Submit an Article
Become a reviewer

Search articles for by keywords:
drilling rig rotor

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-27
  • Date accepted
    2024-11-07
  • Date published
    2025-03-05

Comprehensive studies of the snow-firn layer in the area of the Russian Antarctic Vostok Station

Article preview

The article presents the findings from research conducted at Vostok Station during the 69th Russian Antarctic expedition. The primary goal of the research is to perform a thorough investigation of the snow-firn layer using both direct (drilling and core analysis) and indirect (georadiolocation and seismic exploration) methods. As part of the research, fundamental tasks related to the study of the structure and dynamics of the upper part of the ice sheet were addressed, as well as applied tasks aimed at justifying the depth of explosive charge placement for seismic work with the goal of conducting a detailed study of Lake Vostok and selecting the point for drilling access to the lake. Data on the microstructure and physical properties of the snow-firn layer were collected. The findings will allow for future improvements to the firn densification model, which is required to understand the evolution of ice grains during the early stages of metamorphism. The study's findings aided in the understanding of the structural features of the ice sheet's surface layer, allowing for more precise determination of the structural and physical characteristics of the snow-firn layer and ice, potentially leading to a better understanding of climatic and geological processes in Antarctica.

How to cite: Bolshunov A.V., Ignatev S.A., Gorelik G.D., Krikun N.S., Vasilev D.A., Rakitin I.V., Shadrin V.S. Comprehensive studies of the snow-firn layer in the area of the Russian Antarctic Vostok Station // Journal of Mining Institute. 2025. p. EDN KBAZNU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-09-05
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations

Article preview

At all stages of the life cycle of buildings and structures, geodetic support is provided by electronic measuring instruments – a laser scanning system, unmanned aerial vehicles, and satellite equipment. In this context, a set of geospatial data is obtained that can be presented as a digital model. The relevance of this work is practical recommendations for constructing a local quasigeoid model and a digital elevation model (DEM) of a certain accuracy. A local quasigeoid model and a DEM were selected as the study objects. It is noted that a DEM is often produced for vast areas, and, therefore, it is necessary to build a local quasigeoid model for such models. The task of assessing the accuracy of constructing such models is considered; its solution will allow obtaining a better approximation to real data on preassigned sets of field materials. A general algorithm for creating both DEM and local quasigeoid models in the Golden Software Surfer is presented. The constructions were accomplished using spatial interpolation methods. When building a local quasigeoid model for an area project, the following methods were used: triangulation with linear interpolation (the least value of the root mean square error (RMSE) of interpolation was 0.003 m) and kriging (0.003 m). The least RMSE value for determining the heights by control points for an area project was obtained using the natural neighbour (0.004 m) and kriging (0.004 m) methods. To construct a local quasigeoid model for a linear project, the following methods were applied: kriging (0.006 m) and triangulation with linear interpolation (0.006 m). Construction of the digital elevation model resulted in the least aggregate value of the estimated parameters: on a flat plot of the earth’s surface – the natural neighbour method, for a mountainous plot with anthropogenic topography – the quadric kriging method, for a mountainous plot – quadric kriging.

How to cite: Bryn M.Y., Mustafin M.G., Bashirova D.R., Vasilev B.Y. Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations // Journal of Mining Institute. 2025. Vol. 271 . p. 95-107. EDN ZDVPPC
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-03-16
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks

Article preview

Operation of vertical mine shafts in complex mining and geological conditions is associated with a number of features. One of them is a radial displacement of the concrete shaft lining, caused by the influence of mining pressure on the stress-strain state of the mine workings. A rigid reinforcing system with shaft buntons fixed in the concrete lining thus experiences elastoplastic deformations, their value increases with time. It results in deviation of conductors from design parameters, weakening of bolt connections, worsening of dynamic properties of geotechnical system “vehicle – reinforcing”, increase of wear rate of reinforcing system elements, increase of risks for creating an emergency situation. The article offers a comprehensive assessment of displacements of characteristic points of the bunton system based on approximate engineering relations, numerical modeling of the deformation process of the bunton system and laser measurements of the convergence of the inner surface of the concrete shaft lining. The method was tested on the example of the reinforcing system of the skip-cage shaft of the potash mine. Displacement of the characteristic points of the reinforcing system is determined by the value of radial displacements of the surface of the concrete shaft lining. Evaluation of the radial displacements was made using monitoring measurements and profiling data. The results obtained make it possible to justify the need and timing of repair works. It is shown that the deterioration of the reinforcing system at different levels occurs at different rates, defined, among other things, by mechanical properties of the rock mass layers located at a given depth.

How to cite: Tarasov V.V., Aptukov V.N., Ivanov O.V. Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks // Journal of Mining Institute. 2024. Vol. 266 . p. 305-315. EDN TNNIZP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-12-27
  • Date published
    2024-04-25

Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure

Article preview

The selection of efficient drilling and blasting technology to achieve the required particle size distribution of blasted rock mass and reduce ore dilution is directly related to the accurate definition of rock mass properties. The zoning of the rock massif by its hardness, drillability and blastability does not consider the variability of the geological structure of the block for blasting, resulting in an overestimated specific consumption of explosives. The decision of this task is particularly urgent for enterprises developing deposits with a high degree of variability of geological structure, for example, at alluvial deposits. Explosives overconsumption causes non-optimal granulometric composition of the blasted rock mass for the given conditions and mining technology. It is required to define physical and mechanical properties of rocks at deposits with complex geological structure at each block prepared for blasting. The correlation between the physical and mechanical properties of these rocks and drilling parameters should be used for calculation. The relation determined by the developed method was verified in industrial conditions, and the granulometric composition of the blasted rock mass was measured by an indirect method based on excavator productivity. The results demonstrated an increase in excavation productivity, thus indicating the accuracy of given approach to the task of identifying the rocks of the blasted block.

How to cite: Vinogradov Y.I., Khokhlov S.V., Zigangirov R.R., Miftakhov A.A., Suvorov Y.I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure // Journal of Mining Institute. 2024. Vol. 266 . p. 231-245. EDN RUUFNM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-26
  • Date accepted
    2023-09-20
  • Date published
    2024-04-25

Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer

Article preview

The peculiarity of the geological structure of carbonate reservoirs is their complex permeability and porosity characteristics, reflecting the simultaneous presence of cavities variety (fractures, caverns, pores). Loss of circulation during penetration of fractured rock intervals significantly increases well construction time due to lack of efficient plugging isolation compositions. The main disadvantages of traditional compositions are high sensitivity to dilution in the process of their injection into the absorption zone, as well as insufficient structural strength to prevent the isolation composition from spreading during the induction period. For efficient isolation of catastrophic absorption zones in conditions of high opening of absorption channels a new cross-linking plugging isolation composition has been developed, which allows to exclude disadvantages of traditional isolation compositions. Application of the composition will allow to reduce the injection volume of the isolation composition and the time of isolation works due to its resistance to dilution and movement of formation water in the absorption interval.

How to cite: Predein A.А., Garshina О.V., Melekhin A.А. Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer // Journal of Mining Institute. 2024. Vol. 266 . p. 295-304. EDN BPUQNV
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-16
  • Date accepted
    2023-10-24
  • Date published
    2023-10-27

Results of complex experimental studies at Vostok station in Antarctica

Article preview

Scientific research in the area close to the Russian Antarctic station Vostok has been carried out since its founding on December 16, 1957. The relevance of work to study the region is steadily increasing, which is confirmed by the Strategy for the Development of Activities of the Russian Federation in the Antarctica until 2030. As part of the Strategy implementation, Saint Petersburg Mining University solves the comprehensive study issues of the Vostok station area, including the subglacial Lake Vostok, related to the development of modern technologies and technical means for drilling glaciers and underlying rocks, opening subglacial reservoirs, sampling water and bottom sediments, as well as carrying out comprehensive geological and geophysical research. For the successful implementation of the Strategy, at each stage of the work it is necessary to identify and develop interdisciplinary connections while complying with the requirements for minimizing the impact on the environment. During the season of the 68th Russian Antarctic Expedition, the staff of the Mining University, along with the current research works , began research of the dynamic interactions between the forces of the Earth, from the deepest depths to the surface glacier. Drilling and research programs have been completed. The drilling program was implemented jointly with colleagues from the Arctic and Antarctic Research Institute at the drilling complex of the 5G well. The research program included: shallow seismic studies, core drilling of snow-firn strata, study of the snow-firn strata petrostructural features, studies of cuttings collection filters effectiveness when drilling snow-firn strata and the process of ice destruction in a reciprocating rotational method, bench testing of an acoustic scanner. As a result of drilling in 5G well at the depth range of 3453.37-3534.43 m, an ice core more than 1 million years old was obtained.

How to cite: Bolshunov A.V., Vasilev D.A., Dmitriev A.N., Ignatev S.A., Kadochnikov V.G., Krikun N.S., Serbin D.V., Shadrin V.S. Results of complex experimental studies at Vostok station in Antarctica // Journal of Mining Institute. 2023. Vol. 263 . p. 724-741. EDN WQNJET
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-27
  • Date accepted
    2023-06-20
  • Date published
    2023-12-25

Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region

Article preview

This article presents the results of drilling, experimental filtration work and laboratory studies aimed at assessing the resources and quality of groundwater in the licensed area of Vysotsky Island located in the Leningrad region, in the Gulf of Finland in accordance with the requirements of regulatory documents. Analysis of the results of hydrochemical studies and their comparison with data on water intakes in adjacent areas gives the right to conclude that it is possible to classify a hydrogeological unit as a different type of resource formation than those located in the surrounding areas. Groundwater in this area is confined to an unexplored deep fractured regional high-pressure zone. According to the received data, the explored water intake can be attributed to a unique groundwater deposit, which has an uncharacteristic composition of groundwater in the north of the Leningrad region, which may be due to the mixing of modern sediments and relict waters of the Baltic glacial lake. The stability of groundwater characteristics is confirmed by long-term monitoring.

How to cite: Nikishin V.V., Blinov P.A., Fedorov V.V., Nikishina E.K., Tokarev I.V. Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region // Journal of Mining Institute. 2023. Vol. 264 . p. 937-948. EDN ZGVJSR
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-20
  • Date accepted
    2022-07-21
  • Date published
    2023-12-25

Tribodynamic aspects of the resource of electric submersible vane pumps for oil production

Article preview

The operation of electric submersible vane pumps for oil production is accompanied by the presence of solid particles, corrosive substances, asphalt-resin-paraffin deposits in the reservoir fluid, leading to changes in performance characteristics and equipment failures. The reduction of the resource as a result of this is accompanied by an increase in the costs of repair and replacement of equipment. The main processes that negatively affect the failure are the wear of the seals of the working stages, the pump plain bearings and vibration, the level of which can significantly exceed the initial level. A test bench and methodology for testing pump sections for wear in water with an abrasive and simultaneous registration of vibration characteristics have been developed. Two main forms of wear of radial seals have been identified – one-sided and equal-dimensional. The one-sided form of sleeve wear is caused by synchronous shaft precession, whereas the equal-dimensional one is an asynchronous precession, and the vibration level increases with increasing wear. The wear distribution of radial seals along the length of the pump correlates with the shape of the elastic shaft line. The wear of the axial seals does not significantly increase the vibration level. During wear the frequency spectrum of vibrations changes; there occurs a frequency that can serve as a diagnostic sign of ultimate wear of the pump. The calculated dependence of the vibration velocity on the wear of the radial seals of the working stages is obtained, which makes it possible to predict the onset of a failure of functioning.

How to cite: Smirnov N.I., Drozdov A.N., Smirnov N.N. Tribodynamic aspects of the resource of electric submersible vane pumps for oil production // Journal of Mining Institute. 2023. Vol. 264 . p. 962-970. EDN QNNAGA
Energy industry
  • Date submitted
    2023-03-12
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Increasing the energy efficiency of an autonomous power supply system of a drilling rig in case of voltage dips

Article preview

The article discusses the emergency modes of operation of an autonomous electrical complex of a drilling rig. The concept of voltage failure and its influence on the technological process of industrial enterprises is revealed. A description of the methods used in the power supply of industrial enterprises to overcome voltage dips and load surges in autonomous power systems is presented, from which it is possible to single out the accelerated lifting of critical equipment to prevent emergency conditions, as well as the use of backup storage, usually batteries. An algorithm has been developed for the interaction of the battery and the diesel generator set as backup power sources during various modes of operation of the electric motor, taking into account load surges, which allows successfully overcoming voltage dips in the system both in transient and in steady state. It is proposed to use a combined method to eliminate the voltage dip, a feature of which is the use of a combined structure of backup power sources as part of a diesel generator set and a battery, acting on the base of the proposed interaction algorithm in autonomous electrical complexes. The method makes it possible to overcome sudden load surges and voltage dips caused by a shortage of reserve power in the electrical system. The use of a rechargeable battery as a transitional element makes it possible to switch between the main and backup power sources without stopping the technological one and to expand the overload threshold of an autonomous electrical complex up to 60 %. The use of the combined method increases the energy efficiency of the autonomous complex due to a reduction in the number of emergency shutdowns of equipment, process interruptions and additional power consumption.

How to cite: Chervonchenko S.S., Frolov V.Y. Increasing the energy efficiency of an autonomous power supply system of a drilling rig in case of voltage dips // Journal of Mining Institute. 2023. Vol. 261 . p. 470-478. EDN MGAPVA
Energy industry
  • Date submitted
    2022-10-13
  • Date accepted
    2022-12-13
  • Date published
    2023-07-19

A complex model of a drilling rig rotor with adjustable electric drive

Article preview

A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.

How to cite: Ershov M.S., Komkov А.N., Feoktistov E.A. A complex model of a drilling rig rotor with adjustable electric drive // Journal of Mining Institute. 2023. Vol. 261 . p. 339-348. DOI: 10.31897/PMI.2023.20
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-01
  • Date accepted
    2022-05-25
  • Date published
    2022-12-29

Study on the rheological properties of barite-free drilling mud with high density

Article preview

Improved drilling and reservoir penetration efficiency is directly related to the quality of the drilling mud used. The right choice of mud type and its components will preserve formation productivity, stability of the well walls and reduce the probability of other complications. Oil and gas operators use barite, less often siderite or hematite weighting agent as a weighting component in the composition of drilling muds for the conditions of increased pressure. But the use of these additives for the penetration of the productive formation leads to the reduction of filtration characteristics of the reservoir, as it is almost impossible to remove them from the pore channels. Therefore, barite-free drilling mud of increased density based on formic acid salts with the addition of carbonate weighting agent as an acid-soluble bridging agent is proposed. The results of experimental investigations on rheological parameters of barite-free solutions are given and the obtained data are analyzed. Based on the comparison of results it is recommended to use high-density drilling mud on the basis of formic acid salts (sodium and potassium formate) and with the addition of partially hydrolyzed polyacrylamide with molecular mass of 27 million.

How to cite: Leusheva E.L., Alikhanov N.T., Brovkina N.N. Study on the rheological properties of barite-free drilling mud with high density // Journal of Mining Institute. 2022. Vol. 258 . p. 976-985. DOI: 10.31897/PMI.2022.38
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-24
  • Date accepted
    2022-07-21
  • Date published
    2022-12-29

A probabilistic study on hole cleaning optimization

Article preview

Hole cleaning is considered as one of the most important drilling fluid functions. An efficient hole cleaning ensures a reliable well drilling practice with minimum troublesome problems. In this study, two main steps of hole cleaning, i.e., cuttings removal from under the bit and cuttings transport to the surface are discussed based on the drilling data of a shale formation. The traditional models for optimization of each step are presented. As the models require variety of input data, which are usually subjected to some extent of errors and uncertainties, the output of the model is also an uncertain parameter. Using Monte Carlo simulation, a simple probabilistic study was conducted to quantify the certainty level of the obtained results. Based on the result of this study, it is shown that for the proposed well, a good hole cleaning is expected. However, a more reliable decision for further hole cleaning optimization should be made considering the results of uncertainty analysis.

How to cite: Tabatabaee Moradi S.S. A probabilistic study on hole cleaning optimization // Journal of Mining Institute. 2022. Vol. 258 . p. 956-963. DOI: 10.31897/PMI.2022.67
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-15
  • Date published
    2022-12-29

Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well

Article preview

Modern drilling fluids are non-linear viscous media with an initial shear stress. In classical scientific works on hydromechanical modeling of drilling fluids motion in pipes and annular channels the Shvedov – Bingham approximation and Ostwald – de Waale power-law model were used, which did not fully account for behavior of technological fluids in a wide range of shear rates. This article presents a numerical solution for a mathematical model of drilling fluid motion of the three-parameter Herschel – Bulkley rheological model in the annular space of the well. The Herschel – Bulkley model in the rheological equation takes into account the presence of initial shear stress and a tendency for viscosity to change with shear rate, which distinguishes it from the Ostwald – de Waale and Shvedov – Bingham models. The target function in solving the equation of motion is the velocity distribution in the radial direction of the upward flow of the flushing fluid. The analysis of obtained solution is based on the theory of velocity profile influence on quality of cuttings removal during wellbore cleaning. Due to peculiarities of mathematical statement of the task, which supposes necessity of differential equation of motion solution, Wolfram Mathematica computational software has been used as a calculation tool. The analysis of numerical solution allowed to draw conclusions about the possibility of its application in evaluation of velocity profile when drilling fluid moves in annular space of the well. The possibility for application of modified excess coefficient as a relative quantitative parameter for evaluation of velocity profile uniformity was substantiated.

How to cite: Nikitin V.I. Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well // Journal of Mining Institute. 2022. Vol. 258 . p. 964-975. DOI: 10.31897/PMI.2022.93
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-06-09
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields

Article preview

Scientific and technological progress over the last century has led to an enormous increase in the consumption of minerals, including energy resources. Most of the exploited oil and gas fields are already considerably depleted, so it is necessary to search for new hydrocarbon resources, particularly at great depths. Deep drilling plays a special role in solving this problem. The article considers the world and Russian experience of ultra-deep wells drilling. The methods and technologies used in the construction of wells, as well as complications and accidents occurring during their drilling were analyzed. The analysis revealed that the existing limitations for drilling parameters of deep and ultra-deep wells are caused by the technical characteristics of surface and bottomhole drilling equipment, which do not meet the extreme drilling conditions. The directions for development of deep and ultra-deep well drilling machinery and technologies are suggested. The notion of extreme rock and geological drilling conditions is introduced, which describes drilling in conditions of hydrostatic pressure of flushing fluid column and high bottomhole temperature both at stable and unstable wellbore conditions, coming close to the upper limit of operating technical characteristics of bottomhole assembly, the drill string and flushing fluid.

How to cite: Dvoynikov M.V., Sidorkin D.I., Yurtaev S.L., Grokhotov E.I., Ulyanov D.S. Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields // Journal of Mining Institute. 2022. Vol. 258 . p. 945-955. DOI: 10.31897/PMI.2022.55
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-15
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter

Article preview

During the seasonal work of the 64th Russian Antarctic Expedition in 2018-2019 at the “Vostok” drilling facility named after B.B.Kudryashov (“Vostok” station, Antarctic) specialists of Saint Petersburg Mining University conducted experimental investigations on the process of drilling by melting with simultaneous expansion of wells in the ice mass. A test bench and a full-scale model of a thermohydraulic reamer-drilling tool were developed, manufactured and tested for the research. The first bench tests of the full-scale model proved its efficiency and suitability for experimental drilling with simultaneous expansion of wells in ice mass; its operational capabilities were determined and the drawbacks that will be taken into account in future were found out. The article substantiates the choice of constructive elements for thermohydraulic reamer-drilling tool. It is determined that the technology of full diameter drilling with simultaneous expansion of the well in ice mass can be implemented by combining contact drilling by melting and convective expansion with creation of forced near-bottomhole annular circulation of the heated heat carrier. Dependencies of expansion rate on main technological parameters were determined: active heat power of heating elements in penetrator and circulation system, mechanical drilling rate, pump flow rate. According to the results of investigations, the experimental model of thermohydraulic reamer-drilling tool will be designed and manufactured for testing in conditions of well 5G.

How to cite: Serbin D.V., Dmitriev A.N. Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter // Journal of Mining Institute. 2022. Vol. 257 . p. 833-842. DOI: 10.31897/PMI.2022.82
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-18
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Development of a hydrocarbon completion system for wells with low bottomhole temperatures for conditions of oil and gas fields in Eastern Siberia

Article preview

The paper presents the results of investigations on the influence of low bottomhole temperatures in the intervals of productive formations on the technological properties of solutions used for drilling and completion of wells in order to determine the possibility of increasing gas recovery coefficient at the field of the “Sila Sibiri” gas pipeline. The analysis of technological measures determining the quality of the productive horizon drilling-in was carried out. It was found out that the dispersion of bridging agent in the composition of the hydrocarbon-based drilling mud selected from the existing methods does not have significant influence on the change in the depth of filtrate penetration into the formation in conditions of low bottomhole temperatures. The main reason for the decrease in the near-bottomhole zone permeability was found out – the increase in plastic viscosity of the dispersion medium of the hydrocarbon-based drilling mud under the influence of low bottomhole temperatures. A destructor solution for efficient wellbore cleaning from hydrocarbon-based solution components in conditions of low bottomhole temperatures was developed. The paper presents the results of laboratory investigations of hydrocarbon-based drilling mud and the developed destructor solution, as well as its pilot field tests. The mechanism of interaction between the destructor solution and the filter cake of the hydrocarbon-based drilling mud ensuring the reduction of the skin factor in the conditions of the geological and hydrodynamic structure of Botuobinsky, Khamakinsky and Talakhsky horizons of the Chayandinskoye oil and gas condensate field has been scientifically substantiated.

How to cite: Dvoynikov M.V., Budovskaya M.E. Development of a hydrocarbon completion system for wells with low bottomhole temperatures for conditions of oil and gas fields in Eastern Siberia // Journal of Mining Institute. 2022. Vol. 253 . p. 12-22. DOI: 10.31897/PMI.2022.4
Oil and gas
  • Date submitted
    2021-09-22
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Possibilities for creating Russian high-tech bottomhole assembly

Article preview

Development of high-tech well electronic measuring systems is aimed at creating modern equipment: telemetry, well geophysical measurement equipment, the architecture of which is divided into basic (with measurement channels for gamma logging and inductive resistance) and advanced (with radioactive, acoustic, magnetic resonance and thermobarometric measurement channels, including azimuthal methods of investigation). Over-the-bit measurement modules, rotary steerable systems are being developed and channels for transmitting data to the surface are being improved. Vice versa, specialized surface equipment with highly integrated software is being created. Different measurement modules are manufactured by different companies, which creates uncertainties in the possibility of interfacing the manufacturers' measurement modules into a single well measurement system. The article presents an analysis of the readiness of Russian oil service companies to produce well and surface equipment for drilling Russian directional oil and gas wells, meeting modern requirements for accuracy, lifetime and operating conditions. The possibility of creating a fully Russian well high-tech equipment and the required resources, risks and measures to mitigate them when creating a modern well measurement system are considered.

How to cite: Zhdaneev O.V., Zaytsev А.V., Prodan Т.T. Possibilities for creating Russian high-tech bottomhole assembly // Journal of Mining Institute. 2021. Vol. 252 . p. 872-884. DOI: 10.31897/PMI.2021.6.9
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-06-24
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Modeling the acid treatment of a polymictic reservoir

Article preview

Acid treatment of wells program is directly related to oil production efficiency. Investigations aimed at improving the efficiency of acid treatment in a terrigenous reservoir have mainly reviewed the changing and adapting the reagents to minimize bridging caused by acid-rock interaction. Under real conditions, application of new and unique acid compositions is a complex process from an organizational point of view and is therefore not widely used as compared with conventional compositions based on a mixture of hydrochloric and hydrofluoric acids. The paper is based on an approach to improve acid treatment efficiency through optimal design based on near-bottomhole zone treatment simulation. The aspects for practical application of the developed acid treatment simulator for terrigenous reservoirs based on a numerical model of hydrodynamic, physical and chemical processes in a porous medium on an unstructured PEBI-grid are described. The basic uncertainties of the model are identified and analyzed. Influence of empirical parameters within the system of equations on the calculation results and modeling of the mineralogical composition of rocks are considered. Algorithm for static modelling of near-bottomhole zone for acid treatment modelling is described, as well as an approach to optimizing the design of near-bottomhole zone treatment based on adapting the results of rock tests in the model. Using experimental data, the necessity of accounting for influence of secondary and tertiary reactions on the results of modeling physical and chemical processes during acid treatment of terrigenous reservoirs was proved. The distinctive features of West Siberian objects (polymictic reservoirs) with respect to the efficiency of near-bottomhole zone treatment with clay acid have been investigated. Series of calculations to determine the optimum volume of acid injection has been carried out. Experience of previously conducted measures under the considered conditions has been analyzed and recommendations to improve the efficiency of acid treatment have been given.

How to cite: Khasanov M.M., Maltcev A.А. Modeling the acid treatment of a polymictic reservoir // Journal of Mining Institute. 2021. Vol. 251 . p. 678-687. DOI: 10.31897/PMI.2021.5.7
Electromechanics and mechanical engineering
  • Date submitted
    2021-03-30
  • Date accepted
    2021-05-26
  • Date published
    2021-09-20

Improving the efficiency of autonomous electrical complexes of oil and gas enterprises

Article preview

In accordance with the Energy Strategy until 2035, the possibility of increasing the efficiency of energy use of secondary energy resources in the form of associated oil and waste gases has been substantiated by increasing the energy efficiency of the primary energy carrier to 90-95 % by means of cogeneration plants with a binary cycle of electricity generation and trigeneration systems with using the energy of the waste gas to cool the air flow at the inlet of gas turbine plants. The conditions for maintaining the rated power of the main generator with variations in the ambient temperature are shown. An effective topology of electrical complexes in a multi-connected power supply system of oil and gas enterprises according to the reliability condition is presented, which allows increasing the availability factor by 0.6 %, mean time between failures by 33 %, the probability of failure-free operation by 15 % and reducing the mean time of system recovery by 40 %. The article considers the use of parallel active filters to improve the quality of electricity and reduce voltage drops to 0.1 s when used in autonomous electrical complexes of oil and gas enterprises. The possibility of providing uninterrupted power supply when using thyristor systems for automatic reserve input has been proven. A comparative analysis was carried out to assess the effect of parallel active filters and thyristor systems of automatic transfer of reserve on the main indicators of the reliability of power supply systems of oil and gas enterprises.

How to cite: Abramovich B.N., Bogdanov I.A. Improving the efficiency of autonomous electrical complexes of oil and gas enterprises // Journal of Mining Institute. 2021. Vol. 249 . p. 408-416. DOI: 10.31897/PMI.2021.3.10
Mining
  • Date submitted
    2021-01-25
  • Date accepted
    2021-02-22
  • Date published
    2021-04-26

Conducting industrial explosions near gas pipelines

Article preview

The problem to ensure the safety of objects which are in the area of blasting operations, ensuring the destruction of hard rocks, remains relevant. The article presents the results of a large-scale experiment to determine the safe conditions for conducting drilling and blasting operations near the active gas pipeline. The simplest and most reliable way to ensure the safety of the protected object from seismic impact is to reduce the intensity of the seismic wave, which is achieved by changing the parameters of drilling and blasting operations. This requires research to determine the impact of blasting operations on the parameters of seismic waves and the development of methods for measuring these parameters. The paper presents a detailed analysis of the seismic blast wave impact on the displacement of the ground and the model gas pipeline. The features of seismic monitoring during blasting operations near the active gas pipeline are shown. The seismic coefficients and attenuation coefficient of seismic waves are determined. It is proved that the readings of the seismic receivers on the surface and in the depth of the massive differ by two or more times.

How to cite: khokhlov S.V., Sokolov S.T., Vinogradov Y.I., Frenkel I.B. Conducting industrial explosions near gas pipelines // Journal of Mining Institute. 2021. Vol. 247 . p. 48-56. DOI: 10.31897/PMI.2021.1.6
Oil and gas
  • Date submitted
    2020-07-02
  • Date accepted
    2021-02-16
  • Date published
    2021-04-26

Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling

Article preview

Article provides a brief overview of the complications arising during the construction of oil and gas wells in conditions of abnormally high and abnormally low formation pressures. Technological properties of the solutions used to eliminate emergency situations when drilling wells in the intervals of catastrophic absorption and influx of formation fluid have been investigated. A technology for isolating water influx in intervals of excess formation pressure has been developed. The technology is based on the use of a special device that provides control of the hydrodynamic pressure in the annular space of the well. An experiment was carried out to determine the injection time of a viscoelastic system depending on its rheology, rock properties and technological parameters of the isolation process. A mathematical model based on the use of a special device is presented. The model allows determining the penetration depth of a viscoelastic system to block water-bearing horizons to prevent interformation crossflows and water breakthrough into production wells.

How to cite: Dvoynikov M.V., Kuchin V.N., Mintzaev M.S. Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling // Journal of Mining Institute. 2021. Vol. 247 . p. 57-65. DOI: 10.31897/PMI.2021.1.7
Oil and gas
  • Date submitted
    2019-11-28
  • Date accepted
    2020-05-08
  • Date published
    2020-10-08

Development of the drilling mud composition for directional wellbore drilling considering rheological parameters of the fluid

Article preview

Article presents investigations on the development of a drilling mud composition for directional wells in an oil field located in the Republic of Tatarstan (Russia). Various rheological models of fluid flow and their applicability for drilling muds are analyzed. Laboratory experiments to measure the main rheological parameters of a solution, such as plastic viscosity, dynamic shear stress, as well as indicators of non-linearity and consistency are presented. On the basis of laboratory investigations, it was concluded that high molecular weight polymer reagents (for example, xanthan gum) can give tangible pseudoplastic properties to the washing fluid, and their combination with a linear high molecular weight polymer (for example, polyacrylamide) reduces the value of dynamic shear stress. Thus, when selecting polymer reagents for treating drilling muds at directional drilling, it is necessary to take into account their structure, molecular weight and properties. Combination of different types of reagents in the composition of the drilling mud can lead to a synergistic effect and increase the efficiency of the drilling process as a whole.

How to cite: Ulyasheva N.M., Leusheva E.L., Galishin R.N. Development of the drilling mud composition for directional wellbore drilling considering rheological parameters of the fluid // Journal of Mining Institute. 2020. Vol. 244 . p. 454-461. DOI: 10.31897/PMI.2020.4.8
Oil and gas
  • Date submitted
    2019-10-30
  • Date accepted
    2020-02-03
  • Date published
    2020-10-08

Concept of technology for determining the permeability and porosity properties of terrigenous reservoirs on a digital rock sample model

Article preview

The aim of the article is to form the concept of technology for determining the permeability and porosity properties of terrigenous reservoirs using mathematical modeling methods on a digital rock sample model. Digital rock sample modeling is used to assess geological oil reserves. The article presents the concept of digital rock sample modeling technology, which allows carrying out qualitative investigations to determine the permeability and porosity characteristics of the formation, including modeling the pore space and filtration processes. The essence of the concept is that the simulation model of the microstructure for the digital model is formed on the basis of a large number of parameters obtained during lithological and petrographic investigations of thin sections, a study of the sludge and geophysical investigations of wells. The acquired model can be used as a basis for subsequent modeling of filtration processes. Conductivity of single channels of the formed model can be calculated using molecular dynamics methods, models of Boltzmann's lattice equations, and other mathematical models and methods. Based on the results of the study carried out, the application of stochastic packing methods for modeling the structure of the pore space in the digital rock sample model of terrigenous reservoirs is substantiated. In connection with the development of computer and nanotechnologies and their use in the oil and gas industry, solutions that allow obtaining adequate results of digital rock sample models are of high importance and relevance for the production sector. It is especially important to use digital rock sample models in the study of reservoir rocks of shelf fields in the western part of the Russian Arctic, oil shales, rocks represented by loose weakly cemented reservoirs, and others, which are complex for physical experiments.

How to cite: Belozerov I.P., Gubaydullin M.G. Concept of technology for determining the permeability and porosity properties of terrigenous reservoirs on a digital rock sample model // Journal of Mining Institute. 2020. Vol. 244 . p. 402-407. DOI: 10.31897/PMI.2020.4.2
Oil and gas
  • Date submitted
    2020-06-15
  • Date accepted
    2020-06-15
  • Date published
    2020-06-30

Description of steady inflow of fluid to wells with different configurations and various partial drilling-in

Article preview

There are many equations of steady inflow of fluid to the wells depending on the type of well, presence or absence of artificial or natural fractures passing through the well, different degrees of drilling-in of the wellbores. For some complex cases, analytical solutions describing the inflow of fluid to the well have not yet been obtained. An alternative to many equations is the use of numerical methods, but this approach has a significant disadvantage – a considerable counting time. In this regard, it is important to develop a more general analytical approach to describe different types of wells with different formation drilling-in and presence or absence of fractures. Creation of this method is possible during modeling of fractures by a set of nodes-vertical wells passing from a roof to floor, and modeling of a wellbore (wellbores, perforation) by a set of nodes – spheres close to each other. As a result, based on this approach, a calculation algorithm was developed and widely tested, in which total inflow to the well consists of the flow rate of each node taking into account the interference between the nodes and considering the impermeable roof and floor of the formation. Performed modeling confirmed a number of known patterns for horizontal wells, perforation, partial drilling-in of a formation, and also allowed solving a number of problems.

How to cite: Iktissanov V.A. Description of steady inflow of fluid to wells with different configurations and various partial drilling-in // Journal of Mining Institute. 2020. Vol. 243 . p. 305-312. DOI: 10.31897/PMI.2020.3.305
Oil and gas
  • Date submitted
    2019-09-25
  • Date accepted
    2019-12-20
  • Date published
    2020-04-24

Study of the well near-bottomhole zone permeability during treatment by process fluids

Article preview

In the process of drilling-in productive horizons, several irreversible physical and chemical processes take place in the near-wellbore zone of the formation: stress state of the rocks changes, penetration of the filtrate and solid phase, as well as drilling mud into the reservoir, and swelling of clay particles of intergranular cementing material are observed. As a result, permeability of productive horizon is significantly reduced and, consequently, potential inflow of oil or gas from formation is excluded. An equally serious problem exists during well servicing and workover, when the use of irrational fluids of well killing causes negative consequences associated with deterioration of reservoir properties of formations in the wells being repaired. Article presents the results of the experiments on permeability of clayed porous samples after exposure to various compositions of liquids. In order to increase permeability of near-borehole zone of the formation and increase productivity of wells completed by drilling, and after well servicing and workover, a composition of the process fluid containing a 15 % aqueous solution of oxyethylene diphosphonic acid (OEDA) with addition of a surfactant is proposed.

How to cite: Rogov E.A. Study of the well near-bottomhole zone permeability during treatment by process fluids // Journal of Mining Institute. 2020. Vol. 242 . p. 169-173. DOI: 10.31897/PMI.2020.2.169