Системы кругов на сфере
Аннотация
Всякая вообще совокупность кругов не будет отличаться от совокупности кругов предыдущей системы, но составит лишь половину совокупности этой системы, причем линейные примы и секунды кругов обыкновенных останутся таковыми и для этой системы; но линейные совокупности векторальных кругов предыдущей системы уже не будут таковыми для этой системы, потому что касательные линейные примы предыдущей уже не есть линейные примы этой системы. Легко доказать, что в этой системе совокупности векторальных кругов и вообще отсутствуют, ими даже нельзя задаваться. В самом деле, если я задамся, например, правым векториальным кругом, то диаметрально ему противоположный есть уже левый векториальный круг; получаются в сущности два векториальные круга, которыми вполне и однозначно, определяется их линейная прима на сфере; ясно, что в ее присутствии еще третьим, произвольным, кругом задаваться нельзя; вообще, он бы уже не вошел в состав определенной линейной примы.
Литература
- -