Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations
- 1 — Ph.D., Dr.Sci. Professor Emperor Alexander I St. Petersburg State Transport University ▪ Orcid
- 2 — Ph.D., Dr.Sci. Head of Department Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 3 — Ph.D. Principal Discipline Engineer AO “Gazprom Diagnostika” ▪ Orcid
- 4 — Ph.D. Leading Engineer Empress Catherine II Saint Petersburg Mining University ▪ Orcid
Abstract
At all stages of the life cycle of buildings and structures, geodetic support is provided by electronic measuring instruments – a laser scanning system, unmanned aerial vehicles, and satellite equipment. In this context, a set of geospatial data is obtained that can be presented as a digital model. The relevance of this work is practical recommendations for constructing a local quasigeoid model and a digital elevation model (DEM) of a certain accuracy. A local quasigeoid model and a DEM were selected as the study objects. It is noted that a DEM is often produced for vast areas, and, therefore, it is necessary to build a local quasigeoid model for such models. The task of assessing the accuracy of constructing such models is considered; its solution will allow obtaining a better approximation to real data on preassigned sets of field materials. A general algorithm for creating both DEM and local quasi-geoid models in the Golden Software Surfer is presented. The constructions were accomplished using spatial interpolation methods. When building a local quasigeoid model for an area project, the following methods were used: triangulation with linear interpolation (the least value of the root mean square error (RMSE) of interpolation was 0.003 m) and kriging (0.003 m). The least RMSE value for determining the heights by control points for an area project was obtained using the natural neighbour (0.004 m) and kriging (0.004 m) methods. To construct a local quasigeoid model for a linear project, the following methods were applied: kriging (0.006 m) and triangulation with linear interpolation (0.006 m). Construction of the digital elevation model resulted in the least aggregate value of the estimated parameters: on a flat plot of the earth’s surface – the natural neighbour method, for a mountainous plot with anthropogenic topography – the quadric kriging method, for a mountainous plot – quadric kriging.
References
- Пономаренко М.Р., Кутепов Ю.И., Шабаров А.Н. Информационно-аналитическое обеспечение мониторинга состояния объектов открытых горных работ на базе технологий веб-картографии // Горный информационно-аналитический бюллетень. 2022. № 8. С. 56-70. DOI: 10.25018/0236_1493_2022_8_0_56
- Рагузин И.И., Быкова Е.Н., Лепихина О.Ю. Метод полигональной метрической сетки для оценки кадастровой стоимости земельных участков // Вестник Московского университета. Серия 5. География. 2023. Т. 78. № 3. С. 92-103. DOI: 10.55959/MSU0579-9414.5.78.3.8
- Bykowa E., Skachkova M., Raguzin I. et al. Automation of Negative Infrastructural Externalities Assessment Methods to Determine the Cost of Land Resources Based on the Development of a «Thin Client» Model // Sustainability. 2022. Vol. 14. Iss. 15. № 9383. DOI: 10.3390/su14159383
- Бажин В.Ю., Масько О.Н., Мартынов С.А. Автоматизированный контроль и управление балансом шихты при производстве металлургического кремния // Цветные металлы. 2023. № 4. С. 53-60. DOI: 10.17580/tsm.2023.04.07
- Bazhin V.Yu., Masko O.N., Huy H. Nguyen. Increasing the speed of information transfer and operational decision-making in metallurgical industry through an industrial bot // Non-ferrous Metals. 2023. № 1. P. 62-67. DOI: 10.17580/nfm.2023.01.10
- Гендлер С.Г., Крюкова М.С. Управление тепловым режимом линий метрополитена, включающих в себя двухпутные и однопутные тоннели // Горный информационно-аналитический бюллетень. 2023. № 9-1. С. 248-269. DOI: 10.25018/0236_1493_2023_91_0_248
- Карасев М.А., Поспехов Г.Б., Астапенко Т.С., Шишкина В.С. Анализ моделей прогноза напряженно-деформированного состояния техногенных грунтов низкой прочности // Горный информационно-аналитический бюллетень. 2023. № 11. С. 49-69. DOI: 10.25018/0236_1493_2023_11_0_49
- Кульчицкий А.А., Мансурова О.К., Николаев М.Ю. Распознавание дефектов грузоподъемных канатов металлургического оборудования оптическим методом с помощью нейронных сетей // Черные металлы. 2023. № 3. С. 81-88. DOI: 10.17580/chm.2023.03.13
- Петров П.А., Шестаков А.К., Николаев М.Ю. Сбор и обработка данных алюминиевого электролизера с использованием многофункционального пробойного устройства и системы технического зрения // Цветные металлы. 2023. № 4. С. 45-53. DOI: 10.17580/tsm.2023.04.06
- Петрова Т.А., Астапенко Т.С., Кологривко А.А., Есман Н.М. Снижение геоэкологических последствий при складировании галитовых отходов // Горный информационно-аналитический бюллетень. 2022. № 10-1. С. 155-162 (in English). DOI: 10.25018/0236_1493_2022_101_0_155
- Беликов А.А., Беляков Н.А. Методика прогноза напряженно-деформированного состояния междукамерных целиков, закрепленных податливой тросовой крепью // Горный информационно-аналитический бюллетень. 2023. № 4. С. 20-34. DOI: 10.25018/0236_1493_2023_4_0_20
- Беляков Н.А., Беликов А.А. Прогноз целостности водозащитной толщи на Верхнекамском месторождении калийных руд // Горный информационно-аналитический бюллетень. 2022. № 6-2. С. 33-46. DOI: 10.25018/0236_1493_2022_62_0_33
- Huxiong Li, Weiya Ye, Jun Liu et al. High-Resolution Terrain Modeling Using Airborne LiDAR Data with Transfer Learning // Remote Sensing. 2021. Vol. 13. Iss. 17. № 3448. DOI: 10.3390/rs13173448
- Hashemi-Beni L., Jones J., Thompson G. et al. Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina // Sensors. 2018. Vol. 18. Iss. 11. № 3843. DOI: 10.3390/s18113843
- Гусев В.Н., Блищенко А.А., Санникова А.П. Исследование комплекса факторов, оказывающих влияние на погрешность реализации маркшейдерской съемки горных объектов с применением геодезического квадрокоптера // Записки Горного института. 2022. № 254. С. 173-179. DOI: 10.31897/PMI.2022.35
- Кремчеев Э.А., Данилов А.С., Смирнов Ю.Д. Состояние метрологического обеспечения систем мо-ниторинга на базе беспилотных воздушных судов // Записки Горного института. 2019. Т. 235. C. 96-105. DOI: 10.31897/PMI.2019.1.96
- Меньшиков С.Н., Джалябов А.А., Васильев Г.Г. и др. Пространственные модели, разрабатываемые с применением лазерного сканирования на газоконденсатных месторождениях северной строительно-климатической зоны // Записки Горного института. 2019. Т. 238. С. 430-437. DOI: 10.31897/PMI.2019.4.430
- Luethje F., Tiede D., Eisank C. Terrain Extraction in Built-Up Areas from Satellite Stereo-Imagery-Derived Surface Models: A Stratified Object-Based Approach // ISPRS International Journal of Geo-Information. 2017. Vol. 6. Iss. 1. № 9.DOI: 10.3390/ijgi6010009
- Das R.K., Samanta S., Jana S.K., Rosa R. Polynomial interpolation methods in development of local geoid model // The Egyptian Journal of Remote Sensing and Space Science. 2018. Vol. 21. Iss. 3. P. 265-271. DOI: 10.1016/j.ejrs.2017.03.002
- Ahmed H.M., Mohamed E.A., Bahaa S.A. Evaluating two numerical methods for developing a local geoid model and a local digital elevation model for the Red Sea Coast, Egypt // Journal of King Saud University – Engineering Sciences. 2023. Vol. 35. Iss. 6. P. 384-392. DOI: 10.1016/j.jksues.2021.04.004
- Banasik P., Bujakowski K. The Use of Quasigeoid in Leveling Through Terrain Obstacles // Reports on Geodesy and Geoinformatics. 2017. Vol. 104. Iss. 1. P. 57-64. DOI: 10.1515/rgg-2017-0015
- Borowski Ł., Banaś M. The Best Robust Estimation Method to Determine Local Surface // Baltic Journal of Modern Computing. 2019. Vol. 7. № 4. P. 525-540. DOI: 10.22364/bjmc.2019.7.4.06
- Habib M., Alzubi Y., Malkawi A., Awwad M. Impact of interpolation techniques on the accuracy of large-scale digital elevation model // Open Geosciences. 2020. Vol. 12. Iss. 1. P. 190-202. DOI: 10.1515/geo-2020-0012
- Amodio A.M., Aucelli P.P.C., Garfì V., Rosskopf C.M. Digital photogrammetric analysis approaches for the realization of detailed terrain models // Rendiconti Online della Società Geologica Italiana. 2020. Vol. 52. P. 69-75. DOI: 10.3301/ROL.2020.21
- Bui L.K., Glennie C.L., Hartzell P.J. Rigorous Propagation of LiDAR Point Cloud Uncertainties to Spatially Regular Grids by a TIN Linear Interpolation // IEEE Geoscience and Remote Sensing Letters. 2022. Vol. 19. № 7003105. DOI: 10.1109/LGRS.2021.3134587
- Boreggio M., Bernard M., Gregoretti C. Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps) // Frontiers in Earth Science. 2018. Vol. 6. № 89. DOI: 10.3389/feart.2018.00089
- Fazilova D., Magdiev H. Comparative Study of Interpolation Methods in Development of Local Geoid // International Journal of Geoinformatics. 2018. Vol. 14. № 1. P. 29-33.
- Banasik P., Bujakowski K., Kudrys J. et al. Development of a precise local quasigeoid model for the city of Krakow – QuasigeoidKR2019 // Reports on Geodesy and Geoinformatics. 2020. Vol. 109. Iss. 1. P. 25-31. DOI: 10.2478/rgg-2020-0004
- Mysen E. On the uncertainty of height anomaly differences predicted by least-squares collocation // Journal of Geodetic Science. 2020. Vol. 10. Iss. 1. P. 53-61. DOI: 10.1515/jogs-2020-0111
- Hosseini-Asl M., Amiri-Simkooei A.R., Safari A. Establishment of a corrective geoid surface by spline approximation of Iranian GNSS/levelling network // Measurement. 2022. Vol. 197. № 111341. DOI: 10.1016/j.measurement.2022.111341
- Medved K., Kuhar M., Koler B. Regional gravimetric survey of central Slovenia // Measurement. 2019. Vol. 136. P. 395-404. DOI: 10.1016/j.measurement.2018.12.065
- Chymyrov A. Comparison of different DEMs for hydrological studies in the mountainous areas // The Egyptian Journal of Remote Sensing and Space Science. 2021. Vol. 24. Iss. 3. Part 2. P. 587-594. DOI: 10.1016/j.ejrs.2021.08.001
- Mahbuby H., Safari A., Foroughi I. Local gravity field modeling using spherical radial basis functions and a genetic algorithm // Comptes Rendus Geoscience. 2017. Vol. 349. № 3. P. 106-113. DOI: 10.1016/j.crte.2017.03.001
- Belay E.Y., Godah W., Szelachowska M., Tenzer R. ETH-GQS: An estimation of geoid-to-quasigeoid separation over Ethiopia // Geodesy and Geodynamics. 2022. Vol. 13. Iss. 1. P. 31-37. DOI: 10.1016/j.geog.2021.09.006
- Qingwang Liu, Liyong Fu, Qiao Chen et al. Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and Photogrammetry // Remote Sensing. 2020. Vol. 12. Iss. 18. № 2884. DOI: 10.3390/rs12182884
- Мустафин М.Г., Баландин В.Н., Брынь М.Я. и др. Топографо-геодезическое и картографическое обеспечение Арктической зоны Российской Федерации // Записки Горного института. 2018. Т. 232. С. 375-382. DOI: 10.31897/PMI.2018.4.375
- Mustafin M.G., Valkov V.A., Kazantsev A.I. Monitoring of Deformation Processes in Buildings and Structures in Metropolises // Procedia Engineering. 2017. Vol. 189. P. 729-736. DOI: 10.1016/j.proeng.2017.05.115
- Rusli N., Majid M.R., Nur Fakihin Auni A. Razali, Nur Fatma Fadilah Yaacob. Accuracy Assessment of DEM from UAV and TanDEM-X Imagery // 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications, 8-9 March 2019, Penang, Malaysia. IEEE Xplore, 2019. P. 127-131. DOI: 10.1109/CSPA.2019.8696088
- Habib M. Evaluation of DEM interpolation techniques for characterizing terrain roughness // Catena. 2021. Vol. 198. № 105072. DOI: 10.1016/j.catena.2020.105072
- Li L., Nearing M.A., Nichols M.H. et al. The effects of DEM interpolation on quantifying soil surface roughness using terrestrial LiDAR // Soil and Tillage Research. 2020. Vol. 198. № 104520. DOI: 10.1016/j.still.2019.104520
- Chuanfa Chen, Yixuan Bei, Yanyan Li, Weiwei Zhou. Effect of interpolation methods on quantifying terrain surface roughness under different data densities // Geomorphology. 2022. Vol. 417. № 108448. DOI: 10.1016/j.geomorph.2022.108448
- Cățeanu M., Ciubotaru A. Accuracy of Ground Surface Interpolation from Airborne Laser Scanning (ALS) Data in Dense Forest Cover // ISPRS International Journal of Geo-Information. 2020. Vol. 9. Iss. 4. № 224. DOI: 10.3390/ijgi9040224
- Tao Zhang, Xiaosu Xu, Shengbao Xu. Method of establishing an underwater digital elevation terrain based on kriging interpolation // Measurement. 2015. Vol. 63. P. 287-298. DOI: 10.1016/j.measurement.2014.12.025
- Ikechukwu M.N., Ebinne E., Idorenyin U., Raphael N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study // Journal of Geographic Information System. 2017. Vol. 9. № 3. P. 354-371. DOI: 10.4236/jgis.2017.93022
- Павлова А.И. Анализ методов интерполирования высот точек для создания цифровых моделей рельефа // Автометрия. 2017. Т. 53. № 2. С. 86-94. DOI: 10.15372/AUT20170210
- Helwig Z.D., Guggenberger J., Elmore A.C., Uetrecht R. Development of a variogram procedure to identify spatial outliers using a supplemental digital elevation model // Journal of Hydrology X. 2019. Vol. 3. № 100029. DOI: 10.1016/j.hydroa.2019.100029
- Arun P.V. A comparative analysis of different DEM interpolation methods // The Egyptian Journal of Remote Sensing and Space Science. 2013. Vol. 16. Iss. 2. P. 133-139. DOI: 10.1016/j.ejrs.2013.09.001
- Bui L.K., Glennie C.L. Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density // ISPRS Open Journal of Photogrammetry and Remote Sensing. 2023. Vol. 7. № 100028. DOI: 10.1016/j.ophoto.2022.100028
- Agüera-Vega F., Agüera-Puntas M., Martínez-Carricondo P. et al. Effects of point cloud density, interpolation method and grid size on derived Digital Terrain Model accuracy at micro topography level // International Journal of Remote Sensing. 2020. Vol. 41. Iss. 21. P. 8281-8299. DOI: 10.1080/01431161.2020.1771788
- McRoberts R.E., Domke G.M., Qi Chen et al. Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data // Remote Sensing of Environment. 2016. Vol. 184. P. 387-395. DOI: 10.1016/j.rse.2016.07.007