги Bowen The later stages of the evolution of the igneous rocks). Автор этой заметки давно различал между изверженными породами нормальные с более или менее строгими признаками химического равновесия и аномальные, не поддающиеся никаким законам равновесия и никакой строгой научной классификации, а несущими на себе яркие признаки последовательного хода явления, который, благодаря им и может быть выяснен в своей последовательности. Такие породы можно только описывать, а из описания выводить историко-геологические даты. Теперь, после опубликования важного труда Боуена невольно склоняешься к мысли о весьма слабой представленности нормальных пород и пожалуй даже их отсутствию; в природе представлены только приближения к ним, почему на них скорее приходится смотреть не как на нормальные, а как на идеальные.

Как цитировать: Федоров Е.С. Важный шаг научной петрографии // Записки Горного института. 1916. Т. № 1 6. С. 67-71.
Статьи
  • Дата отправки
    1916-06-21
  • Дата принятия
    1916-08-30
  • Дата публикации
    1916-12-01

Критерий правильного построения основного параллелоэдра кристалла по экспериментальным данным

Читать аннотацию

В статье «Результаты первой стадии экспериментального исследования структуры кристаллов» (в примечании на стр. 361) установлен принцип определения структуры по параллелоэдру наименьшего объема, равносильный принципу установления системы параллелоэдров наивысшего порядка, допустимого для данной правильной системы точек. Критерием правильности построения параллелоэдра может служить испытание возможности иного, более специального, расположения одного из атомов представленных в химической формуле в наименьшем числе, или, еще лучше, если нет единичных атомов, помещение той специальной точки, которая занимает в параллелоэдре единичное положение.

Как цитировать: Федоров Е.С. Критерий правильного построения основного параллелоэдра кристалла по экспериментальным данным // Записки Горного института. 1916. Т. № 1 6. С. 71-72.
Статьи
  • Дата отправки
    1916-06-26
  • Дата принятия
    1916-08-28
  • Дата публикации
    1916-12-01

К вопросу об уралитизации

Читать аннотацию

Первое, что следует из сделанных наблюдений, это несомненная связь образования актинолита с разложением плагиоклаза. Ведь эта связь до того неразрывна, что, как упомянуто, авгит решительно нигде не прикасается к плагиоклазовым псевдоморфозам. Нам, конечно, неизвестна ближайшая первая причина разложения плагиоклаза и авгита и конечно, она сводится к остающемуся нам неизвестным содержанию составных частей проникавшего в породу минерализованного раствора, в состав которого, однако, должны были входить как СаО (от разложения плагиоклаза), так и К2О (иначе не образовалось бы мусковита), и при этом первая часть диффундировала из плагиоклаза, а вторая по направлению к нему. А так как в местах выхода диффундировавших частей из очертаний плагиоклаза мы видим превращение авгита в актинолит, и так как именно СаО есть единственная, исходящая из плагиоклаза, составная часть, содержание которой в актинолите больше, чем в авгите, то приходится заключить, что именно она и останавливалась и поглощалась авгитом, также задетым общим химическим изменением породы, более резким в плагиоклазе, чем в авгите.

Как цитировать: Федоров Е.С., Лодочников В.Н. К вопросу об уралитизации // Записки Горного института. 1916. Т. № 1 6. С. 72-74.
Статьи
  • Дата отправки
    1915-06-23
  • Дата принятия
    1915-08-07
  • Дата публикации
    1915-12-01

Teopия осевых коллинеаций как расширение теории Штейнера коноприм (Kegelsсhnittbüschel)

Читать аннотацию

По знаменитой теории Штейнера двумя данными на плоскости инволюциями пар точек на прямых определяется инволюция на любой прямой на плоскости то есть полная секунда инволюции. Определяющим фактором всех этих инволюций является линейная прима кривых, а именно коноприм (Kegelschnittbüschel по Штейнеру), имеющих общие две пары точек, из коих не только одна, но и обе могут быть мнимыми. Каждая прямая пересекает каждую кривую примы в пapе точек принадлежащей ей инволюции. Специально мы можем определить коллинеации двумя осями без всяких инволюций. Если оси, точки коих есть вещественные двойные точки всех инволюций, мы назовем вещественными, а оси изотропных инволюций назовем мнимыми, то получим, что всякая осевая коллинеация может быть определена парою осей, вещественной или мнимой (см. статью).

Как цитировать: Федоров Е.С. Teopия осевых коллинеаций как расширение теории Штейнера коноприм (Kegelsсhnittbüschel) // Записки Горного института. 1915. Т. № 4-5 5. С. 388-394.
Статьи
  • Дата отправки
    1915-06-06
  • Дата принятия
    1915-08-23
  • Дата публикации
    1915-12-01

Из задач, относящихся к линейчатым поверхностям 3-го порядка

Читать аннотацию

Если через какую-нибудь точку на квадратичном цилиндре мы проведем секущую плоскость (определяющую коноприму к), плоскость касательную и в ней какую-нибудь косую прямую d (не в плоскости кривой к и не производящую цилиндра), а затем из каждой точки этой прямой проведем в диаметральной плоскости цилиндра два луча через точки кривой к, то получим линейчатую поверхность 3-го порядка.

Как цитировать: Федоров Е.С. Из задач, относящихся к линейчатым поверхностям 3-го порядка // Записки Горного института. 1915. Т. № 4-5 5. С. 395.
Статьи
  • Дата отправки
    1915-06-23
  • Дата принятия
    1915-08-02
  • Дата публикации
    1915-12-01

Родственность секунды парабол лучей с двумя постоянными лучами и системы лучей на плоскости

Читать аннотацию

Системы точек и лучей на плоскости, как известно, не родственны. Но системе точек родственны секунды коноприм точек и лучей, имеющих три постоянные элемента, а из имеющих два постоянные элемента родственны только конопримы точек (тетрапримы). Теперь мы покажем, что секунды парабол лучей с двумя постоянными лучами родственна система лучей на плоскости.

Как цитировать: Федоров Е.С. Родственность секунды парабол лучей с двумя постоянными лучами и системы лучей на плоскости // Записки Горного института. 1915. Т. № 4-5 5. С. 395.
Статьи
  • Дата отправки
    1915-06-04
  • Дата принятия
    1915-08-02
  • Дата публикации
    1915-12-01

Простой способ построения коррелятивных элементов в родственных секундах точек, коноприм точек и коноприм лучей с тремя постоянными элементами

Читать аннотацию

Проективные отношения, выясненные в предыдущей заметке, получили бы высокую степень наглядности, если бы удалось установить простым построением такую коррелятивность между конопримами секунды и точками плоскости, чтобы экстраэлементам одной соответствовали экстраточки другой. В секунде коноприм лучей заключается прима таких, которые представлены парою точек (точнее парою линейных прим лучей). Так как в каждой линейной приме таких особых коноприм представлено три (из коих одна пара может быть мнимою), то совершенно очевидно, что приме особых коноприм лучей коррелятивна кривая 3-го порядка.

Как цитировать: Федоров Е.С. Простой способ построения коррелятивных элементов в родственных секундах точек, коноприм точек и коноприм лучей с тремя постоянными элементами // Записки Горного института. 1915. Т. № 4-5 5. С. 396-397.
Статьи
  • Дата отправки
    1915-06-10
  • Дата принятия
    1915-08-02
  • Дата публикации
    1915-12-01

Расширение построения предыдущей заметки на конопримы с двумя или одним постоянным элементом

Читать аннотацию

В предыдущей заметке мы разрешили задачу переноса всякого рода построений, произведенных на плоскости, в систему коноприм точек и лучей; и обратно, мы свели решения всякого рода задач в секундах коноприм точек и лучей, имеющих три постоянные элемента, к обыкновенным задачам на плоскости. Естественно является мысль распространить решение и на те простейшие случаи, когда в секундах коноприм имеются только два или всего один общий элемент.

Как цитировать: Федоров Е.С. Расширение построения предыдущей заметки на конопримы с двумя или одним постоянным элементом // Записки Горного института. 1915. Т. № 4-5 5. С. 397-398.
Статьи
  • Дата отправки
    1915-06-09
  • Дата принятия
    1915-08-03
  • Дата публикации
    1915-12-01

Циклы коллинеации и линейные примы коноприм и коносекунд

Читать аннотацию

На какой-нибудь коноприме мы можем произвольно взять две группы точек, по четыре в каждой, и по ним установить коллинеарность общего характера (см. статью). Цикл может состоять из различного числа точек, вплоть до бесконечности. Если например точка в коллинеации самогомологична, то весь цикл состоит из одной единственной точки; если имеем двойную гомологичность точек А и А', то весь цикл сводится к двум точкам и т. д. В общем случае цикл обнимает значительное число точек или даже их бесконечное число, и может случиться, что все точки конопримы входят в состав одного цикла. Если коллинеация, как-нибудь установленная по данным точкам, делает коносекунду самогомологичною, то задача построения точек последней, сводится к простой задаче коллинеарных построений.

Как цитировать: Федоров Е.С. Циклы коллинеации и линейные примы коноприм и коносекунд // Записки Горного института. 1915. Т. № 4-5 5. С. 398-400.
Статьи
  • Дата отправки
    1914-06-18
  • Дата принятия
    1914-08-18
  • Дата публикации
    1914-12-01

Полярные отношения вещественных трехугольников и четырехгранников

Читать аннотацию

В заметке „Полярные отношения мнимых трехугольников и четырехгранников" мы показали, что эти отношения тождественны с теми, которые определяются известным мнимым эллипсом или эллипсоидом, причем ни тот, ни другой не проходит через данные точки. Но из оснований, приведенных в этой заметке, следует, что могут существовать определенные полярные отношения вещественных трехугольников и четырехгранников. Эта работа составляет естественное продолжение предыдущей заметки, но относится к трехугольникам и четырехгранникам принятым за вещественные.

Как цитировать: Федоров Е.С. Полярные отношения вещественных трехугольников и четырехгранников // Записки Горного института. 1914. Т. № 2-3 5. С. 174-181.
Статьи
  • Дата отправки
    1914-06-08
  • Дата принятия
    1914-08-27
  • Дата публикации
    1914-12-01

Главные совокупности в системах точек и плоскостей

Читать аннотацию

Выведя ряд главных совокупностей, как позиционных, так и непозиционных, мы можем теперь более отчетливо определить само понятие таковых. Главною совокупностью мы называем таковую, которая вполне и однозначно выводится по данному числу элементов, если всем этим элементам принадлежит в построении одинаковая роль. Если означим данные элементы буквами и выведем построение совокупности, вводя сначала элементы, отмеченные одними, а потом другими буквами, то если выводимая совокупность есть главная, то мы можем буквы по отношению к элементам переместить иначе, а построение остается справедливым, если в его порядке хода мы оставим, и прежние буквы.

Как цитировать: Федоров Е.С. Главные совокупности в системах точек и плоскостей // Записки Горного института. 1914. Т. № 2-3 5. С. 182-186.
Статьи
  • Дата отправки
    1914-06-18
  • Дата принятия
    1914-08-22
  • Дата публикации
    1914-12-01

Дополнение вывода главных совокупностей вплоть до октоприм и коносекунд

Читать аннотацию

Хотя предыдущая статья и представляет собою нечто законченное, доведшее главные совокупности до тех, которые определяются шестью элементами, но сразу бросается в глаза, что высшие из них— гексасекунды не представляют собою совокупностей наиболее общего характера—коносекунд, а только специальные их разности, могущие быть воспроизведенными прямыми то есть только линейчатые коносекунды. Только таковые вполне и однозначно определяются не более чем шестью точками и плоскостями. Так как именно коносекунды общего характера устанавливают полярную коррелятивность между точками и плоскостями в пространстве, то дока­зательство теоремы, о которой идет речь, сво­дится к тому, что такая коррелятивность может быть установлена ∞ 9 способами.

Как цитировать: Федоров Е.С. Дополнение вывода главных совокупностей вплоть до октоприм и коносекунд // Записки Горного института. 1914. Т. № 2-3 5. С. 187-192.
Статьи
  • Дата отправки
    1914-06-05
  • Дата принятия
    1914-08-30
  • Дата публикации
    1914-12-01

Новые особые точки трехугольников в связи с гномоническими проекциями кристаллографических комплексов

Читать аннотацию

Известно большое число особых точек, положение которых строго выводится для каждого данного трехугольника. Эти точки открываются при изучении тех или других свойств трехугольников, число коих весьма значительно. Несмотря на всю простоту такого образа, как обыкновенный трехугольник, изучение его все-таки еще не мо­жет считаться исчерпанным и с течением времени, хотя и редко, открываются новые и новые свойства. Представляется задача найти ту точку, которая служит центром линейной примы лучей—поляр точек описанного круга. Для решения этой задачи достаточно найти, поляры двух каких-нибудь точек круга по отношению к трехугольнику; точка их пересечения и есть искомая. Она то и составляет ту новую особую точку трехугольника, о которой говорится в заглавии.

Как цитировать: Федоров Е.С. Новые особые точки трехугольников в связи с гномоническими проекциями кристаллографических комплексов // Записки Горного института. 1914. Т. № 2-3 5. С. 193-194.
Статьи
  • Дата отправки
    1914-06-01
  • Дата принятия
    1914-08-24
  • Дата публикации
    1914-12-01

Линейчатая поверхность IV порядка с высокой симметpией и кривая с четырьмя точками возврата

Читать аннотацию

Как известно, эти поверхности IV порядка могут быть воспроизведены двумя проективными квадратичными примами плоскостей. Teopия этих поверхностей излагается в подробных руководствах. В общем случае на поверхности имеется гекса­прима точек, в которых пересекается по два луча поверхности. Плоскости, проходящие чрез такую пару лучей, могут считаться касательными плоскостями, а так как плоское сечение поверхности в общем случае есть кривая IV порядка, то понятно, что если плоскость проходит чрез один из лучей поверхности, то эта кривая распадается на этот луч и кривую III порядка, а если плоскость проходит чрез пару лучей, то та же кривая распадается уже на эту пару и еще коноприму; отсюда видим, что касательные плоскости, проходящие чрез пары лучей поверхности, пересекают эту поверхность еще в коноприме.

Как цитировать: Федоров Е.С. Линейчатая поверхность IV порядка с высокой симметpией и кривая с четырьмя точками возврата // Записки Горного института. 1914. Т. № 2-3 5. С. 195-197.
Статьи
  • Дата отправки
    1914-06-21
  • Дата принятия
    1914-08-27
  • Дата публикации
    1914-12-01

Квадратичные примы лучей

Читать аннотацию

В статье о линейных совокупностях лучей я показал, что система лучей не есть система самостоятельная, но что для нее нужно принять параметр в виде экстралуча, необходимо входящего в состав линейных совокупностей. Тогда линейная прима определяется вполне и однозначно двумя, линейная секунда тремя и линейная терция четырьмя произвольными лучами. Если даны три произвольные луча, то совокупно с постоянным четвертым экстралучом мы получаем необходимые и достаточные данные для определения лучей полной линейной секунды. Так как четыре произвольные луча в общем случае пересекаются парою секущих, вещественною или мнимою, то ясно, что линейную секунду мы можем определить не иначе, как совокупность лучей, пересекающих данную пару прямых а и b . Для простоты примем ее вещественною. Означим экстралуч, определяемый экстраточками этих двух общих секущих, чрез е.

Как цитировать: Федоров Е.С. Квадратичные примы лучей // Записки Горного института. 1914. Т. № 2-3 5. С. 198-204.
Статьи
  • Дата отправки
    1914-06-10
  • Дата принятия
    1914-08-03
  • Дата публикации
    1914-12-01

Линейчатая поверхность VI порядка как гексаприма лучей

Читать аннотацию

По определению этой поверхности она воспроиз­водится двумя гомологичными квадратичными примами плоскостей. В общем случае на этой поверхности имеется гексаприма двойных точек, в ка­ждой из которых пересекаются два луча поверхности. Коррелятивное преобразование дает такую же поверхность, так как каждой точке с двумя пересекающимися лучами, коими определяется касательная плоскость, коррелятивная касательная плоскость с двумя лучами в ней, пересекающимися в точке касания. Следовательно, такую поверхность мы можем воспроизвести и коррелятивным путем то есть определить ее двумя конопримами с установленной проективностью точек.

Как цитировать: Федоров Е.С. Линейчатая поверхность VI порядка как гексаприма лучей // Записки Горного института. 1914. Т. № 2-3 5. С. 205-206.
Статьи
  • Дата отправки
    1914-06-16
  • Дата принятия
    1914-08-24
  • Дата публикации
    1914-12-01

Квадратичные терции и секунды лучей

Читать аннотацию

Терции лучей, представляющие так называемые нулевые системы и вполне и однозначно определяемые пятью произвольными лучами, обыкновенно называются линейными в виду того, что в каждой плоскости и из каждой точки пространства имеется прима лучей, пересекающихся в одной точке и заключающаяся в одной плоскости; такая прима лучей в плоскости или исходящих из одного центра называется линейною. Но для системы лучей, определяемой, как параметром особым экстралучом, такие примы уже не есть линейные, так как последние необходимо должны заключать в себе этот экстралуч. Поэтому и сами нулевые системы не представляют в этой системе линейных терций, а есть терции квадратичные.

Как цитировать: Федоров Е.С. Квадратичные терции и секунды лучей // Записки Горного института. 1914. Т. № 2-3 5. С. 207-209.
Статьи
  • Дата отправки
    1914-06-21
  • Дата принятия
    1914-08-19
  • Дата публикации
    1914-12-01

Наглядное изображение химического состава пород из области Христиании и лав Кавказа

Читать аннотацию

Ряд последовательных усовершенствований в точном изображении химического состава горных пород показал, как найти фигуративную точку химического состава по данным четырем отношениям окислов. Однако пространственное положение этой точки определяется не одною, а двумя проек­циями на взаимноперпендикулярных плоскостях по методу начертательной геометрии. Хотя во всех других отношениях была достигнута высшая достижимая простота, но все-таки наглядность в изображении несколько страдала именно вследствие изображения в двух проекциях. В этой статье я имею в виду систематически изложить ход всех операций, необходимых для графических изображений так, чтобы они стали ясны даже для лиц, не имеющих понятия ни о тетраэдрической схеме, ни о системе векторальных кругов.

Как цитировать: Федоров Е.С. Наглядное изображение химического состава пород из области Христиании и лав Кавказа // Записки Горного института. 1914. Т. № 2-3 5. С. 210-223.
Статьи
  • Дата отправки
    1914-06-27
  • Дата принятия
    1914-08-25
  • Дата публикации
    1914-12-01

О дисперсии идокраза

Читать аннотацию

В третьем выпуске „Универсального Метода Федорова", в главе VII—„исследование дисперсии"— В. В. Никитиным описан идокраз, обладающий резкой дисперсией двупреломления. Кроме того он обладает еще и тем свойством, что в пределах одного и того же зерна, в различных его участках, величина двупреломления различна. Благодаря этому интерференционная окраска не однообразна на всем протяжении зерен идокраза. В сечениях близких к параллельности оптической оси—четверной оси симметрии кристалла—цвета располагаются полосами, параллельными друг другу: центральная часть зерна имеет белую интерференционную окраску, за ней следует полоса с мастично-желтой окраской, затем—с пурпурово­красной и, наконец, края зерна окрашены в пурпурово-фиолетовый цвет.

Как цитировать: Федоров Е.С. О дисперсии идокраза // Записки Горного института. 1914. Т. № 2-3 5. С. 224-226.
Статьи
  • Дата отправки
    1914-06-09
  • Дата принятия
    1914-08-13
  • Дата публикации
    1914-12-01

Важная формула Миллера

Читать аннотацию

Ю. В. Вульф любезно обратил мое внимание на весьма маленький, но образцовый учебник Миллера Tract on crystallography, вышедший в Кембридже в 1863 году. Это книжечка всего в 86 страниц, но тут не только перечислены и изображены главнейшие формы кристаллографа, но, что для нее особенно характерно, приведены и выведены главнейшие формулы для вычисления и притом по той оригинальной для автора системе, в которой преобладают двойные (ангармонические) отношения. Формулы Миллера впервые ввели в практику вычислительной кристаллографии начала новой геометрии, хотя еще их вывод целиком основывается на формулах плоской и сферической тригонометрии.

Как цитировать: Федоров Е.С. Важная формула Миллера // Записки Горного института. 1914. Т. № 2-3 5. С. 233.
Статьи
  • Дата отправки
    1914-06-09
  • Дата принятия
    1914-08-19
  • Дата публикации
    1914-12-01

Анализ кристаллов, выделившихся из сливных вод лаборатории

Читать аннотацию

П. П. ф. Веймар любезно прислал мне скляночку с крупными кристаллами при письме: «На дне склянки, куда сливались реактивы при мытье посуды образовались кристаллы зеленого и желтого цвета; эти кристаллы я Вам посылаю; быть может они интересны для Вашего кристалло-химического анализа». Кристаллы разных цветов оказались и разной величины и разного облика. Желтые кристаллы ясно пластинчаты; толщина пластинок чуть не в полсантиметра, а наибольший их размер превышает два сан­тиметра. Зеленоватые кристаллы представлены в более изометрическом виде и по линейным размерам по крайней мере в четыре раза меньше.

Как цитировать: Федоров Е.С. Анализ кристаллов, выделившихся из сливных вод лаборатории // Записки Горного института. 1914. Т. № 2-3 5. С. 234.
Статьи
  • Дата отправки
    1912-09-24
  • Дата принятия
    1913-01-09
  • Дата публикации
    1913-04-13

Простой и быстрый способ демонстрирования общего закона кристаллизации

Читать аннотацию

Общий закон, о котором идет здесь речь, состоит в том, что кристалл, выпадающий из раствора, стремится принять наименьшую поверхность. Этот, имеющий простую и общеизвестную теоретическую основу, закон, обыкновенно демонстрируется примерами кристаллизации, или вернее перекристаллизации, требующей продолжительного времени, даже месяцев, или по крайней мере суток. Я наткнулся на препарат, на котором это демонстрирование может продолжаться несколько секунд; этот препарат есть натровая селитра, микроскопические кристаллики которой растворяются от дыхания в несколько секунд и приблизительно в такое же время выкристаллизовываются вследствие испарения. Благодаря этой быстроте конечно так же быстро демонстрируется и упомянутый закон.

Как цитировать: Федоров Е.С. Простой и быстрый способ демонстрирования общего закона кристаллизации // Записки Горного института. 1913. Т. № 3 4. С. 241.
Статьи
  • Дата отправки
    1913-07-05
  • Дата принятия
    1913-09-16
  • Дата публикации
    1914-01-01

Коллинеарное преобразование мнимых пар лучей

Читать аннотацию

Инволюторно-коллинеарные преобразования относятся к самьм элементарным операциям новой геометрии. Но при этом всегда имеется в виду преобразование вещественных геометрических образов. Задача преобразования мнимых образов, напр. мнимых кругов, как кажется, и не была ставима, и представляется непонятной. При исследовании системы пар лучей эта задача представилась во всей ее реальности в следующем виде. Если даны две пары лучей, мы принимаем их за две пары касательных парабол, которая легко и строима, и таким образом, находима, линейную приму пар лучей, центры которых составляют прямую, а сами пары лучей— пары касательных к параболе.

Как цитировать: Федоров Е.С. Коллинеарное преобразование мнимых пар лучей // Записки Горного института. 1914. Т. № 1 5. С. 1-2.
Статьи
  • Дата отправки
    1913-07-19
  • Дата принятия
    1913-09-09
  • Дата публикации
    1914-01-01

Сферические совокупности конопримм

Читать аннотацию

К самым первым началам новой геометрии относится теорема, по которой проективность на примах (линейных и квадратных) устанавливается соответствием трех элементов. Поэтому, если на плоскости даны четыре произвольные прямые, то каждая из них в пересечении с тремя другими дает три точки, и этого достаточно, чтобы установить проективность точек на всех этих прямых, потому что на каждой из них имеем по три соответственный точки. Если сферические совокупности заданы частью вещественными, частью мнимыми конопримами, то по ним нужно строить две линейныя совокупности одинаковой ступени, из которых для одной нужно переменить значение разряда коноприм: вещественный принять за мнимый и обратно.

Как цитировать: Федоров Е.С. Сферические совокупности конопримм // Записки Горного института. 1914. Т. № 1 5. С. 3-5.
Статьи
  • Дата отправки
    1913-07-23
  • Дата принятия
    1913-09-18
  • Дата публикации
    1914-01-01

Симметрические гексапримы

Читать аннотацию

Главнейшие разряды гексаприм, или того, что принято называть пространственными кривыми 3-го порядка, были выведены Зейдевицем и приводятся в известном руководстве Рейе под названиями 1) пространственная гипербола, 2) пространственный эллипс, 3) параболическая гипербола и 4) пространственная парабола. Эта заметка явилась результатом задания: можно ли построить гексаприму, обладающую симметрией? Термин гексаприма означает такую приму точек, которая вполне и однозначно определяется шестью точками, а пространственная кривая 3-го порядка и есть именно такая кривая. Получаем три построения, приводящие к гексапримам трех видов симметрии (см. статью).

Как цитировать: Федоров Е.С. Симметрические гексапримы // Записки Горного института. 1914. Т. № 1 5. С. 6-8.
Статьи
  • Дата отправки
    1913-07-05
  • Дата принятия
    1913-09-15
  • Дата публикации
    1914-01-01

Системы отрезков и пар лучей на плоскости

Читать аннотацию

В прежних своих работах я рассмотрел ряд геометрических систем, элементы которых состоят из пар точек. Простейшая и важнейшая из них система параллельных векторов затем системы гармонических отрезков и векторов, наконец система средних точек гармонических пар. Но во всех этих рассмотренных системах вводится некоторое ограничено или в виде векторальности или в виде особого параметра системы. Здесь я имею в виду рассмотреть систему таких элементов, данных без всякого ограничения, то есть представляю себе, что элементом системы на плоскости может быть произвольная пара ее точек, которая вместе с тем составит и отрезок.

Как цитировать: Федоров Е.С. Системы отрезков и пар лучей на плоскости // Записки Горного института. 1914. Т. № 1 5. С. 9-16.
Статьи
  • Дата отправки
    1913-07-16
  • Дата принятия
    1913-09-19
  • Дата публикации
    1914-01-01

Теорема, относящаяся к системе кругов

Читать аннотацию

Эта теорема весьма просто разрешает задачу, которую можно следующим образом формулировать как задачу элементарной геометрии (см. статью). Несмотря на всю простоту решения ее как задачи в системе кругов она едва ли разрешима на основании теорем элементарной геометрии. Понятно, что эту теорему можно непосредственно перенести в систему шаров, заменив в ней слова „круг“ словами ,,шар“. Для доказательства же достаточно принять централь Q R, за ось вращения. Таким образом в самом общем виде разрешается и задача нахождения центров сферотерций шаров, которая раньше была разрешена посредством формул.

Как цитировать: Федоров Е.С. Теорема, относящаяся к системе кругов // Записки Горного института. 1914. Т. № 1 5. С. 17-18.
Статьи
  • Дата отправки
    1913-07-04
  • Дата принятия
    1913-09-21
  • Дата публикации
    1914-01-01

Системы векторов и векториальных пар лучей

Читать аннотацию

В предыдущих работах мною подробно разработана система векторов. Но так как векторы по существу представляют пары точек, хотя и неравнозначных (начальную и концевую) и так как каждой точке можно установить коррелятивно лучи, то ясно, что системами векторов могутъ быть коррелятивны системы пар лучей, которые едва ли можно назвать иначе как векториальными. Но если на плоскости рассуждать о векториальных парах лучей несколько затруднительно, то я, ради полной ясности, предпочитаю установить такую последовательность систем, входящих в состав всех линейных прим этой системы.

Как цитировать: Федоров Е.С. Системы векторов и векториальных пар лучей // Записки Горного института. 1914. Т. № 1 5. С. 19-21.
Статьи
  • Дата отправки
    1913-07-03
  • Дата принятия
    1913-09-17
  • Дата публикации
    1914-01-01

Новая интерпретация лучей

Читать аннотацию

Мы пришли к тому заключению, что система лучей может быть введена в общий ряд геометрических систем, и ее мы можем привести в общую коррелятивную связь. Но только эта система относится уже не к числу самостоятельных, а к числу систем, ограниченных определенным параметром, за каковой мы должны признать некоторый экстралуч, постоянный для всех линейных прим, подобно тому, как мы имеем аналогичную систему точек с параметром точкою, входящей в состав всех линейных прим этой системы.

Как цитировать: Федоров Е.С. Новая интерпретация лучей // Записки Горного института. 1914. Т. № 1 5. С. 22-24.
Статьи
  • Дата отправки
    1913-07-30
  • Дата принятия
    1913-09-23
  • Дата публикации
    1914-01-01

Системы кругов на сфере

Читать аннотацию

Всякая вообще совокупность кругов не будет отличаться от совокупности кругов предыдущей системы, но составит лишь половину совокупности этой системы, причем линейные примы и секунды кругов обыкновенных останутся таковыми и для этой системы; но линейные совокупности векторальных кругов предыдущей системы уже не будут таковыми для этой системы, потому что касательные линейные примы предыдущей уже не есть линейные примы этой системы. Легко доказать, что в этой системе совокупности векторальных кругов и вообще отсутствуют, ими даже нельзя задаваться. В самом деле, если я задамся, например, правым векториальным кругом, то диаметрально ему противоположный есть уже левый векториальный круг; получаются в сущности два векториальные круга, которыми вполне и однозначно, определяется их линейная прима на сфере; ясно, что в ее присутствии еще третьим, произвольным, кругом задаваться нельзя; вообще, он бы уже не вошел в состав определенной линейной примы.

Как цитировать: Федоров Е.С. Системы кругов на сфере // Записки Горного института. 1914. Т. № 1 5. С. 25-29.
Статьи
  • Дата отправки
    1913-07-17
  • Дата принятия
    1913-09-30
  • Дата публикации
    1914-01-01

Линейные совокупности векторов в пространстве

Читать аннотацию

В статье „Простое и точнее изображение точек пространства 4-х измерений на плоскости посредством векторов" не только подробно рассмотрена система векторов на плоскости, но и указаны основания построения линейной примы векторов в пространстве по двум данным, а именно, что эта линейная прима состоит из отрезков производящих гиперболического параболоида, заключенных между двумя направляющими, из коих одна есть линия начальных, а другая -- линия концевых точек, причем само построение может быть произведено разложением двух данных векторов на слагающее по трем осям координат и построением по слагающим линейных прим параллельных векторов; три вектора с общею начальною точкою, но параллельные осям координат, какие бы направления мы ни избрали для последних, и есть слагающие векторы линейной прямы; концевая точка последнего находится на прямой концевых точек.

Как цитировать: Федоров Е.С. Линейные совокупности векторов в пространстве // Записки Горного института. 1914. Т. № 1 5. С. 30-31.
Статьи
  • Дата отправки
    1913-07-16
  • Дата принятия
    1913-09-07
  • Дата публикации
    1914-01-01

Первое констатирование опытным путем асиморфной правильной системы

Читать аннотацию

Применение Рентгеновских лучей дало в руках В.Л. Брагга (и его отца) средства, которые привели к заключениям, чрезвычайно важным для теории структуры кристаллов. Отчасти эти заключения неожиданны, по крайней мере в том отношении, что ожидалось видеть в точках правильных систем центры химических частиц, тогда как опыты названного ученого привели к выводу, что это центры атомов. Благодаря этому в веществах простейшего химического состава получаются и специальные правильные системы точек, причем центры симметрии заняты отдельными атомами, как будто сами атомы также имеют высокую симметрию.

Как цитировать: Федоров Е.С. Первое констатирование опытным путем асиморфной правильной системы // Записки Горного института. 1914. Т. № 1 5. С. 54-56.
Статьи
  • Дата отправки
    1913-07-04
  • Дата принятия
    1913-09-22
  • Дата публикации
    1914-01-01

О строении кристаллов алмаза по Браггу

Читать аннотацию

Настоящая заметка вызвана прежде всего желанием представить окончательный вывод Брагга в более наглядной форме; а затем, в виду совершенной оригинальности этого вывода и довольно резким расхождением с нашими прежними представлениями о строении частиц явилось желание решить, возможно ли его согласовать с ними. Вдумываясь в расположение атомов, мы легко поймем, что оно двоякого рода. Одни атомы занимают положения центров ромбических додекаэдров, другие — положение таких четырех тригональных вершин додекаэдра, что в совокупности принадлежат тетраэдру. Именно таким расположением обусловливается гексакис—тетраэдрический вид симметрии, и, хотя расположение центров частиц одних соответствует додекаэдрической структуре, но дело изменяется расположением других атомов.

Как цитировать: Федоров Е.С. О строении кристаллов алмаза по Браггу // Записки Горного института. 1914. Т. № 1 5. С. 68.
Статьи
  • Дата отправки
    1913-07-30
  • Дата принятия
    1913-09-15
  • Дата публикации
    1914-01-01

Новые кристаллографические проекции

Читать аннотацию

Строго говоря, проекций можно построить столько же, сколько и геометрических систем второй ступени то есть безграничное количество, и если я сейчас хочу упомянуть о таковых, как новых кристаллографических, то исключительно поэтому, что они представляют своеобразные удобства для решения и некоторых кристаллографических задач, не доставляемые другими проекциями. Здесь я имею в виду те проекции, которые получаются из линейной и гномонической если их подвергнуть преобразованию обратными радиусами, почему их можно назвать соответственно грамма- и гномоциклической.

Как цитировать: Федоров Е.С. Новые кристаллографические проекции // Записки Горного института. 1914. Т. № 1 5. С. 69-71.
Статьи
  • Дата отправки
    1913-07-08
  • Дата принятия
    1913-09-04
  • Дата публикации
    1914-01-01

Определение плотностей сеток моноклинных, гипогексагональных и тригоналоидных комплексов без помощи сдвигов

Читать аннотацию

В прежних работах были даны приемы такого определения с помощью таблиц Соколова и Артемьева за исключением случаев, перечисленных в заглавии, если только полюс, соответствующий двойной оси симметрии не есть одновременно полюс грани (1000). Во всех этих случаях предполагается производство определенных сдвигов для определения плотности граней главного пояса. В этой заметке я покажу, что и для этих случаев можно обойтись без сдвига (см. статью).

Как цитировать: Федоров Е.С. Определение плотностей сеток моноклинных, гипогексагональных и тригоналоидных комплексов без помощи сдвигов // Записки Горного института. 1914. Т. № 1 5. С. 71-72.
Статьи
  • Дата отправки
    1913-07-10
  • Дата принятия
    1913-09-21
  • Дата публикации
    1914-01-01

Элементарный вывод формулы для определения плотности граней и ребер гипогексагонально-изотропного комплекса

Читать аннотацию

Хотя бы из предыдущей заметки можно видеть, какое значение при первоначальном изучении кристаллографии иметъ вывод специальных простейших формул для опредения плотности изотропных комплексов, кубического и гипогексагонального, начинающие лучше и легче всего знакомятся с техникой определения плотностей по таблицам именно на примерах изотропных комплексов, так как простые формулы дают идеальный контроль сделанным определениям и сразу же практически знакомят их с степенью точности или скорее неточности графических операций.

Как цитировать: Федоров Е.С. Элементарный вывод формулы для определения плотности граней и ребер гипогексагонально-изотропного комплекса // Записки Горного института. 1914. Т. № 1 5. С. 72-73.
Статьи
  • Дата отправки
    1913-07-26
  • Дата принятия
    1913-09-30
  • Дата публикации
    1914-01-01

Полярные отношения мнимых трехугольников и четырехгранников

Читать аннотацию

Известные свойства гномонических проекций тригоналоидных кристалов натолкнули меня на присутствие, показавшихся мне парадоксальными, упомянутых в заглавии отношений. Для рассматриваемого случая теория полюсов и поляр развертывается в обычном ее виде: две точки есть полюсы двух поляр и, в свою очередь, определяют прямую—поляру точки пересечения этих поляр. Каждой вершине трехугольника полярна противолежащая сторона и т. д. и ни в одном случае нет точки, чрез которую проходила бы ее поляра, как это имеет место для мнимых коноприм проективности (см. статью).

Как цитировать: Федоров Е.С. Полярные отношения мнимых трехугольников и четырехгранников // Записки Горного института. 1914. Т. № 1 5. С. 73-75.
Статьи
  • Дата отправки
    1913-07-07
  • Дата принятия
    1913-09-26
  • Дата публикации
    1914-01-01

Теорема Паскаля и ее ближайшие аналоги на плоскости и в пространстве

Читать аннотацию

Теорема Паскаля лежит в основе учения о конопримах, выражая их коренное свойство вполне и однозначно определяется пятью элементами. В современном обобщенном виде она может быть выражена (см. статью). Это выражение наглядно свидетельствует о глубокой органической связи каждого шестого элемента с пятью остальными, определяющими коноприму. Более простым аналогом этой теоремы могут служить известные теоремы, выражающие коренные свойства сфероприм и сферосекунд.

Как цитировать: Федоров Е.С. Теорема Паскаля и ее ближайшие аналоги на плоскости и в пространстве // Записки Горного института. 1914. Т. № 1 5. С. 75-76.
Статьи
  • Дата отправки
    1913-07-18
  • Дата принятия
    1913-09-10
  • Дата публикации
    1914-01-01

Гексасекунда, пентаприма и пентасекунда плоскостей

Читать аннотацию

Содержание этой заметки составляет непосредственное следствие предыдущей. В ней приведена теорема, дающая возможность по семи произвольными точкам построить гексасекунду. Так как гексасекунда есть образ позиционный и коррелятивно переносится во все геометрическиение системы, то и построение гексасекунды плоскостей по семи данным подразумевается само собою. Но если даны только шесть плоскостей, то экстраплоскость всегда находится, как седьмая, в нашем распоряжении и в счет не входит как единственная в своем роде.

Как цитировать: Федоров Е.С. Гексасекунда, пентаприма и пентасекунда плоскостей // Записки Горного института. 1914. Т. № 1 5. С. 76.
Статьи
  • Дата отправки
    1912-07-02
  • Дата принятия
    1912-09-25
  • Дата публикации
    1913-02-25

Гиперболическая система

Читать аннотацию

Если в рассмотрение примем только с одной стороны плоскость, а с другой—гомологический гиперболоид, то и тогда можем признать родственность этих линейных секунд точек, потому что безконечно удаленным точкам первой системы, а следовательно и полной их линейной приме, гомологичны точки прямой пересечения гиперболоида с плоскостью инволюцш, а следовательно и всю эту прямую как линейную приму экстраэлементов. Отсюда, в частности, следует, что если во второй системе даны три произвольный точки, то определяемая ими сфероприма легко получится таким образом; проектируем эти три точки через центр Z на плоскость, строим по ним круг, и точки последнего обратным проектированием переносим на параболический гиперболоид. Так же проектируется и центр этой сферопримы. Ясно, что этоъ центъ на гиперболоиде по отношению к сфероприме есть полюс упомянутой прямой на гиперболоиде.

Как цитировать: Федоров Е.С. Гиперболическая система // Записки Горного института. 1913. Т. № 2 4. С. 144-148.
Статьи
  • Дата отправки
    1912-08-09
  • Дата принятия
    1912-10-05
  • Дата публикации
    1913-02-25

Более точное осуществление преобразования плоскости гномостереографической проекции

Читать аннотацию

Приступая к гониометрическому исследованию кристалла, исследователь еще не может предвидеть, как придется целесообразно ориентировать кристалл на гониометре, чтобы по окончании работы простейшим образом по полученной диаграмме вывести символ комплекса— первой цели всякого гониометрического исследования. Отсюда ясно, чго вообще, когда вопрос о правильной установке кристаллографического комплекса решена он окончательно решается лишь по окончании ряда измерений, вывода наиболее существенных граней и рассчета плоскостей—приходится произвести преобразоваше плоскости проекции, приняв за окружность проекции главный пояс.

Как цитировать: Федоров Е.С. Более точное осуществление преобразования плоскости гномостереографической проекции // Записки Горного института. 1913. Т. № 2 4. С. 151.
Геология
  • Дата отправки
    1913-06-13
  • Дата принятия
    1913-08-16
  • Дата публикации
    1913-12-01

Дополнительное замечание к статье А. К. Болдырева "Одно из свойств касающихся окружностей" К свойствам сфероприм векториальных кругов

Читать аннотацию

Пользуюсь случаем, чтобы в тысячный.раз отметить преимущества метода новой геометрии, теоремы которой не знают исключений, а всегда имеют совершенную общность. Этим автором уже приводится сообщенное мною ему доказательство эго теоремы но методу новой геометрии. Мне представляется гораздо целесо­образнее и проще теорему А.К. Болдырева формулировать следующим образом (см. статью). Теорема А.К. Болдырева в обобщенном, по методу новой геометрии виде, раскрывает одно из интересных свойств сфероприм векториальных кругов.

Как цитировать: Федоров Е.С. Дополнительное замечание к статье А. К. Болдырева "Одно из свойств касающихся окружностей" К свойствам сфероприм векториальных кругов // Записки Горного института. 1913. Т. № 4 4. С. 296-297.
Статьи
  • Дата отправки
    1913-06-06
  • Дата принятия
    1913-08-18
  • Дата публикации
    1913-12-01

Конфокальные совокупности

Читать аннотацию

В отношении теории конфокальных совокупностей сделанный вывод показывает, что совокупность поверхностей, выводящаяся из принятой за фокальную кривую мнимой гиперболы, не представляет ничего нового, и вошла в состав тех, которые выводились на основании вещественной гиперболы. Если принять во внимание, что в общем случае мы имеем связанный главной осью две фокальные кривые на двух взаимно-перпендикулярных плоскостях симметрии, из коих одна — эллипс, а другая — гипербола, что на третьей плоскости симметрии фокальная кривая не может быть ни эллипс, ни гипербола, и, как теперь оказывается, мнимая гипербола, то остается возможным к допущению лишь мнимый эллипс, чем вывод фокальных кривых и заканчивается. В заключение отметим, что можно вывести инволюции и на бесконечно удаленной плоскости; так как для нее из любой точки проектируются три нормально сопряженных луча, то соответственная кривая проективности есть мнимый круг, и это имеет место для всяких конфокальных совокупностей в пространстве.

Как цитировать: Федоров Е.С. Конфокальные совокупности // Записки Горного института. 1913. Т. № 4 4. С. 298-312.
Статьи
  • Дата отправки
    1913-06-21
  • Дата принятия
    1913-08-11
  • Дата публикации
    1913-12-01

Кристаллы кубической сингонии

Читать аннотацию

Представляю в настоящей статье но возможности полный список кристаллов кубической сингонии, полученных до настоящего времени. Тут мы действительно имеем дело с рядом исключительных по своим свойствам веществ, как исключительны формы кубической сингонии посреди всех остальных. Когда список составлен, эта исключительность в химическом составе веществ бросается в глаза хотя бы возможностью разделения их на те немногие рубрики, который положены в основу моего изложения. О других особенностях химического состава веществ этого ряда будет реч в конце статьи. Мне необходимо было составить этот список уже потому, чтобы из опиеанных выделить те кристаллы, которые не подлежат определению по методу кристалло-химического анализа.

Как цитировать: Федоров Е.С. Кристаллы кубической сингонии // Записки Горного института. 1913. Т. № 4 4. С. 312-320.
Статьи
  • Дата отправки
    1913-06-26
  • Дата принятия
    1913-08-30
  • Дата публикации
    1913-12-01

Построение ребер по символам в кристаллах гипогексагонального типа

Читать аннотацию

В статье поднимается вопрос построения ребер по символам в кристаллах для комплексов гипогексонального типа, который пока еще никем не поднимался. Разрешается же он, конечно, чрезвычайно просто и притом вполне аналогично с разрешением его для кубическаго типа. Мною было показано, что в комплексах гипогексагональнаго типа символы ребер таковы, что в частном случае гипогексагонально-изотропного комплекса индексы ребер и перпендикулярных граней одни и те же, как это и требуется учением о сингонии (потому что в этом случае эллипсоид сингонии есть шар).

Как цитировать: Федоров Е.С. Построение ребер по символам в кристаллах гипогексагонального типа // Записки Горного института. 1913. Т. № 4 4. С. 321.
Статьи
  • Дата отправки
    1913-06-06
  • Дата принятия
    1913-08-27
  • Дата публикации
    1913-12-01

О проектирующих конусах стереографической проекции

Читать аннотацию

В граммастереографической проекции всякая плоскость проектируется дугою большого круга, то есть дугою проходящею через две диатметрально-противоположные точки окружности проекции. Этот круг представляет одно круговое сечение конуса, имеющего центр в точке схода лучей; другое круговое сечение того же конуса есть диаметральный круг сферы в проектируемой плоскости. Повидимому до сих пор ни один кристаллограф не отметил, что эти проектирующее конусы не есть ко­нусы общего характера, а есть конусы особые, называемые конусами Паппуса, впервые отметившего их простое построение. Обе особые оси проектирующая конуса есть перпендикуляры к обоим круговым сечениям то есть перпендикуляры как к данной плоскости, так и к плоскости проекции (см. статью).

Как цитировать: Федоров Е.С. О проектирующих конусах стереографической проекции // Записки Горного института. 1913. Т. № 4 4. С. 322-323.
Статьи
  • Дата отправки
    1913-06-13
  • Дата принятия
    1913-08-13
  • Дата публикации
    1913-12-01

Еще о специальных кругах и шарах

Читать аннотацию

В этих Записках (III 287) мною посвящена этому предмету заметка, в которой я ограничился лишь полным вывидом относящихся сюда геометрических образов. Тот же вывод, конечно, могъ бы быть произведен и другими путями, которые должны были бы привести к тождественнымъ результатам. Все конопримы напр. можно вывести коллинеарным преобразованием из кругов, но также путем засечек двух проективных прим лучей, и из элементарных руководств усматривается, что последний пример если не вернее, то по крайней мере нагляднее, и в этом смысле проще (см. статью). Из упомянутой вначале заметки явствует, что существование специальных кругов и шаров вносит большую разруху в установившиеся, даже не веками, а тысячелетиями, представления о круге. Как в ней доказано, из этого понятия совершенно должно быть устранено представление о центре и равных радиусах.

Как цитировать: Федоров Е.С. Еще о специальных кругах и шарах // Записки Горного института. 1913. Т. № 4 4. С. 323-324.
Статьи
  • Дата отправки
    1913-06-16
  • Дата принятия
    1913-08-13
  • Дата публикации
    1913-12-01

Простейший ход операций кристаллографического исследования

Читать аннотацию

К затруднениям в кристаллографической практике относятся затруднения в составлении таблиц кристаллохимического анализа и собственно приемы исследования. Автор формулирует ход операций, необходимых для полного геометрического исследования кристаллов одного вещества, предполагая, что гониометр выверен и удовлетворяет условиям, изложенными выше (см. статью). Перед каждым отдельным рядом измерений следует начинать с установки нуля. Первое измерение, приводящее к составлению диаграммы в стереографической проекции и, служит для ближайшего ознакомления с кристаллом и выбора основных граней. Если вещество было уже описано, то нередко это первое измерение позволяет вывести правильную установку и связанный с нею символ комплекса, а следовательно и определить вещество по таблицам.

Как цитировать: Федоров Е.С. Простейший ход операций кристаллографического исследования // Записки Горного института. 1913. Т. № 5 4. С. 325-344.
Статьи
  • Дата отправки
    1913-06-09
  • Дата принятия
    1913-08-25
  • Дата публикации
    1913-12-01

Концентрическая укладка симметрических совокупностей равных шаров

Читать аннотацию

Если мы зададимся видом симметрии и, согласно с ним, на один данный шар будем укладывать равные шары слоями по расстоянии их центров от центра данного шара и притом так, чтобы эти шары входили в углубления между предыдущими шарами и образовали правильную совокупность, то число шаров слоя будет вполне определенное, а именно будет равно величине симметрии в общем случае, когда направление радиуса-вектора каждого такого шара (начинающегося от центра начального шара) будет общим (то есть ни совпадать с осями симметрии, ни находиться в плоскостях симметрии), и будет определенным делителем этого числа в частных случаях. Рассмотрю три совокупности шаров гексакисоктаэдрического вида симметрии соответственно трем возможным в этом случае системам параллелоэдров: трипараллелоэдров, гексапараллелоэдров и гептапараллелоэдров, а также совокупность дигексонально-бипирамидального вида симметрии (и система тетрапараллелоэдров).

Как цитировать: Федоров Е.С. Концентрическая укладка симметрических совокупностей равных шаров // Записки Горного института. 1913. Т. № 5 4. С. 345-347.
Статьи
  • Дата отправки
    1913-06-29
  • Дата принятия
    1913-08-25
  • Дата публикации
    1913-12-01

Некоторые элементарно-геометрические теоремы и задачи, находящиеся в связи с совокупностями мнимых кругов и шаров

Читать аннотацию

Мнимым кругам в решении геометрических и кристаллографических задач принадлежит весьма важная роль. Огромную роль играют и мнимые шары. Но при решении некоторых задач, относящихся к некоторым простейшим совокупностям мнимых кругов и шаров, как задач элементарно- геометрического характера, возникают затруднения, которые легко устраняются именно благодаря простым свойствам этих совокупностей. В статье рассмотрены возможные пути решения этих задач.

Как цитировать: Федоров Е.С. Некоторые элементарно-геометрические теоремы и задачи, находящиеся в связи с совокупностями мнимых кругов и шаров // Записки Горного института. 1913. Т. № 5 4. С. 348-350.
Статьи
  • Дата отправки
    1913-06-28
  • Дата принятия
    1913-08-20
  • Дата публикации
    1913-12-01

Разряды конусов и простой способ распознавания этих разрядов

Читать аннотацию

Если, приняв центр конуса за центр сферы пересечем его поверхностью этой сферы, то конус заменится сферической конопримою, почему поставленная задача сводится к распознаванию разрядов коноприм на сфере. Аналогичная ей задача определения разрядов плоских коноприм разрешается определением вида инволюции точек конопримы на экстрапрямой (бесконечно удаленной) или инволюции лучей в ее центре. В статье выводятся новые разряды коноприм и способ их распознавания.

Как цитировать: Федоров Е.С. Разряды конусов и простой способ распознавания этих разрядов // Записки Горного института. 1913. Т. № 5 4. С. 351-365.
Статьи
  • Дата отправки
    1913-06-22
  • Дата принятия
    1913-08-27
  • Дата публикации
    1913-12-01

Диаграмма плоских коноприм

Читать аннотацию

Те многочисленные и полезные результаты, которые получились от составления диаграммы сферических коноприм, побудили меня заняться, как более простым случаем, составлением диаграммы плоских коноприм. Конечно, в обоих случаях разница громадная. Там мы имеем дело с секундою коноприм; здесь только с примою, так как совокупность всех подобных коноприм приходится рассматривать как одну единственную. Там каждая коноприма характеризуется угловою величиною двух осей, которые всегда вещественны; здесь веще­ственна всегда только главная (большая) ось, малая же ось в гиперболах есть ось мнимая. Диаграмма основана на соединение в одно всех подобных коноприм. Но в составе гипербол есть поразительное исключение в отношении подобия, а именно крайняя разность гипербол с равными углами между ассимптотами то есть сама пара ассимптот, как гипербола, не может быть названа подобною всем остальным. По этой причине в диаграмму вовсе не вошли специальные гиперболы, состоящие из пары лучей.

Как цитировать: Федоров Е.С. Диаграмма плоских коноприм // Записки Горного института. 1913. Т. № 5 4. С. 366-367.
Статьи
  • Дата отправки
    1913-06-24
  • Дата принятия
    1913-08-12
  • Дата публикации
    1913-12-01

Диаграмма коносекунд

Читать аннотацию

Автор составил прилагаемую при сем диаграмму, воспользовавшись, также, как и для диаграммы сферических коноприм, стереографическою сеткою, исключив из последней малые круги. Диаграмма коносекунд, также как и диаграмма плоских коноприм, построена на принципе подобий, то есть все подобные коносекунды приняты за одну. Главную цель диаграммы автор усмотрел в том, чтобы определить по отношении трех главных осей коносекунды те три конопримы, которые в коносекунде образуются в трех плоскостях ее симметрии.

Как цитировать: Федоров Е.С. Диаграмма коносекунд // Записки Горного института. 1913. Т. № 5 4. С. 368-372.
Статьи
  • Дата отправки
    1913-06-24
  • Дата принятия
    1913-08-09
  • Дата публикации
    1913-12-01

Основные формулы сферической и плоской тетрагонометрии

Читать аннотацию

Рассматриваются формулы сферической тетрагонометрии, которые также применимы к плоской тетрагонометрии. Для практических целей кристаллохимического анализа употребляющиеся графические приемы вполне достаточны, несмотря на связанную с ними неточность. Но с течением времени, по мере расширения материала, все больше и больше будет ощущаться потребность в замене более грубо полученных чисел более точными, что во многих случаях сократит все усложняющийся труд отыскания в таблицах ве­щества, определенного в виде символа комплекса. Ближайшее ознакомлено с предстоящею задачею показывает, что здесь не просто приходится решать сферические трехугольники по трем данным углам, что именно исчерпывается сферическою тригонометрией, но что здесь представляется возможность вычислять сферические элементы, в неопределенном числе получающиеся построением по данным четырем точкам, и находить для каждого такого элемента соответствующую формулу, выражающую его даже при произвольном изменении в положении четырех основных точек.

Как цитировать: Федоров Е.С. Основные формулы сферической и плоской тетрагонометрии // Записки Горного института. 1913. Т. № 5 4. С. 373-390.
Статьи
  • Дата отправки
    1913-06-16
  • Дата принятия
    1913-08-08
  • Дата публикации
    1913-12-01

Вычисление чисел символа комплекса

Читать аннотацию

Опыт показал, что в настоящее время тех приближенных чисел, которые получаются сравнительно грубыми графическими приемами, вполне достаточно для индивидуальной характеристики каждого вещества, то есть для кристаллохимического анализа. Но по мере накопления описанных кристаллографически новых веществ, а такое накопление идет ускоренным ходом, должно когда-нибудь наступить время, что потребуется большая точность в выражении результатов измерения.

Как цитировать: Федоров Е.С. Вычисление чисел символа комплекса // Записки Горного института. 1913. Т. № 5 4. С. 391-396.
Статьи
  • Дата отправки
    1913-06-08
  • Дата принятия
    1913-08-15
  • Дата публикации
    1913-12-01

Практическое решение задачи проведения линейной примы коноприм по двум данным

Читать аннотацию

Именно этой задаче посвятил Штейнер свое знаменитое сочинение о линейных примах коноприм (Kegelschnittbüschel) и именно в нем он изложил ее с такою исчерпывающею полнотою, что решительно не было бы нечего прибавить к этому, если бы только он наперед не ограничил свою задачу вещественными конопримами; между теми данными могут быть и мнимые конопримы, хотя бы в сущности и только эллипсы, так как мнимые гиперболы равносильны с вещественными гиперболами с теми же ассимптотами, так называемый сопряженный.

Как цитировать: Федоров Е.С. Практическое решение задачи проведения линейной примы коноприм по двум данным // Записки Горного института. 1913. Т. № 5 4. С. 397-398.
Статьи
  • Дата отправки
    1913-06-20
  • Дата принятия
    1913-08-18
  • Дата публикации
    1913-12-01

О мнимых конопримах и коносекундах

Читать аннотацию

В самых основах новой геометрии лежит понятие об инволюции и различается два случая: инволюция с парою вещественных (гиперболическая) и парою мнимых (эллиптическая) двойных элементов. В частности, как для точек на прямой можем от одного вида инволюции перейти к другому, если одну из систем точек, составляющих инволюцию так перевернем, чтобы точки, который были сопряжены сами ceбе (двойные) стали сопряженными друг другу, так в инволюции на плоскости (полярная система) та коноприма, которая определяет инволюцию, становится мнимою (см. статью). Выясняется различие между вещественною и мнимою конопримою, также как и вещественною и мнимою коносекундою. На примере представлены полярные отношения для всех мнимых коноприм и коносекунд.

Как цитировать: Федоров Е.С. О мнимых конопримах и коносекундах // Записки Горного института. 1913. Т. № 5 4. С. 399-402.
Статьи
  • Дата отправки
    1913-06-17
  • Дата принятия
    1913-08-16
  • Дата публикации
    1913-12-01

Система векториальных кругов тождественна с системою сфероприм лучей

Читать аннотацию

По странной случайности ни один геометр, насколь­ко мне известно, не задавался системою сфероприм лучей, тогда как система сфероприм точек была одною из первых установленных геометрических систем, если не считать столь опередившего свое время системы коноприм как точек, так и лучей, выведенный господином Штейнером. В основании построения системы находится линейная прима; и вот теперь мы зададимся построением линейной примы сфероприм лучей.

Как цитировать: Федоров Е.С. Система векториальных кругов тождественна с системою сфероприм лучей // Записки Горного института. 1913. Т. № 5 4. С. 403.
Статьи
  • Дата отправки
    1912-06-11
  • Дата принятия
    1912-08-11
  • Дата публикации
    1912-12-01

Завершение вывода канонических параллелоэдров

Читать аннотацию

В статье „Parolleloëder in kanonischer Form und deren eindentige Beziehung zu Raumgittern" я развил понятие о параллелоэдрах в канонической форме или просто каноничееких парадлелоэдрах, приняв за главное такое двойство вывода этих параллелоэдров из пространственных решеток, чтобы этот вывод был однозначен. Однако в этой статье я рассмотрел лишь одну сторону вопроса, связанную этими угловыми отношениями кристаллических комплексов, которые в соответствии с кристаллографическим законом пределов приближают всякие вообще кристаллографические комплексы к идеальным типам; ими характеризуются распределение углов, ими которое обусловливает принадлежность этих типов к определенным видам сингонии, и в них первую роль играют прямые углы (см. статью).

Как цитировать: Федоров Е.С. Завершение вывода канонических параллелоэдров // Записки Горного института. 1912. Т. 3. С. 88-97.
Статьи
  • Дата отправки
    1912-06-21
  • Дата принятия
    1912-08-21
  • Дата публикации
    1912-12-01

Тождественные пространственные решетки при разных символах комплекса

Читать аннотацию

В статье «Paralleloëder in kanonischer Form und deren eindeutige Beziebung zu Raumgittern» я показал, что, произведя моноклинный сдвиг, можно всегда получить тождественную пространственную решетку, и при том этом иногда можно уменьшить анортогональность, отчего выражение для вероятности правильности установки повысится, хотя бы от этого символы форм и стали более сложными. Но я не остановился подробно на критерии того, при каком именно сдвиге решетка остается тождественною. Это пояснение я и хочу сделать в этой заметке.

Как цитировать: Федоров Е.С. Тождественные пространственные решетки при разных символах комплекса // Записки Горного института. 1912. Т. 3. С. 98-99.
Статьи
  • Дата отправки
    1912-06-12
  • Дата принятия
    1912-08-13
  • Дата публикации
    1912-12-01

Кристаллизация барита и порядок расчета установки вообще

Читать аннотацию

Чем больше накопляется обработанного материала по расчету правильной установки, тем резче выступает необходимость ограничиваться при этом расчете минимальным числом важнейших граней. Лабораторные кристаллы чаще всего отличаются минимальным числом проявленных форм. Это подтвердилось и на примере барита. Несмотря на их облик, почти не отличающийся от обычного облика многих природных кристаллов барита, комбинация их минимальна и через это особенно подчеркиваются первые по важности грани.

Как цитировать: Федоров Е.С. Кристаллизация барита и порядок расчета установки вообще // Записки Горного института. 1912. Т. 3. С. 99.
Статьи
  • Дата отправки
    1912-06-20
  • Дата принятия
    1912-08-17
  • Дата публикации
    1912-12-01

Несколько упрощенных приемов при графическом решении задач кристаллографии

Читать аннотацию

В этой заметке нет ни каких-либо существенных нововведений, ни какого-либо систематического решения графических вопросов. Но при том широком развитии графических решений, какое получила кристаллография в самое последнее время, а особенно при введении кристаллохимического анализа, самое незначительное упрощение или сокращение в приемах получает весьма существенное практическое значение. Наконец, некоторые правила, приводят к сокращению графических операций по особой специальности их приложения лишь в определенных, хотя и многочисленных, случаях, неудобно помещать в элементарных курсах, где должны получать место лишь правила наиболее общего значения, и притом излагаемые систематично, чтобы учащиеся получили действительную возможность решать задачи всякого рода, хотя бы и не всякий раз простейшим образом.

Как цитировать: Федоров Е.С. Несколько упрощенных приемов при графическом решении задач кристаллографии // Записки Горного института. 1912. Т. 3. С. 141-149.
Статьи
  • Дата отправки
    1912-06-21
  • Дата принятия
    1912-08-09
  • Дата публикации
    1912-12-01

Начало применения кристаллохимического анализа

Читать аннотацию

В виду того, что в настоящее время таблицы для этого анализа составлены, можно было начать применение этой научной дисциплины. Всего составлено 5 таблиц, а именно все тетрагоналоидные кристаллы разделены на 3 таблицы по структурам (гексаэдрической, додекаэдрической и октаэдрической), и кроме того по одной таблице для кристаллов гипогексагонального типа и тригоналоидных (для последних структуры отмечены только для идеальных кристаллов в виду их значительного скопления). На всех таблицах выделены в особую графу идеальные кристаллы, и для них именно мы имеем наиболее густое расположение точек, почему, имея еще в виду неизбежные неточности в графически полученных константах, для таких кристаллов в особенности придется сравнивать наибольший ряд кристаллов.

Как цитировать: Федоров Е.С. Начало применения кристаллохимического анализа // Записки Горного института. 1912. Т. 3. С. 150-157.
Статьи
  • Дата отправки
    1912-06-13
  • Дата принятия
    1912-08-16
  • Дата публикации
    1912-12-01

Энигматические грани кварца

Читать аннотацию

На энигматические грани практически можно смотреть как на иррациональные, недопускаемые основными законами кристаллографии. Предположение их иррациональности подтверждено и их зарастанием при контакте с важною гранью комплекса, смоченном насыщенным раствором вещества, причем часть последней грани подвергается растворению. Кроме этой характеристики, энигматические грани ха­рактеризуются своею одиночностью и неповторяемостью.

Как цитировать: Федоров Е.С. Энигматические грани кварца // Записки Горного института. 1912. Т. 3. С. 170.
Статьи
  • Дата отправки
    1912-06-20
  • Дата принятия
    1912-08-23
  • Дата публикации
    1912-12-01

Бенитоит вместо апатита

Читать аннотацию

Эта поправка вносится мною к заметке «Интересный кристалл апатита, спутника нептунита из Калифорнии». (Записки Г. И. II 253) на основании письменного указания д-ра Славика из Праги, заметившего мою ошибку на основании данных моего же описания, главным образом плеохроизма. Испытав твердость, которая оказалась несколько выше ортоклаза, я могу теперь о происшедшей ошибке заявить с полным убеждением.

Как цитировать: Федоров Е.С. Бенитоит вместо апатита // Записки Горного института. 1912. Т. 3. С. 170.
Статьи
  • Дата отправки
    1912-06-05
  • Дата принятия
    1912-08-28
  • Дата публикации
    1912-12-01

Существенное усовершенствование графических схем, трехугольной и тетраэдрической

Читать аннотацию

В последней статье „Химические отношения горных пород и их графическое изображение" я остановился на методе тетраэдрического изображения, предложенного мною еще раньше, как на методе наиболее совершенном и простом. И в настоящую минуту, имея в виду дальнейшее упрощение того же метода, я останавливаюсь на нем же, как на наиболее совершенном. Таким образом, целью этой заметки не только не является рассмотрение теоретических вопросов при помощи этого метода, сделанное мною в упомянутой статье, но даже нет мысли вводить какое-либо изменение в его приложениях. Все, что развито в этой статье, остается для меня одинаково правильным и в настоящую минуту. Теперь только я имею в виду показать, что метод, предложенный тогда, может быть применен в самых разнообразных формах и избрать из них именно ту, которая связана с простейшими операциями.

Как цитировать: Федоров Е.С. Существенное усовершенствование графических схем, трехугольной и тетраэдрической // Записки Горного института. 1912. Т. 3. С. 188-192.
Статьи
  • Дата отправки
    1912-06-09
  • Дата принятия
    1912-08-15
  • Дата публикации
    1912-12-01

Мистика круга Фейербаха (Circulus mysticus Feuerbachi.)

Читать аннотацию

Если дан трехугольник АВС и мы определим в нем точку высоты D (то есть общую точку пересечения перпендикуляров из его вершин на противоположные стороны), то ABCD можем принять уже за полные четырехугольники с парами противоположных сторон АВ с CD, ВС с DA и СА с BD. Проведя круг чрез основания (а 1 , b 1 , c 1 ) перпендикуляров на сторонах трехугольника, мы получаем круг Фейербаха, который, кроме этих трех точек, пройдет еще чрез шесть средин только что перечисленные стороны полного четырехугольника, то есть точки а 1 , b 1 , c 1 , а 1 ׳ b 1 ׳ , c 1 ׳

Как цитировать: Федоров Е.С. Мистика круга Фейербаха (Circulus mysticus Feuerbachi.) // Записки Горного института. 1912. Т. 3. С. 284-286.
Статьи
  • Дата отправки
    1912-06-21
  • Дата принятия
    1912-08-26
  • Дата публикации
    1912-12-01

О специальных кругах и шарах

Читать аннотацию

В моей статье о системе шаров я изложил их линейные и сферические совокупности, коллинеарное и реципрочное преобразование этих совокупностей, но совершенно не коснулся специальных кругов, имеющихся в каждой их линейной приме. Подразумевалось только, что посреди всех кругов такой примы имеется круг бесконечно большого радиуса, и такой круг есть прямая линия, составляющая радикальную ось примы. Как бы в противоположность этому, в научной литературе, начиная со Штейнера, подразумевается, что в линейной приме кругов специальной является не прямая, а пара прямых, из которых одна и есть радикальная ось, а другая есть бесконечно-удаленная прямая; но мне неизвестно, чтобы где-нибудь специально был разобран вопрос о специальных кругах. Настоящею заметкою я имею в виду заполнить этот пробел.

Как цитировать: Федоров Е.С. О специальных кругах и шарах // Записки Горного института. 1912. Т. 3. С. 287-291.
Статьи
  • Дата отправки
    1912-06-15
  • Дата принятия
    1912-08-24
  • Дата публикации
    1912-12-01

Сферические совокупности кривых 2-го порядка (коноприм)

Читать аннотацию

Рассмотрим системы кривых 2-го порядка (коноприм). В системе коноприм точек за экстраэлементы можно принять круги, потому что эти элементы составляют сами по себе особую систему и в то же время какая-угодно кривая с кругом опреде­ляет линейную приму. Но вообще в линейной приме такого экстраэлемента не имеется, а только в линейной секунде. Но можно составить линейную секунду и из линейной примы обыкновенных (а не векторальных) кругов и еще какой-нибудь конопримы. Такая линейная секунда однако уже будете специальная, а потому должна рассматриваться, как особая система, и такая система будете родственна системе точек на плоскости, причем бесконечно удаленным точкам последней должны быть особым образом проективны круги первой. Также, если составим линейную терцию из какой-нибудь линейной секунды кругов и еще какой-нибудь конопримы, то такая система будете родственна системе точек в пространстве. Но все эти будут особые, специальные системы коноприм точек.

Как цитировать: Федоров Е.С. Сферические совокупности кривых 2-го порядка (коноприм) // Записки Горного института. 1912. Т. 3. С. 292-308.
Статьи
  • Дата отправки
    1912-06-21
  • Дата принятия
    1912-08-17
  • Дата публикации
    1912-12-01

Влияние толщины слоя раствора на кристаллизацию

Читать аннотацию

В «Ежегоднике геологии иРосам» в статье о «Кристаллизации в твердой среде» я уже описал опыт превращения многоводного гидрата сульфата магния, непосредственно образующаяся при испарении раствора в семиводный. При этом я отметил, что быстро растущие иголки и волокна семиводного гидрата с видимо одинаковою скоростью распространяются как в свободном растворе так и пронизывают кристаллы многоводного гидрата (а именно Mg S0 4 12 aq). Нужно полагать, что такое крайнее замедление хода явления в экстратонких слоях происходить под влиянием частичных капиллярных сил протяжения между стенками клинового пространства и его содержимым.

Как цитировать: Федоров Е.С. Влияние толщины слоя раствора на кристаллизацию // Записки Горного института. 1912. Т. 3. С. 319.
Статьи
  • Дата отправки
    1912-06-19
  • Дата принятия
    1912-08-05
  • Дата публикации
    1912-12-01

Симметрия линейных совокупностей кривых 2-го порядка (коноприм)

Читать аннотацию

Понятно, что полная совокупность то есть квинта коноприм обладает высшею возможною то есть круговою симметрией. Симметрия кварт вполне определяется симметрией одной конопримы, потому что из нее она выводится вполне и однозначно. Поэтому в общем случае такая coвокупность имеет двойную ось симметрии и две перпендикулярные плоскости симметрии (ромбический вид симметрии на плоскости). В частном случае параболы остается только пло­скость симметрии (гемиромбический вид симметрии). Совершение исключительною симметрию обладаете круг, и следовательно имеются линейные кварты, обладающие круговою симметрии. Отсюда заключаема., что если взять для определения линейной кварты произвольную коноприму и пятерную ось симметрии, из которой выводится пять равных, то получается кварта с круговою симметрией. Все содержащиеся в ней кривые во всяких положениях располагаются непрерывными кругами из равных элементов.

Как цитировать: Федоров Е.С. Симметрия линейных совокупностей кривых 2-го порядка (коноприм) // Записки Горного института. 1912. Т. 3. С. 321-333.
Статьи
  • Дата отправки
    1912-06-19
  • Дата принятия
    1912-08-03
  • Дата публикации
    1912-12-01

Однополые гиперболоиды и обобщение их понятия на примере системы коноприм

Читать аннотацию

Если бы оказалось, что, выбрав одну линейную приму в одной диаметральной секунде и затем произвольно другую линейную приму в произвольной другой секунде и построив таким образом бесконечное множество гиперболоидов, мы получим, что вея совокупность таких гиперболоидов заключается в одной терции, нахо­дящейся в одной терции, находящейся в одной ли­нейной кварте, то мы бы имели дело с образом, представляющим обобщение понятия о гиперболоиде; такой гиперболоид мы могли бы назвать гиперболоидом системы 4-ой ступени. Только что указанная в статье („Симметрия линейных совокупностей коноприм“) особая терция, имеющая симметрию круга, и есть такой обобщенный гиперболоид в системе коноприм. Так как в этой системе, трактующей совсем другую тему, было бы неуместно останавливаться на рассмотрении этого вопроса во всех подробностях, то специально для этого выделена настоящая заметка.

Как цитировать: Федоров Е.С. Однополые гиперболоиды и обобщение их понятия на примере системы коноприм // Записки Горного института. 1912. Т. 3. С. 334-336.
Статьи
  • Дата отправки
    1912-06-10
  • Дата принятия
    1912-08-28
  • Дата публикации
    1912-12-01

Еще о замечательных свойствах особой циклиды

Читать аннотацию

Как известно, французский математик Дюпен (Dupin) названием циклид отметил любопытные поверхности, которые можно определить как оги­баемый совокупностью всех шаров, касательных к трем данным. Эти поверхности чрезвычайно разнообразны и выделяются по многим присущим им простым свойствам. изученным как самим автором, так и некоторыми другими математиками. В них имеются две особые оси, и если вращать около этих осей плоскость, то она рассечет поверхность в непрерывном ряде кругов, почему эту поверх­ность можно себе представить к как след движущегося по известному закону круга, во всех точ­ках перпендикулярного ко всем кругам другой такой же системы. Все свойства циклид изложены в моем руководстве „Новая геометрия, как основа черчения" (101). Но тут, кроме того, выведена и особая циклида исключительно интересных свойств.

Как цитировать: Федоров Е.С. Еще о замечательных свойствах особой циклиды // Записки Горного института. 1912. Т. 3. С. 337-339.
Статьи
  • Дата отправки
    1912-06-22
  • Дата принятия
    1912-08-10
  • Дата публикации
    1912-12-01

Из результатов поездки в Богоcловский округ летом 1911 г.

Читать аннотацию

Решительно нет никаких указаний на то, чтобы с местами прежних горных работ прекратились и условия рудоносности, которые во всяком случае здесь имеются на лицо. Правда, нет оснований утверждать, что мы здесь непре­менно встретимся и с богатыми рудными зале­жами; но нужно сказать, что везде и в других местах, как бы благоприятны для этого не были наблюдаемый условия, рискованно делать положи­тельный утверждения. Но в условиях, рисуемых составленною геологическою карточкою, вероятнее предположить благоприятные, чем неблагоприятные результаты. Совершенно особое положение занимает Николо-Подгорный рудник. С геологической точки зрения он является одним из интереснейших пунктов местности как по отчетливости в развитая пород, совер­шенной их исключительности в ряду других, так и по неожиданности и новизне самих пород и тех геологических условий, в которых они образовались.

Как цитировать: Федоров Е.С. Из результатов поездки в Богоcловский округ летом 1911 г. // Записки Горного института. 1912. Т. 3. С. 340-348.
Статьи
  • Дата отправки
    1912-06-26
  • Дата принятия
    1912-08-15
  • Дата публикации
    1912-12-01

Основные черты новой Геометрии

Читать аннотацию

Принимая еще во внимание неизмеримо большую простоту метода новой геометрии как метода умственного построения (без помощи каких либо вспомогательных слоями их подстроек, не нужно быть пророком, чтобы предвидеть, что современный геометрический анализ в преследовании своей задачи вытеснить анализ алгебраический, и роль последнего сведется к такому символическому вы­ражению выводов геометрического анализа (что необ­ходимо для замены по существу неточного осуще­ствления геометрических построений в практических приложениях точными вычислениями и расчетами), которое дают возможность выражать ре­зультаты точными числами.

Как цитировать: Федоров Е.С. Основные черты новой Геометрии // Записки Горного института. 1912. Т. 3. С. 383-393.
Статьи
  • Дата отправки
    1912-06-27
  • Дата принятия
    1912-08-14
  • Дата публикации
    1912-12-01

Осевая коллинеация

Читать аннотацию

Коллинеацию с мнимою инволюцией мы можем охарактеризовать и двумя такими самоколлинеарными лучами, из которых один бесконечно удаленный в горизонтальной плос­кости, а другой вертикальный. Хотя эти два луча и есть настоящее самоколлинеарные, и никоим образом не оси коллинеации с вещественной инволю­цией, но как два особые луча, характеризующее симметрии системы мы могли бы их условно на­звать осями мнимой коллинеации (условное сокращение коллинеации с мнимою инволюцией). Мы видим, что эти системы имеют центр, три проходящие чрез него двойные оси симметрии и три плоскости симметрии, проходящие попарно чрез две оси симметрии.

Как цитировать: Федоров Е.С. Осевая коллинеация // Записки Горного института. 1912. Т. 3. С. 394-396.
Статьи
  • Дата отправки
    1912-06-28
  • Дата принятия
    1912-08-23
  • Дата публикации
    1912-12-01

Вероятная тождественность двух веществ, описанных как два различные

Читать аннотацию

Сюда относятся с одной стороны вещество, полу­ченное Anschutz u. Beckerhoff как Benzoylderivat des Amyiphenols и Benzoylderivat aus Tertiaramylphenol коего кристаллы описал Hartmann, а с другой по­лученное теми же химиками вещество Benzoyl, р. tertiara- mylpbenol, коего кристаллы описал Schwanke.

Как цитировать: Федоров Е.С. Вероятная тождественность двух веществ, описанных как два различные // Записки Горного института. 1912. Т. 3. С. 397.
Статьи
  • Дата отправки
    1912-06-29
  • Дата принятия
    1912-08-15
  • Дата публикации
    1912-12-01

Всегда ли можно привести в перспективное положение две линейные секунды (в пределах одной линейной терции)?

Читать аннотацию

Поставленный вопрос столь элементарен, что, каза­лось бы, решение его должно заключаться в самых элементарных учебниках. Однако, этого не случилось, и в самом обстоятельном из имеющихся руководстве—Reye, Geometrie der Lage в главе 3 II тома, специально трактующей о перспективном положении линейных секунд, рассматриваются только условия, при которых две линейные примы (как обычно, рассматри­ваются только две системы — система точек и система плоскостей) находятся в перспективном положении. По­этому, считаю полезным рассмотреть этот вопрос в общем виде.

Как цитировать: Федоров Е.С. Всегда ли можно привести в перспективное положение две линейные секунды (в пределах одной линейной терции)? // Записки Горного института. 1912. Т. 3. С. 397-398.
Статьи
  • Дата отправки
    1912-06-11
  • Дата принятия
    1912-08-25
  • Дата публикации
    1912-12-01

О системах, коих линейные примы определяются тремя элементами

Читать аннотацию

Если нельзя однозначно определить бесконечную совокупность лучей по произвольно данным двум из них, то можно достичь этого по произвольно данным трем таковым. Общеизвестно из элементарных руководств что тремя произвольно данными, и притом непересекающимся друг с другом, прямыми можно вполне и однозначно определить некоторый однополый гиперболоид. Так как эта кривая поверхность 2-го порядка состоит не из одной, а из двух систем непересекающихся прямых, то понятно, что по трем прямым определяется непосредственно только одна из них, в состав которой входят три данные, а затем уже логически неизбежно принять и другую совокупность, которая в пространстве занимает положение, тождественное с первою системою то есть поверхность однополого гиперболоида.

Как цитировать: Федоров Е.С. О системах, коих линейные примы определяются тремя элементами // Записки Горного института. 1912. Т. 3. С. 309-314.
Статьи
  • Дата отправки
    1911-07-25
  • Дата принятия
    1911-09-30
  • Дата публикации
    1912-01-01

Нулевая система, как полярная в линейной приме коносекунд

Читать аннотацию

Плоскость, проходящая чрез поляру а и точку . имеет своею нулевою точкою ту, в которой поляра пересекается с нулевою плоскостью точки А. Прямая, соединяющая эту точку В с точкою А, как поляр имеет полюсом точку на поляре а , и обе эти точки составляют сопряженную пару на этой поляре. Каждая плоскость, одновременно касательная к двум коносекундам такой примы, имеет своею полярою прямую, соединяющую две точки касания. Если же плоскость касательна одновременно больше чем к двум коносекундам, то она касательна ко всем коносекундам линейной примы, которые в таком случае имеют с нею и друг с другом одну общую точку касания. Нулевая система есть полярная относительно линейных прим коносекунд, как обыкновенная полярная система вытекает из единственной коносекунды.

Как цитировать: Федоров Е.С. Нулевая система, как полярная в линейной приме коносекунд // Записки Горного института. 1912. Т. № 1 4. С. 63-64.
Статьи
  • Дата отправки
    1911-07-03
  • Дата принятия
    1911-09-09
  • Дата публикации
    1912-01-01

Новый случай вероятной тождественности двух веществ, описанных как два различные

Читать аннотацию

Недавно мною была отмечена вероятность тождественности двух веществ, полученных Аншютцем и описанных одно как Benzoylderivat des Amylphenols и другое как Benzoylparatertiaramylphenol. После опубликования этой заметки я получил любезное письмо проф. Грота, справлявшегося об этом письменно у проф. Аншютца и получившего ответ о действительной тождественности этих двух веществ, несмотря на громадные различия в кристаллографических константах, приданных их кристаллам гг. Гартманном и Швантке. Теперь я нашел в своих старых записях указание на такое же соотношение двух веществ, которым приданы весьма различные химические формулы, но которые в кристаллографическом отношении оказываются весьма близкими.

Как цитировать: Федоров Е.С. Новый случай вероятной тождественности двух веществ, описанных как два различные // Записки Горного института. 1912. Т. № 1 4. С. 65.
Статьи
  • Дата отправки
    1911-07-01
  • Дата принятия
    1911-09-14
  • Дата публикации
    1912-01-01

Вывод формулы для вычисления граней исходного пояса по системе зональных вычислений

Читать аннотацию

Геометрическими константами, даже для триклинного кристалла, служат пять углов, величины которых легко определить непосредственным измерением на универсальном гониометре, и тогда не нужно никаких предварительных вычислений; по этим же пяти угловым величинам с помощью основной формулы определение любой грани, не только измеренной, но и всякой возможной, данной индексами символа, производится, как упомянуто, простыми сложениями и вычитаниями, но за исключением граней, находящихся в самом исходном поясе, то есть поясе граней а и b . И в учебнике ("Сокращенный курс кристаллографии") не приведено формулы для вычисления углов между гранями в этом поясе. Здесь я и приведу вывод этой замечательной и в высшей степени простой формулы.

Как цитировать: Федоров Е.С. Вывод формулы для вычисления граней исходного пояса по системе зональных вычислений // Записки Горного института. 1912. Т. № 1 4. С. 65-66.
Статьи
  • Дата отправки
    1909-11-13
  • Дата принятия
    1910-01-25
  • Дата публикации
    1910-05-01

Дополнительные замечания к статье Соколова и Артемьева об определении плотности сеток

Читать аннотацию

Становится ясною полезность составленья таких подробных таблиц, которые конечно и будут составлены тогда, когда понадобится производить более точные вычисления плотностей сеток граней или плотностей ребер. Во всех случаях вообще, кроме триклинных кристаллов, такие вычисления будут отличаться значительною простотою, или точнее, вовсе не будут нужны, когда будут составлены таблицы. Точность может быть усилена и при употреблении графического метода, если за основу для расчетов мы возьмем не гномостереографическую (или граммастереографическую), а гномоническую (или линейную) проекции.

Как цитировать: Федоров Е.С. Дополнительные замечания к статье Соколова и Артемьева об определении плотности сеток // Записки Горного института. 1910. Т. № 5 2. С. 341-345.
Статьи
  • Дата отправки
    1909-11-04
  • Дата принятия
    1910-01-25
  • Дата публикации
    1910-05-01

Кристаллография за сорок лет

Читать аннотацию

(Доложено 26 октября 1909 г.). Отдавая себе отчет о состоянии кристаллографии, в каком я ее застал 40 лет тому назад, и сравнивая его с теперешним, нахожу, что преобразование ее за этот период едва ли не глубже, чем какой-либо другой науки. Близость кристаллографии и химии представляется естественною: обе относятся к наукам промежуточного характера между науками точными, изучение которых целиком сводится к применению методов математики, и описательными, где вообще математически метод не находит применения. Если сравним роль математики в химии и в кристаллографии 40 лет тому назад и теперь, то конечно увидим, что последняя подверглась гораздо большему преобразованию.

Как цитировать: Федоров Е.С. Кристаллография за сорок лет // Записки Горного института. 1910. Т. № 5 2. С. 364-375.
Статьи
  • Дата отправки
    1909-11-02
  • Дата принятия
    1910-01-16
  • Дата публикации
    1910-05-01

Родственные геометрические системы

Читать аннотацию

Когда в Новой геометрии признавался дуализм, то предполагалось всего две геометрические системы: система точек и коррелятивная с нею система плоскостей. Настоящая заметка имеет своею целью пока­зать особое значение такого частного случая, которое выражается следующею теоремою, если мы две такие коррелятивные системы, в которых сферопримами одной коррелятивны сферопримы другой, назовем системами родственными. Все решительно построения, а следовательно и теоремы, одной родственной системы переносятся и в другую. Кроме того, я имею в виду показать, что можно установить и такие системы, что для каждой ее линейной секунды можно воспроизвести родственную ей систему точек на плоскости.

Как цитировать: Федоров Е.С. Родственные геометрические системы // Записки Горного института. 1910. Т. № 5 2. С. 376-385.
Статьи
  • Дата отправки
    1909-11-17
  • Дата принятия
    1910-01-22
  • Дата публикации
    1910-05-01

Несколько формул, относящихся к системе зональных вычислений

Читать аннотацию

В статье «Крайнее упрощение зональных вычисле­ний и кристаллографических вычислений вообще» я отметил ту крайнюю простоту, которую получают вычисления сферических биполярных координат, если положить за основание формулу Миллера. Теперь я дополню выведенные тогда формулы такими, который относятся к вычислению котангенсов углов, образуемых с исходною какою угодно гранью пояса (см. заметку). Можно сделать вывод, что система зональных вычислений с биполярными координатами в своей особой простоте применима без применения последовательного, рекурсивного, хода вычисления, и прямо к граням с произвольными сложными индексами.

Как цитировать: Федоров Е.С. Несколько формул, относящихся к системе зональных вычислений // Записки Горного института. 1910. Т. № 5 2. С. 394-395.
Статьи
  • Дата отправки
    1909-11-06
  • Дата принятия
    1910-01-13
  • Дата публикации
    1910-05-01

Соображения о законах двойников

Читать аннотацию

Здесь я имею в виду только то, что подразумевается собственно под словом «двойники», а не те закономерные срастания, который вызываются механическими сдвигами—случай, уже разобранный в прежних моих работах. Мне представляется, что опытами правильного нарастания разнородных кристаллов друг на друга и сделанными из них выводами Ф. Баркера вполне устанавливается физическая причина образования двойников. Самый общий вывод из принципа— возможность двойникового нарастания по какой угодно плоскости комплекса, какой бы сложный символ ни был ее выражением, для случаев двойниковых граней со сложным символом, в природе получает применение в исключительных обстоятельствах.

Как цитировать: Федоров Е.С. Соображения о законах двойников // Записки Горного института. 1910. Т. № 5 2. С. 395-396.
Статьи
  • Дата отправки
    1909-11-09
  • Дата принятия
    1910-01-29
  • Дата публикации
    1910-05-01

Приближенное деление окружности круга на равные части лучами из центра

Читать аннотацию

Ко мне обратился с письмом Вл. Мейер, в котором сообщил о графическом способе деления окружности на равные части простым приемом (см. статью). Конечно, теоретически это не правильно; нельзя даже вообще установить перспективности точек на окружности и на какой-либо прямой иначе, как приняв центр лучей перспективы на самой окружности. Способ г. Мейера не имеет теоретического основания и может быть лишь приближенным по отношению к полуокружности. Этот способ действительно может найти применение хотя бы на строительных работах, например, при постановке столбов и столбиков по окружности круга.

Как цитировать: Федоров Е.С. Приближенное деление окружности круга на равные части лучами из центра // Записки Горного института. 1910. Т. № 5 2. С. 396-397.
Статьи
  • Дата отправки
    1909-11-28
  • Дата принятия
    1910-01-16
  • Дата публикации
    1910-05-01

Выражение двойного преобразования символов

Читать аннотацию

При решении задач о правильной установке кристаллов (как основе для кристаллохимического анализа) по­стоянно приходится прибегать к преобразованию символов, причем проверка этого решения связана со вторым и дальнейшими преобразованиями. Возникает задача выразить окончательные символы в исходных. Вместо известной формулы преобразования мы на практике пользуемся сокращенным выражением в виде детерминанта (см. статью)

Как цитировать: Федоров Е.С. Выражение двойного преобразования символов // Записки Горного института. 1910. Т. № 5 2. С. 397-398.
Статьи
  • Дата отправки
    1909-06-02
  • Дата принятия
    1909-08-19
  • Дата публикации
    1909-12-01

Генезис авгитогранатовых пород по новым данным

Читать аннотацию

Строение таких частей земной коры, как современного Уральского кряжа, есть нечто до такой степени сложное, что никакое человеческое воображение не в состоянии обнять его во всех деталях, и всякая попытка в этом направлении сводится к схеме, более или менее детализированной. Но специально грандиозные рудничные области скрыли в себе не только эту сложность строения, но и столько последующих изменений и превращений, что даже и схематическое представление совершавшихся там процессов натыкается на едва преодолимые трудности. Достаточно указать на напряженную деятельность метаморфизации и выветривания, чтобы отметить эти их особенности. Результаты исследования смотрите в статье.

Как цитировать: Федоров Е.С., Стратанович Е.Д. Генезис авгитогранатовых пород по новым данным // Записки Горного института. 1909. Т. № 1 2. С. 48-68.
Статьи
  • Дата отправки
    1909-06-30
  • Дата принятия
    1909-08-24
  • Дата публикации
    1909-12-01

Полный четырехсторонник в кристаллографии и графический прием нахождения сложных индексов

Читать аннотацию

Так как вообще для определения комплекса необходимо и достаточно четырех граней, то ясно, что тремя данными точками, вершины какого-бы трехугольника их полюсы ни составляли, дальнейшее развитие комплекса невозможно, и совершенно необходимо знать положение еще какой-нибудь четвертой грани. В общем, выбор таковых зависит от нашего желания, и я рассмотрю случай, когда данные четыре точки составляют вершины двух смежных трехугольников, имеющих общую сторону.

Как цитировать: Федоров Е.С. Полный четырехсторонник в кристаллографии и графический прием нахождения сложных индексов // Записки Горного института. 1909. Т. № 1 2. С. 72-73.
Статьи
  • Дата отправки
    1909-06-09
  • Дата принятия
    1909-08-18
  • Дата публикации
    1909-12-01

Один из существенных числовых законов геометрической сети развития форм

Читать аннотацию

Была установлена сеть для гипогексагонального типа и показано, что числовой закон развития форм и для этой сети существенно тот же, хотя теперь грани выражаются символами не из трех, а из четырех чисел; из этих четырех всегда можно выбрать три, в том числе необходимо и первое число, которые будут совершенно тождественны с числами первой сети. Но даже, если мы не будем делать такого подбора, а ограничимся тремя числами, из которых одно, стоящее на первом месте, а два другие выберем по произвольному условно (то есть второе с третьим, или второе с четвертым, или наконец третье с четвертым), то закон, о котором здесь идет речь, все-таки останется справедлив. Особое значение имеет распределение четных и нечетных чисел. Этот закон состоит в том, что из семи символов, относящихся к какому-угодно элементарному трехугольнику сети, один непременно заключает три (то есть все), три заключают два и три заключают одно нечетное число; все остальные числа символов четные.

Как цитировать: Федоров Е.С. Один из существенных числовых законов геометрической сети развития форм // Записки Горного института. 1909. Т. № 1 2. С. 74-76.
Статьи
  • Дата отправки
    1909-06-13
  • Дата принятия
    1909-08-14
  • Дата публикации
    1909-12-01

Тетраэдрическая геометрическая сеть и ее развитие по пяти точкам

Читать аннотацию

Нет ничего естественнее, как обобщить выводы предыдущей заметки, относящейся к трехзначным чпслам или трехугольной геометрической сети на числа более высокой значности и прежде всего на числа четырехзначные, причем получается сеть тетраэдрическая.Такая сеть чисел нашла свое применение для химического тетраэдра в петрографии. Вдумываясь в математические основания построения трехугольной сети, мы найдем, что основные теоремы остаются справедливыми и для этой сети при соответственном усложнении самих построений.Это усложнение состоит в том, что полное число точек, связанных с одним элементарным тетраэдром (точнее сфеноидом) какого-либо периода уже не 7(3 + 3 + 1), а 15: четыре при вершинах, шесть средних точек ребер, четыре средних точек граней и одна средняя точка самого тетраэдра.

Как цитировать: Федоров Е.С. Тетраэдрическая геометрическая сеть и ее развитие по пяти точкам // Записки Горного института. 1909. Т. № 1 2. С. 76-77.
Статьи
  • Дата отправки
    1909-06-13
  • Дата принятия
    1909-08-27
  • Дата публикации
    1909-12-01

Простое и точное изображение точек пространства 4-х измерений на плоскости посредством векторов

Читать аннотацию

В этой статье я в высшей степени суживаю свою задачу и даже не упоминаю о разнообразных геометрических системах и их сочетаниях, которые дают возможность ее разрешить, останавливаюсь исключительно на рассмотрении одной единственной системы 4-ой ступени на плоскости, которая прямее всего отвечает сущности дела. Эта система есть непосредственное pacширение системы параллельных векторов, а именно расширено в том отношении, что векторы, как элементы системы, могут быть взяты и не параллельными. Ясно, что через это условие система возрастает на ступень, то есть становится именно системою 4-ой ступени (соответственно геометрии пространства 4-х измерений).

Как цитировать: Федоров Е.С. Простое и точное изображение точек пространства 4-х измерений на плоскости посредством векторов // Записки Горного института. 1909. Т. № 3 2. С. 213-240.
Статьи
  • Дата отправки
    1909-06-24
  • Дата принятия
    1909-08-28
  • Дата публикации
    1909-12-01

Тонкопластинчатые кристаллы брукита

Читать аннотацию

Кристаллы этого минерала из музея Горного Института были уже мною систематически описаны в специальной статье. В последнее время музей прибыли два новые ин­тересные кристаллика этого минерала. Больше всего бросается в глаза необыкновенная их тонкость, доходящая до 0,1 м.м. при плоскостном размере, большем, чем квадр. сантиметр. На таких крайних разностях особенно поучитель­но ставить вопрос о существовании зависимости между формою и комбинацией.

Как цитировать: Федоров Е.С. Тонкопластинчатые кристаллы брукита // Записки Горного института. 1909. Т. № 3 2. С. 253.
Статьи
  • Дата отправки
    1909-06-12
  • Дата принятия
    1909-08-14
  • Дата публикации
    1909-12-01

Интересный кристалл апатита, спутника нептунита, из Калифорнии

Читать аннотацию

А. Э. Купффер, раздробляя породу из San Zenito в Калифорнии, в изобили и содержащую почти черные и довольно крупные кристаллы нептунита, выделил между прочим превосходно образованный кристалл довольно густого синего цвета, развитый в комбинациях типичного ромбического кристалла с четырьмя весьма острыми пирамидами (см. статью).

Как цитировать: Федоров Е.С. Интересный кристалл апатита, спутника нептунита, из Калифорнии // Записки Горного института. 1909. Т. № 3 2. С. 253-254.
Статьи
  • Дата отправки
    1909-06-18
  • Дата принятия
    1909-08-16
  • Дата публикации
    1909-12-01

К влиянию примесей при кристаллизации между сферами

Читать аннотацию

Воспользовавшись имевшимися у меня полушариями калистых квасцов и соответственными углублениями в крупном кристалле я пожелал испытать, как при той же кристаллизации влияют примеси в рас­творе, не оказывающие разлагающего действия на вещество, заключающееся в растворе. Как вероятный вывод—образование граней, хотя и плохого достоинства, с более сложными символами на сферических поверхностях, но столь малой величины, что вообще рефлексы не уловимыми, и начинают становиться уловимыми только некоторые из них, благодаря примесям, улучшающим кристаллизацию.

Как цитировать: Федоров Е.С. К влиянию примесей при кристаллизации между сферами // Записки Горного института. 1909. Т. № 3 2. С. 254-255.
Статьи
  • Дата отправки
    1909-06-29
  • Дата принятия
    1909-08-24
  • Дата публикации
    1909-12-01

Экспериментальное решение вопроса о генезисе вициналоидов. Скучивание

Читать аннотацию

Вициналоидами или вицинальными поверхностями называются те поверхности, который, составляя истинные грани кристаллов и весьма приближаясь к плоскостям, на самом деле не есть плоскости, а весьма сложные и разнообразные кривые поверхности. Но если вообще при росте кристалла скучивание, то есть непараллельное положение частиц друг на друга происходит хаотически то есть одинаково во всех направлениях (полная нестройность скучивания), то нельзя отрицать возможности существования причин, нарушающих эту полную нестройность и производящих неполную нестройность.

Как цитировать: Федоров Е.С. Экспериментальное решение вопроса о генезисе вициналоидов. Скучивание // Записки Горного института. 1909. Т. № 3 2. С. 255-256.
Статьи
  • Дата отправки
    1909-06-15
  • Дата принятия
    1909-08-04
  • Дата публикации
    1909-12-01

Неравномерность в распределении способности кристаллизации и изоморфизм

Читать аннотацию

В основе современного представления о законности в образовании граней лежит положение о согласии по­рядка важности граней (проявляющейся как в частности их появления, так и в их величине) с порядком их ретикулярной плотности. Это положено выведено на опыте как закон статистического характера то есть не как закон точный, проявлявшийся всегда и безусловно, а как законность, проявляющаяся в значительном болышинстве случаев. Исключения, который мы вообще находим на опыте, отнюдь не исключают мысли об абсолютном значении порядка плотности граней; но они указывают, что на образование граней, кроме этого абсолютного фактора, влияют и другие, значение которых еще не удается выразить численным способом; и эти факторы могут быть довольно многочисленны, так как на сте­пень образования тех или других граней влияют и разные внешние, отчасти трудно уловимые условия.

Как цитировать: Федоров Е.С. Неравномерность в распределении способности кристаллизации и изоморфизм // Записки Горного института. 1909. Т. № 3 2. С. 256-259.
Статьи
  • Дата отправки
    1909-06-20
  • Дата принятия
    1909-08-05
  • Дата публикации
    1909-12-01

О составлении таблиц для кристаллохимического анализа

Читать аннотацию

Отмечу не только важное для кристаллохимическаго анализа разнообразие, усматриваемое из этих таблиц, но и важное значение того промежуточного минимума, который замечен для главных чисел. Нужно заметить, что в изотропных комплексах различие между тетрагоналоидными и тригоналоидными пропадает и вообще кристаллы могли бы быть отнесены к псевдокубическим. Но если присоединить к ним еще настоящие кубические кристаллы, то мы именно для этого промежутка получили бы особое скопление кристаллов, что для анализа явилось бы фактором неблагоприятным, и вот оказывается, что как раз в этом промежутке естественно получается некоторое разрежение в распределении.

Как цитировать: Федоров Е.С. О составлении таблиц для кристаллохимического анализа // Записки Горного института. 1909. Т. № 3 2. С. 259-261.
Статьи
  • Дата отправки
    1909-06-10
  • Дата принятия
    1909-08-16
  • Дата публикации
    1909-12-01

Кристаллы Минералогического музея

Читать аннотацию

Амфибол. Пироксен. Эгирин. Энстатит. Гиперстен. Бабингтонит. Лиеврит (ильваит). Берилл. Фенакит. Трустит. Виллемит. Сфен (титанит). Паризит. Золото. Церуссит. Арагонит. Кварц. Оливин. Нептунит. Киноварь. Целестин. Барит. Подробное описание кристаллов см. в статье.

Как цитировать: Федоров Е.С. Кристаллы Минералогического музея // Записки Горного института. 1909. Т. № 4 2. С. 285-328.
Статьи
  • Дата отправки
    1909-06-12
  • Дата принятия
    1909-08-19
  • Дата публикации
    1909-12-01

К статистике распределения кристаллов по их основным свойствам

Читать аннотацию

В записках Г. И. на стр. 259 по поводу составления таблиц для кристаллохимического анализа уже были при­ведены некоторые статистические данные по этому предмету, хотя эти данные и основывались на меньшем материале, чем имеется сейчас в моем распоряжении. Сейчас сделан крупный шаг по составлению этих таблиц, а именно составлено 3730 диаграмм по материалу, заключающемуся в 42 томах Zeiteschrift für Krystallographie как в его оригинальных статьях, так и в рефератах (несколько сот этих диаграмм уже проверены сотрудниками и таким образом для них установки, а следовательно и место в таблицах, закреплено).

Как цитировать: Федоров Е.С. К статистике распределения кристаллов по их основным свойствам // Записки Горного института. 1909. Т. № 4 2. С. 329.
Статьи
  • Дата отправки
    1909-06-29
  • Дата принятия
    1909-08-18
  • Дата публикации
    1909-12-01

Новые приобретения Минералогического института

Читать аннотацию

В настоящее время кристаллография широко пользуется графическими приемами для решения своих задач. В числе целей, ставимых при развитии графических операций, преследуется также и увеличение точности. Что касается конструкции нового прибора, главным образом отметим гораздо большие размеры прибора, коего черное полушарие, как основная рабочая часть прибора имеет диаметр аршин с небольшим. Второй прибор есть универсальный прикасательный гониометр с тремя осями. Он служит для обыкновенного измерения по универсальному методу столь крупных кристаллов, что они уже не могут быть укреплены на кристаллоносце обыкновенных гониометров. Третий прибор предназначен для облегчения процесса кристаллизации. Принцип работы состоит в ритмическом нагревании и охлаждении сосуда с раствором, в котором происходит кристаллизация.

Как цитировать: Федоров Е.С. Новые приобретения Минералогического института // Записки Горного института. 1909. Т. № 4 2. С. 330-332.
Статьи
  • Дата отправки
    1908-07-07
  • Дата принятия
    1908-08-27
  • Дата публикации
    1908-12-25

Возможность разных геометрических систем при одной и той же полной совокупности элементов

Читать аннотацию

Мы теперь знаем, что геометрические системы могутъ быть весьма многочисленны и разнообразны, так как за элементы систем могутъ быть при­нимаемы весьма разнообразные геометрические образы. Для установления всякой такой системы необ­ходимо определить полную совокупность ее элемен­тов и привести доказательство, что из двух произвольно взятых из нее элементов можно однозначно составить такую их безконечную со­вокупность, чтобы, заменяя в ней два взятых двумя произвольными другими элементами, входя­щими в ее состав, мы и из них также одноз­начно вывели бы ту же самую совокупность, кото­рая и составит линейную приму системы.

Как цитировать: Федоров Е.С. Возможность разных геометрических систем при одной и той же полной совокупности элементов // Записки Горного института. 1908. Т. № 5 1. С. 319-321.
Статьи
  • Дата отправки
    1908-07-02
  • Дата принятия
    1908-08-26
  • Дата публикации
    1908-12-25

Существование безграничного множества геометрических систем

Читать аннотацию

Автор делает вывод о существовании без­граничного множества геометрических систем одной и той же ступени, выводимых из каждой одной данной. Так как вывод о возмож­ности воспроизведения из всякой данной системы другой, парной, никакими условиями не ограничи­вается и обусловливается возможностью тех же позиционных построений, что и для всех систем, то ясно, что он одинаково применим и к парным системам. Другими словами, мы можем воспроизвести но­вую, парную, систему не только из вообще каких либо геометрических систем, но совершенно на тех же основаниях и из каждой парной системы.

Как цитировать: Федоров Е.С. Существование безграничного множества геометрических систем // Записки Горного института. 1908. Т. № 5 1. С. 322-342.
Статьи
  • Дата отправки
    1908-07-19
  • Дата принятия
    1908-09-03
  • Дата публикации
    1908-12-25

Следы проявления триклинной сингонии в ортоклазе

Читать аннотацию

В числе замечательных образцов калистого поле­вого шпата в музее Горного Института имеется весьма крупный четверник адуляра из ст. Готтарда (Fibia), воспроизведенный на фиг. 1 прилагаемой таблицы (размером до двух дециметров в длину].

Как цитировать: Федоров Е.С. Следы проявления триклинной сингонии в ортоклазе // Записки Горного института. 1908. Т. № 5 1. С. 392-394.
Статьи
  • Дата отправки
    1908-07-03
  • Дата принятия
    1908-09-22
  • Дата публикации
    1908-12-25

К вопросу о происхождении двойниковых полосок в микроклине

Читать аннотацию

Автор наткнулся на ясные признаки (фиг. 3) образования полосок в микроклине в шлифе с берегов Белого моря (№8 то есть с острова Горелого в Керетском рейде). Я счел долгом представить такое изображение, совершенно отчетливое при увеличении в 120 раз.

Как цитировать: Федоров Е.С. К вопросу о происхождении двойниковых полосок в микроклине // Записки Горного института. 1908. Т. № 5 1. С. 394.
Статьи
  • Дата отправки
    1908-07-23
  • Дата принятия
    1908-09-18
  • Дата публикации
    1908-12-25

Линейная прима кривых поверхностей 2-го порядка (коносекунд), определяемая одного из них и плоскостью

Читать аннотацию

Так как плоскость Р есть лишь частный случай кривой поверхности 2-го порядка (коносекунды) К, то по таковой и еще какой-либо коносекунде, данной совершенно произвольно, вполне однозначно определяется их линейная прима). Таковою будет совокупность, для определения которой эти данные являются достаточными и могут быть заменены любыми двумя коносекундами той же совокупности.

Как цитировать: Федоров Е.С. Линейная прима кривых поверхностей 2-го порядка (коносекунд), определяемая одного из них и плоскостью // Записки Горного института. 1908. Т. № 5 1. С. 394-396.
Статьи
  • Дата отправки
    1908-07-22
  • Дата принятия
    1908-08-30
  • Дата публикации
    1908-12-25

Сдвиг обыкновенных и полярных решеток

Читать аннотацию

Устанавливается коррелятивность не только между системою точек и системою плоскостей, но и между преобразованиями этих систем. Именно в силу коррелятивности эта теорема имеет дуальное значение, так что в ее формулировке обыкновенная решетка может быть заменена полярною и обратно. Автор считает необходимым опубликование этой теоремы в виду того, что в кристаллографии для определения символа комплекса мы именно производим операцию сдвига полярной решетки (пользуясь гномостеографической проекцией, а сущность изменения, которое при этом претерпевает обыкновенная решетка, оставалась неизвестною.

Как цитировать: Федоров Е.С. Сдвиг обыкновенных и полярных решеток // Записки Горного института. 1908. Т. № 5 1. С. 396-397.
Статьи
  • Дата отправки
    1908-07-18
  • Дата принятия
    1908-09-10
  • Дата публикации
    1908-12-25

Опыты по кристаллизации между двумя сферами

Читать аннотацию

Начало опытам этого рода мною было сделано еще в 1901 году, когда я на шлифах из каменной соли и квасцов вырезывал кружки или же небольшие кольца, разделявшие внутреннюю выпуклую от внешней вогнутой сферической линии; в это кольцеобразное пространство я пускал каплю ненасыщенного раствора, закрывал покровным стеклом, которое заклеивал канадским бальзамом.

Как цитировать: Федоров Е.С. Опыты по кристаллизации между двумя сферами // Записки Горного института. 1908. Т. № 5 1. С. 397-399.
Без раздела
  • Дата отправки
    1908-06-28
  • Дата принятия
    1908-08-12
  • Дата публикации
    1908-12-01

Изображение структуры кристалла векториальными кругами

Читать аннотацию

Въ статье „Точное изображеше точекъ прос­транства на плоскости" решена задача такого изображения в трех различных элементах: кругах векториальных и обыкновенных, и в параллель ных векторах. Там же дано практическое применение изображений в параллельных векторах си­стемы рудников. Теперь я покажу существенное применение теории для изображений векториальными кругами пространственных решеток каждого изученного в структурном отношении кристалла.

Как цитировать: Федоров Е.С. Изображение структуры кристалла векториальными кругами // Записки Горного института. 1908. Т. № 4 1. С. 279-294.
Без раздела
  • Дата отправки
    1908-06-11
  • Дата принятия
    1908-08-09
  • Дата публикации
    1908-12-01

Построение кривой поверхности 2-го порядка (коносекунды) по мнимым парам точек или мнимому коническому сечению

Читать аннотацию

Мы знаем, что по двум данным точкам е с е ' и коническому сечению К на плоскости мы можем воспроизвести кривую поверхность 2-го порядка, если из этих точек одну е примем за центр секунды лучей, а вторую е ' за центр секунды плоскостей и приведем эти две секунды в коррелятивное отношение так, что лучу еа ( а точка на плоскости конического сечения) будем считать коррелятивным плоскость е ' А , где А поляра точки а по отношению к коническому сечению К . Известно именно, что в такой поверхности пересечется совокупность лучей и коррелятивных им плоскостей.

Как цитировать: Федоров Е.С. Построение кривой поверхности 2-го порядка (коносекунды) по мнимым парам точек или мнимому коническому сечению // Записки Горного института. 1908. Т. № 4 1. С. 302-304.
Без раздела
  • Дата отправки
    1908-06-04
  • Дата принятия
    1908-08-29
  • Дата публикации
    1908-12-01

Построение кривых поверхностей второго порядка (коносекунд) и полный шестигранник

Читать аннотацию

Как ни изящно построение конических сечений при помощи теоремы Паскаля, однако оно не имеетъ достаточной общности, так как применимо только для пяти вещественныхъ точек кривой, а при практическом применении более сложно, чем некоторые другие способы.

Как цитировать: Федоров Е.С. Построение кривых поверхностей второго порядка (коносекунд) и полный шестигранник // Записки Горного института. 1908. Т. № 4 1. С. 305-312.
Без раздела
  • Дата отправки
    1908-06-01
  • Дата принятия
    1908-08-14
  • Дата публикации
    1908-12-01

Заметка об одном свойстве стереографической проекции

Читать аннотацию

Считаю небезполезным отметить одно свойство стереографической проекции, хотя и не открывающее новых путей для решешя задач, но могущее способствовать большей точности решешя некоторых из них.

Как цитировать: Федоров Е.С. Заметка об одном свойстве стереографической проекции // Записки Горного института. 1908. Т. № 4 1. С. 316.
Геология
  • Дата отправки
    1908-06-03
  • Дата принятия
    1908-08-13
  • Дата публикации
    1908-12-01

Гипопараллельный сросток арагонита из Билина

Читать аннотацию

В числе отклонений от законностей свойственных настоящим (идеальным) то есть вполне кристаллически-однородным индивидам, нередко замечаются небольшие отклонения как в положении граней, так и вообще в срастании субиндивидов.

Как цитировать: Федоров Е.С. Гипопараллельный сросток арагонита из Билина // Записки Горного института. 1908. Т. № 4 1. С. 317-318.
Без раздела
  • Дата отправки
    1908-03-15
  • Дата принятия
    1908-05-01
  • Дата публикации
    1908-09-01

О реципрочных кривых и поверхностях

Читать аннотацию

Под этим общим названием мы подразумеваем все те кривые и поверхности, которые представлены в геометрии гармонических отрезков. Действительно в этой геометрии всякой средней точке отрезка однозначно соответствуют обе концевые точки этого отрезка; следовательно, какая бы кривая ни была представлена в этой геометрии, как совокупность концевых точек отрезков, всегда ее точки группируются в пары, гармонические относительно основного ортогонального шара О, причем концевые точки находятся на радиусе этого шара.

Как цитировать: Федоров Е.С. О реципрочных кривых и поверхностях // Записки Горного института. 1908. Т. № 3 1. С. 171-174.
Без раздела
  • Дата отправки
    1908-03-21
  • Дата принятия
    1908-05-08
  • Дата публикации
    1908-09-01

Сферические системы

Читать аннотацию

Одну из таких систем или сферических геометрий можно считать общеизвестною, хотя мне и неизвестно, чтобы кто-нибудь категорически отмечал полную ее параллельность или равноправность с геометрией точек на плоскости. В этой геометрии на сфере вводится одно ограничивающее условие, что она имеет дело только с точками на сфере. Поэтому, хотя ее точки занимают все три измерения пространства, но по существу она такая же геометрия двух измерений (то есть второй ступени), как и соответственная геометрия на плоскости, в которой ограничением служит рассмотрение только точек на одной плоскости.

Как цитировать: Федоров Е.С. Сферические системы // Записки Горного института. 1908. Т. № 3 1. С. 175-182.
Без раздела
  • Дата отправки
    1908-03-01
  • Дата принятия
    1908-05-08
  • Дата публикации
    1908-09-01

Баритокальцит и псевдоморфоза по нем барита

Читать аннотацию

Несмотря на длинный ряд первоклассных исследователей этого минерала, начиная с Брука, исследовавшего этот минерал в 1824 году, его кристаллизация, собственно правильная установка его кристаллов, до настоящего времени натыкалась на значительные трудности. Теперь я могу воспользоваться с этой целью превосходным штуфом из Alston Moor, имеющемся в музее Горного Института, из которого можно было бы извлечь сотни кристаллов, годных для этой цели. Я извлек 15 кристаллов и подверг их сплошному измерению на универсальном гониометре.

Как цитировать: Федоров Е.С. Баритокальцит и псевдоморфоза по нем барита // Записки Горного института. 1908. Т. № 3 1. С. 182-185.
Без раздела
  • Дата отправки
    1908-03-01
  • Дата принятия
    1908-05-16
  • Дата публикации
    1908-09-01

Естественные фигуры вытравления на топазе

Читать аннотацию

При производящемся ныне А. Э. Купффером коренном пересмотре и приведении в порядок минералов музея Горного Института представился случай довольно подробно ознакомиться и с упомянутыми в заглавии фигурами, развитыми иногда с большою отчетливостью на довольно большом числе экземпляров из различных месторождений этого интересного минерала, столь обильно представленного в музее.

Как цитировать: Федоров Е.С. Естественные фигуры вытравления на топазе // Записки Горного института. 1908. Т. № 3 1. С. 186-191.
Без раздела
  • Дата отправки
    1908-03-02
  • Дата принятия
    1908-05-24
  • Дата публикации
    1908-09-01

Кристаллы минералогического музея

Читать аннотацию

Природные кристаллы есть наиболее трудный объект для метода кристалло-химического анализа, и я должен констатировать, что сделанная мною попытка дать всеми минералами правильную установку оказалась во многих пунктах несовершенной. Но зато именно это несовершенство побудило к дальнейшей разработке критериев правильной установки, и указало на необходимость заново пересмотреть и индивидуально исследовать кристаллы многих минералов.

Как цитировать: Федоров Е.С. Кристаллы минералогического музея // Записки Горного института. 1908. Т. № 3 1. С. 192-223.
Без раздела
  • Дата отправки
    1908-03-30
  • Дата принятия
    1908-05-29
  • Дата публикации
    1908-09-01

Сомнительный двойник авгита из Монте России

Читать аннотацию

Специально занявшись пироксенами, я встречал, между прочим, сросшиеся кристаллы, напоминающие двойниковые срастания. Позволю себе здесь привести результата одного такого исследования, по числовым данным которого составлена приложенная диаграмма.

Как цитировать: Федоров Е.С. Сомнительный двойник авгита из Монте России // Записки Горного института. 1908. Т. № 3 1. С. 224.
Без раздела
  • Дата отправки
    1908-03-26
  • Дата принятия
    1908-05-27
  • Дата публикации
    1908-09-01

Усовершенствование критерия правильной установки кристаллов

Читать аннотацию

В употреблявшемся до сих пор критерии был заключен основной, принципиальный, недостаток, состоящий в подсчете плотности сеток каждого данного комплекса, как комплекса изотропного. Хотя критерий с этим недостатком и применялся вполне сознательно, ради простоты, в виду сложности операции вычисления плотности сеток, но, само собою, всегда имелось в виду желание его устранить, если бы только был найден способ определять эту плотность вполне правильно, не прибегая к упрощающему, но все-таки ошибочному, допущению.

Как цитировать: Федоров Е.С. Усовершенствование критерия правильной установки кристаллов // Записки Горного института. 1908. Т. № 3 1. С. 234.
Без раздела
  • Дата отправки
    1907-12-20
  • Дата принятия
    1908-02-25
  • Дата публикации
    1908-06-01

Этюды по геометрии шаров. Сфероколлинеация; реципрочные преобразования; мегасферы векториальных и обыкновенных шаров. Мегасферы параллельных векторов. Полярные отношения мегасфер

Читать аннотацию

Я имею в виду привести дополнительны е теоремы по линейным совокупностям геометр ии шаров вектор и альны х и квадратичны х совокупностям шаров обыкновенных. Подробное описание, а также сравнение мегасфер векториальных и обыкновенных шаров и обзор системы параллельных векторов смотрите в статье.

Как цитировать: Федоров Е.С. Этюды по геометрии шаров. Сфероколлинеация; реципрочные преобразования; мегасферы векториальных и обыкновенных шаров. Мегасферы параллельных векторов. Полярные отношения мегасфер // Записки Горного института. 1908. Т. № 2 1. С. 102-142.
Без раздела
  • Дата отправки
    1907-12-20
  • Дата принятия
    1908-02-10
  • Дата публикации
    1908-06-01

Коллинеарные системы в положении перспективном, но не инволюции

Читать аннотацию

Если имеешь коллинеации двух систем, то обе системы равны, потому что обе находятся в положении инволюции, и какой угодно точке а системы коллинеарна одна и та же точка а коллинеарной системы, независимо от того, к какой из данных двух систем принадлежит данная точка. Но теперь заменим одну из систем системою ей подобною, и примем за центр подобие Е совмещенные центры коллинеации обеих систем. Ясно, что при этом условии системы уже не могут быть приведены в положение инволюции, и потому построение гомологичных (коллинеарных) точек усложняется, и во всяком случае для каждой данной точки совокупности мы получим две различные гомологичные точки, смотря по тому, к какой из систем относится данная точка.

Как цитировать: Федоров Е.С. Коллинеарные системы в положении перспективном, но не инволюции // Записки Горного института. 1908. Т. № 2 1. С. 143-146.
Без раздела
  • Дата отправки
    1907-12-10
  • Дата принятия
    1908-02-03
  • Дата публикации
    1908-06-01

Системы гармонических отрезков и векторов

Читать аннотацию

М ы нам е чаем возможность пути для вывода неопред е ле н н о го числа новых геометрических систем. Гл авною особенностью задач Новой Геометрии является неопределенная множественность в приложе нии теорем, в противоположность той индивидуальности услов ий в постановке задач, с которыми им е ют дело геометр и я древних и аналитическая. Задачи метрическ о го характера, по этой причине, вовсе не входят в область этой дисциплины; но было бы неточно сказать, что в ее состав входят только задачи, решаемы е позиц ионными построе ниями (по каковой причине Новую Геометр ию чаще называют геометр и ей положе ний или проективною).

Как цитировать: Федоров Е.С. Системы гармонических отрезков и векторов // Записки Горного института. 1908. Т. № 2 1. С. 147-159.
Без раздела
  • Дата отправки
    1907-12-01
  • Дата принятия
    1908-02-09
  • Дата публикации
    1908-06-01

Цинк содержащий троилит, как продукт заводского возгона

Читать аннотацию

Горный инженер Нацвалов любезно доставил несколько образцов корочек возгона при обжиге купферштейна на Кедабекском заводе. Образчик представлял интерес по прекрасно образовавшимся, хотя большею частью в виде скелетов и фигур роста октаэдрам с маленькими притупляющими гранями куба.

Как цитировать: Федоров Е.С. Цинк содержащий троилит, как продукт заводского возгона // Записки Горного института. 1908. Т. № 2 1. С. 160.
Без раздела
  • Дата отправки
    1907-12-08
  • Дата принятия
    1908-02-16
  • Дата публикации
    1908-06-01

Различная растворимость граней и ее проявление в минеральном царстве

Читать аннотацию

Различие это проявляется в передвижении растворенного вещества в слое раствора, разделяющем различные грани кристалла того вещества, из которого получен и раствор. Если бы возникло сомнение в одинаковости в этом отношении свойств натуральной грани и напр. плоскости спайности, ей параллельной, то упомянутый прием дает в руки средство его разрешить.

Как цитировать: Федоров Е.С. Различная растворимость граней и ее проявление в минеральном царстве // Записки Горного института. 1908. Т. № 2 1. С. 160-163.
Без раздела
  • Дата отправки
    1907-12-09
  • Дата принятия
    1908-02-20
  • Дата публикации
    1908-06-01

Интересные образцы калистых полевых шпатов в Музее Горного Института

Читать аннотацию

Прежде всего интерес был вызван громадным Бавенским двойником ортоклаза из окрестностей Кяхты, изображенным на фиг. 1, и не только по отчетливости его образования, но и по прекрасным, включенным в него, кристаллам алмандива. Специальное оптическое исследование, произведенное В. И.Соколовым, показало, что вещество ортоклаза проростается плапоклазом около № 5, представляющим хорошо образованные полисинтетические двойники по альбитовому закону, причем один индивид двойника является согласно-брюнтированным с веществом ортоклаза.

Как цитировать: Федоров Е.С. Интересные образцы калистых полевых шпатов в Музее Горного Института // Записки Горного института. 1908. Т. № 2 1. С. 163-165.
Статьи
  • Дата отправки
    1907-06-21
  • Дата принятия
    1907-08-19
  • Дата публикации
    1907-12-01

Химические отношения горных пород и их графическое изображение

Читать аннотацию

Кто стремился дать себе ясный отчет о химических отношениях горных пород, должен был с поразительною ясностью видеть все несовершенство наших сведенийпо этому вопросу. Приходится сознаться, что настоящая, точная наука еще почти не прикоснулась к этому важному вопросу, и господствует здесь самый примитивный эмпиризм. Выставляется большое число типов пород, получающих многочисленные названия, но нет даже общепризнанного критерия для различения одного типа или, точнее, вида порода от другого.

Как цитировать: Федоров Е.С. Химические отношения горных пород и их графическое изображение // Записки Горного института. 1907. Т. № 1 1. С. 1-19.
Статьи
  • Дата отправки
    1907-06-21
  • Дата принятия
    1907-08-15
  • Дата публикации
    1907-12-01

Точное изображение точек пространства на плоскости

Читать аннотацию

Если существует параллельность теорем геометрии точек в пространстве и кругов на плоскости, то сама собою возникает идея о возможности точного изображения точек (а следовательно и получаемых из точек других образов) пространства кругами на плоскости. Задача этой статьи есть выработка наиболее совершенного и простого способа такого изображения. Но она расширена в том отношении, что для той же цели привлечены и две новые геометрические системы, а именно система векториальных кругов и система векториальных отрезков или просто векторов.

Как цитировать: Федоров Е.С. Точное изображение точек пространства на плоскости // Записки Горного института. 1907. Т. № 1 1. С. 52-79.
Статьи
  • Дата отправки
    1907-06-24
  • Дата принятия
    1907-08-17
  • Дата публикации
    1907-12-01

Вывод одной из основных формул учения о симметрии

Читать аннотацию

Формула, о которой здесь идет речь, есть логическое следствие двух уже известных формул, которые и были приведены в полном изложении автором учения о симметрии, а именно в той части, которая вышла под заглавием „Симметрия конеч ных фигур". Формула, приложимая к какой угодно группе осей симметрии (виду симметрии совмещения), но конечно не приложимая к одной оси, взятой в отдельности, дает возможность прямо по числу осей симметрии вывести величину симметрии. Из нее, между прочим следует, что величина симметрии совмещения непременно четная (что и понятно, в виду обязательного присутствия в совокупностях двойных осей симметрии), а следовательно величина симметрии тех видов, где кроме осей симметрии входят и элементы прямой симметрии, непременно делится на четыре.

Как цитировать: Федоров Е.С. Вывод одной из основных формул учения о симметрии // Записки Горного института. 1907. Т. № 1 1. С. 79-80.
Статьи
  • Дата отправки
    1907-06-29
  • Дата принятия
    1907-08-27
  • Дата публикации
    1907-12-01

Каломель из Никитовки

Читать аннотацию

А.Э. Купфер привез из известного ртутного месторождения куски светлого обожжевого (и оттого покрасневшего) песчаника, покрытого тонкими кристаллическими корочками. Кристаллы тонко-столбчаты, совершенно бесцветны, с алмазным блеском и вообще весьма напоминают каломель. Однако, анализ, произведенный на месте, констатировав присутствие хлора и ртути, дал недостаточное количество хлора, почему возникало предположение, что это не каломель, а кристаллы какого-то другого ртутного хлорида. В этих случаях решающим являются обыкновенные приемы кристалло-химического анализа, сводящегося к измерению кристаллов и их правильной установке.

Как цитировать: Федоров Е.С. Каломель из Никитовки // Записки Горного института. 1907. Т. № 1 1. С. 81.
Статьи
  • Дата отправки
    1907-06-29
  • Дата принятия
    1907-08-29
  • Дата публикации
    1907-12-01

Опыты, наглядно демонстрирующие значительное различие в растворимости разных граней

Читать аннотацию

Хотя в настоящее время едва ли существует, разногласие между специалистами по вопросу, означенному в заглавии, все-таки кажется нельзя указать на прямой опыт, непосредственно решающий этот вопрос вне всяких сомнений. Озабочиваясь о такой форме опыта, я остановился на столь простом и убедительном, что могу считать цель достигнутою. Согласно тому представлению, которое развито в моей статье „Наблюдения и опыты по кристаллогенезису", растворимость по отношению к каждой грани кристаллического вещества прямо пропорциональна ее плотности сетки, а потому она тем меньше, чем сложнее символ наблюдаемой грани (при правильной установке кристалла), а для иррациональных граней она даже равна нулю.

Как цитировать: Федоров Е.С. Опыты, наглядно демонстрирующие значительное различие в растворимости разных граней // Записки Горного института. 1907. Т. № 1 1. С. 81-83.