Submit an Article
Become a reviewer
Vol 271
Pages:
3-21
Download volume:
RUS ENG

Carbon dioxide corrosion inhibitors: current state of research and development

Authors:
Mariya V. Chudakova1
Kirill A. Ovchinnikov2
Dmitrii N. Ulyanov3
Anisa M. Kunakova4
Liniza R. Saifutdinova5
Andrei A. Pimenov6
Anton L. Maximov7
About authors
  • 1 — Ph.D. Senior Researcher PAO Gazprom Neft ▪ Orcid
  • 2 — Ph.D. PhD Candidate Peoples’s Friendship University of Russia named after Patrice Lumumba ▪ Orcid
  • 3 — Head of Department PAO Gazprom Neft ▪ Orcid
  • 4 — Ph.D. Head of the Center Gazprom Neft Scientific and Technical Center ▪ Orcid
  • 5 — Ph.D. Contractor GCSS Neftepromhim LLC ▪ Orcid
  • 6 — Ph.D., Dr.Sci. Director Tatar Oil Research and Design Institute (TatNIPIneft) of PJSC TATNEFT ▪ Orcid
  • 7 — Ph.D., Dr.Sci. Corresponding Member of RAS A.V.Topchiev Institute of Petrochemical Synthesis, RAS ▪ Orcid
Date submitted:
2022-09-30
Date accepted:
2024-11-07
Date published:
2025-02-25

Abstract

Among the methods of corrosion control in the oil and gas production industry the leading place belongs to inhibitor protection, since there is no need for technological and technical changes in the existing equipment. The combination of high variability of inhibitor composition with changing conditions of its application and low capital investments makes it an indispensable reagent at oil and gas fields. The main classes of compounds used as active bases of carbonic acid corrosion inhibitors for the protection of oil and gas equipment are described. Classical organic active bases containing heteroatoms (oxygen, sulfur, nitrogen) are examined. Special attention was paid to alkylimidazolines and other nitrogen-containing compounds as the most frequently used as active bases of carbonic acid corrosion inhibitors in Russia and abroad. A wide range of possibilities to achieve the desired properties of corrosion inhibitors by varying the substitutes has been demonstrated. Nowadays, in addition to the traditional requirements for corrosion inhibitors, their safety for the environment is equally important. The information on prospective research and development aimed at improving the environmental characteristics of the reagents used is given. Plant extracts, synthetic and biological polymers involved in traditional corrosion inhibitors or used as new independent compounds are considered. It is shown that the effectiveness of corrosion inhibitors significantly depends on the pH of the medium, temperature, partial pressure of СО2, flow rate, and other factors.

Keywords:
corrosion inhibitor carbonic acid corrosion imidazoline СО2 green inhibitors plant inhibitors polymeric inhibitors synthetic polymers biopolymers
Go to volume 271

References

  1. Ormellese M. Corrosion in Oil and Chemical Industry // Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier, 2018. Vol. 6.1: Corrosion and Passivation. P. 145-154. DOI: 10.1016/B978-0-12-409547-2.13434-1
  2. Корякин А.Ю., Кобычев В.Ф., Колинченко И.В., Юсупов А.Д. Условия протекания углекислотной коррозии на объектах добычи ачимовских отложений, методы контроля и прогнозирования // Газовая промышленность. 2017. № 12. С. 84-89.
  3. Kasyanov A.V., Belousov A.E., Popov G.G., Bolobov V.I. Determination of factors affecting on grooving corrosion // Topical Issues of Rational Use of Natural Resources. CRC Press. 2019. Vol. 1. P. 393-399. DOI: 10.1201/9781003014577-49
  4. Кантюков Р.Р., Запевалов Д.Н., Вагапов Р.К. Анализ применения и воздействия углекислотных сред на коррозионное состояние нефтегазовых объектов // Записки Горного института. 2021. Т. 250. С. 578-586. DOI: 10.31897/PMI.2021.4.11
  5. Ткачева В.Э., Маркин А.Н., Пресняков А.Ю. и др. Локальная углекислотная коррозия углеродистых и низколегированных сталей в нефтепромысловых системах // Вестник Технологического университета. 2020. Т. 23. № 12. C. 65-75.
  6. Вагапов Р.К., Федотова А.И., Запевалов Д.Н., Стрельникова К.О. Коррозионная агрессивность различных эксплуатационных факторов на углеводородных месторождениях, содержащих диоксид углерода // Вести газовой науки. 2019. № 2 (39). С. 129-135.
  7. Kahyarian A., Nesic S. A New Narrative for CO2 Corrosion of Mild Steel // Journal of the Electrochemical Society. 2019. Vol. 166. № 11. C3048-C3063. DOI: 10.1149/2.0071911jes
  8. Ting Yan, Liang-Chen Xu, Zhuo-Xiong Zeng, Wei-Guo Pan. Mechanism and anti-corrosion measures of carbon dioxide corrosion in CCUS: A review // iScience. 2024. Vol. 27. Iss. 1. № 108594. DOI: 10.1016/j.isci.2023.108594
  9. Ильинова А.А., Ромашева Н.В., Стройков Г.А. Перспективы и общественные эффекты проектов секвестрации и использования углекислого газа // Записки Горного института. 2020. Т. 244. С. 493-502. DOI: 10.31897/PMI.2020.4.12
  10. Askari M., Aliofkhazraei M., Jafari R. et al. Downhole corrosion inhibitors for oil and gas production – a review // Applied Surface Science Advances. 2021. Vol. 6. № 100128. DOI: 10.1016/j.apsadv.2021.100128
  11. Петрова Т.А., Епишина А.Д. Антикоррозионная защита трубопроводного транспорта на горно-перерабатывающих предприятиях // Обогащение руд. 2023. № 6. С. 52-58. DOI: 10.17580/or.2023.06.09
  12. Шапошников Н.О., Голубев И.А., Хоробров С.В. и др. Автоклавное моделирование коррозионных процессов, происходящих в газопроводе при транспортировке неподготовленной многофазной среды, содержащей CO2 // Записки Горного института. 2022. Т. 258. С. 915-923. DOI: 10.31897/PMI.2022.92
  13. Аминова Д.Ф., Валиахметов Р.И. Повышение эффективности защиты промысловых трубопроводов с использованием ингибиторной защиты // Транспорт и хранение нефтепродуктов и углеводородного сырья. 2021. № 1. С. 58-61. DOI: 10.24412/0131-4270-2021-1-58-61
  14. Вагапов Р.К., Запевалов Д.Н. Критерии оценки коррозионной опасности и эффективности ингибиторной защиты при эксплуатации объектов добычи газа в присутствии диоксида углерода // Наука и техника в газовой промышленности. 2020. № 2 (82). С. 60-70.
  15. Kulakov P.A., Rubtsov A.V., Afanasenko V.G. et al. Influence of technical condition parameters on the residual resource of capacitive equipment // Journal of Physics: Conference Series. 2019. Vol. 1399. Iss. 5. № 055052. DOI: 10.1088/1742-6596/1399/5/055052
  16. Verma D.K., Dewangan Y., Dewangan A.K., Asatkar A. Heteroatom-Based Compounds as Sustainable Corrosion Inhibitors: An Overview // Journal of Bio- and Tribo-Corrosion. 2021. Vol. 7. Iss. 1. № 15. DOI: 10.1007/s40735-020-00447-7
  17. Winkler D.A., Hughes A.E., Özkan C. et al. Impact of inhibition mechanisms, automation, and computational models on the discovery of organic corrosion inhibitors // Progress in Materials Science. 2025. Vol. 149. № 101392. DOI: 10.1016/j.pmatsci.2024.101392
  18. Junying Hu, Qi Xiong, Longjun Chen et al. Corrosion inhibitor in CO2-O2-containing environment: Inhibition effect and mechanisms of Bis(2-ehylhexyl) phosphate for the corrosion of carbon steel // Corrosion Science. 2021. Vol. 179. № 109173. DOI: 10.1016/j.corsci.2020.109173
  19. Wysocka J., Cieslik M., Krakowiak S., Ryl J. Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media // Electrochimica Acta. 2018. Vol. 289. P. 175-192. DOI: 10.1016/j.electacta.2018.08.070
  20. Hamadi L., Mansouri S., Oulmi K., Kareche A. The use of amino acids as corrosion inhibitors for metals: A review // Egyptian Journal of Petroleum. 2018. Vol. 27. Iss. 4. P. 1157-1165. DOI: 10.1016/j.ejpe.2018.04.004
  21. Патент № 2351690 РФ. Способ ингибирования углекислотной коррозии железа / В.С.Резник, Ю.П.Ходырев, В.Д.Акамсин, Р.М.Галиакберов, Р.Х.Гиниятуллин, В.Э.Семенов, И.В.Галяметдинова. Опубл. 10.04.2009. Бюл. № 10.
  22. Yuanqiang Zhu, Qingqing Sun, Yuan Wang et al. A Study on Inhibition Performance of Mercaptoalcohols As Corrosion Inhibitors by First Principle and Molecular Dynamics Simulation // Russian Journal of Physical Chemistry A. 2020. Vol. 94. № 9. P. 1877-1886. DOI: 10.1134/S0036024420090356
  23. Патент № 2430997 РФ. Ингибитор коррозии / Н.Г.Зубрицкая, А.Е.Бальцер, А.Г.Базанов, Т.Г.Бабенко, Т.В.Иванова, И.В.Шукан, Е.Н.Барскова, А.В.Громов, А.Н.Подобаев, И.И.Реформатская, И.И.Ащеулова. Опубл. 10.10.2011. Бюл. № 28.
  24. El Ibrahimi B., Jmiai A., Bazzi L., El Issami S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys // Arabian Journal of Chemistry. 2020. Vol. 13. Iss. 1. P. 740-771. DOI: 10.1016/j.arabjc.2017.07.013
  25. Мамедова Н.А., Мамедханова С.А., Шахмамедова А.Г. Синтез и применение солей и комплексов на основе аллилового эфира нефтяных кислот в качестве ингибиторов углекислотной коррозии // Нефтехимия. 2019. Т. 59. № 2. C. 207-213. DOI: 10.1134/S0028242119020114
  26. Belarbi Z., Dominguez Olivo J.M., Farelas F. et al. Decanethiol as a Corrosion Inhibitor for Carbon Steels Exposed to Aqueous CO2 // Corrosion. 2019. Vol. 75. Iss. 10. P. 1246-1254. DOI: 10.5006/3233
  27. Young Soo Ahn, Jovancicevic V. Patent № WO 01/12878 A1. Mercaptoalcohol corrosion inhibitors. Publ. 22.02.2001.
  28. Monticelli C. Corrosion Inhibitors // Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier, 2018. Vol. 6.1: Corrosion and Passivation. P. 164-171. DOI: 10.1016/B978-0-12-409547-2.13443-2
  29. Haque J., Jafar Mazumder M.A., Quraishi M.A. et al. Pyrrolidine-based quaternary ammonium salts containing propargyl and hydrophobic C-12 and C-16 alkyl chains as corrosion inhibitors in aqueous acidic media // Journal of Molecular Liquids. 2020. Vol. 320. Part B. № 114473. DOI: 10.1016/j.molliq.2020.114473
  30. Moradighadi N., Lewis S., Dommguez Olivo J.M. et al. Effect of Alkyl Tail Length on CMC and Mitigation Efficiency Using Model Quaternary Ammonium Corrosion Inhibitors // Corrosion, 24-28 March 2019, Nashville, TN, USA. OnePetro, 2019. № NACE-2019-13004.
  31. Badeeva E.K., Batyeva E.S., Nizamov I.S. et al. Ammonium salts of O,O’-dialkyldithiophosphoric acids: Effective inhibitors for carbon dioxide corrosion of mild steel on the basis of red phosphorus // Phosphorus, Sulfur, and Silicon and the Related Elements. 2016. Vol. 191. Iss. 11-12. Р. 1640-1641. DOI: 10.1080/10426507.2016.1223662
  32. Porcayo-Calderon J., Martínez de la Escalera L.M., Canto J., Casales-Diaz M. Imidazoline Derivatives Based on Coffee Oil as CO2 Corrosion Inhibitor // International Journal of Electrochemical Science. 2015. Vol. 10. Iss. 4. P. 3160-3176. DOI: 10.1016/S1452-3981(23)06528-8
  33. Sanchez-Salazar E., Vazquez-Velez E., Uruchurtu J. et al. Use of a Gemini-Surfactant Synthesized from the Mango Seed Oil as a CO2-Corrosion Inhibitor for X-120 Steel // Materials. 2021. Vol. 14. Iss. 15. № 4206. DOI: 10.3390/ma14154206
  34. Jing-Mao Zhao, Feng Gu, Tong Zhao, Rui-Jing Jiang. Corrosion inhibition performance of imidazoline derivatives with different pedant chains under three flow rates in high-pressure CO2 environment // Research on Chemical Intermediates. 2016. Vol. 42. Iss. 6. P. 5753-5764. DOI: 10.1007/s11164-015-2401-y
  35. Muktiarti N., Ditama I., Soegijono B. Characterization of imidazoline derivates synthesized from soybean oil fatty acids as corrosion inhibitors on mild steel // AIP Conference Proceedings. 2020. Vol. 2242. Iss. 1. № 020023. DOI: 10.1063/5.0007980
  36. Salinas-Solano G., Porcayo-Calderón J., Martínez de la Escalera L.M. et al. Development and evaluation of a green corrosion inhibitor based on rice bran oil obtained from agro-industrial waste // Industrial Crops and Products. 2018. Vol. 119. P. 111-124. DOI: 10.1016/j.indcrop.2018.04.009
  37. Патент № 2756210 РФ. Способ получения ингибитора коррозии на основе полипропиленполиамина и карбоновой кислоты для нефтепромысловых, минерализованных и сероводородсодержащих сред / Р.Н.Загидуллин, А.Г.Мустафин, К.Г.Хусаинова, Т.Т.Садыков. Опубл. 28.09.2021. Бюл. № 28.
  38. Usman B.J., Ali S.A. Carbon Dioxide Corrosion Inhibitors: A review // Arabian Journal for Science and Engineering. 2018. Vol. 43. Iss. 1. P. 1-22. DOI: 10.1007/s13369-017-2949-5
  39. Ziqi Zheng, Junying Hu, Noam Eliaz et al. Mercaptopropionic acid-modified oleic imidazoline as a highly efficient corrosion inhibitor for carbon steel in CO2-saturated formation water // Corrosion Science. 2022. Vol. 194. № 109930. DOI: 10.1016/j.corsci.2021.109930
  40. Yuan Lu, Wei Wang, Chen Zhang, Jingmao Zhao. A Novel Imidazoline Derivative Used as an Effective Corrosion Inhibitor for Carbon Steel in a CO2/H2S Environment // International Journal of Electrochemical Science. 2019. Vol. 14. Iss. 9. P. 8579-8594. DOI: 10.20964/2019.09.06
  41. Yuanqiang Zhu, Shidong Qu, Yang Shen et al. Investigation on the synergistic effects and mechanism of oleic imidazoline and mercaptoethanol corrosion inhibitors by experiment and molecular dynamic simulation // Journal of Molecular Structure. 2023. Vol. 1274. Part 2. № 134512. DOI: 10.1016/j.molstruc.2022.134512
  42. Патент № 2769118 РФ. Ингибитор коррозии / А.И.Захаров, А.О.Демьянченко, А.А.Шевнин. Опубл. 28.03.2022. Бюл. № 10.
  43. Amir Shamsa, Richard Barker, Yong Hua et al. Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments // Corrosion Science. 2021. Vol. 185. № 109423. DOI: 10.1016/j.corsci.2021.109423
  44. Yi He, Yanqiu Zhou, Ranran Yang et al. Imidazoline derivative with four imidazole reaction centers as an efficient corrosion inhibitor for anti-CO2 corrosion // Russian Journal of Applied Chemistry. 2015. Vol. 88. № 7. P. 1192-1200. DOI: 10.1134/S1070427215070149
  45. Yue Meng, Wenbo Ning, Bin Xu et al. Inhibition of mild steel corrosion in hydrochloric acid using two novel pyridine Schiff base derivatives: a comparative study of experimental and theoretical results // RSC Advances. 2017. Vol. 7. Iss. 68. P. 43014-43029. DOI: 10.1039/c7ra08170g
  46. Onyeachu I.B., Quraishi M.A., Obot I.B., Haque J. Newly synthesized pyrimidine compound as CO2 corrosion inhibitor for steel in highly aggressive simulated oilfield brine // Journal of Adhesion Science and Technology. 2019. Vol. 33. Iss. 11. P. 1226-1247. DOI: 10.1080/01694243.2019.1585029
  47. Arafin M.A., Szpunar J.A. A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies // Corrosion Science. 2009. Vol. 51. Iss. 1. P. 119-128. DOI: 10.1016/J.CORSCI.2008.10.006
  48. Tiu B.D.B., Advincula R.C. Polymeric corrosion inhibitors for the oil and gas industry: Design principles and mechanism // Reactive and Functional Polymers. 2015. Vol. 95. P. 25-45. DOI: 10.1016/j.reactfunctpolym.2015.08.006
  49. Azzam E.M.S., Abd El-Salam H.M., Mohamed R.A. et al. Control the corrosion of mild steel using synthesized polymers based on polyacrylamide // Egyptian Journal of Petroleum. 2018. Vol. 27. Iss. 4. P. 897-910. DOI: 10.1016/j.ejpe.2018.01.006
  50. Tianqi Chen, Zhan Chen, Mengjin Chen, Chaoyang Fu. Evaluation of anti-corrosion performance of poly(maleic acid-co-N‐[3‐(dimethylamino)propyl]‐methacrylamide) as novel copolymer inhibitor for carbon steel in neutral medium // Journal of Molecular Liquids. 2021. Vol. 338. № 116638. DOI: 10.1016/j.molliq.2021.116638
  51. Al-Shihry S.S., Sayed A.R., El-Lateef H.M.A. Design and assessment of a novel poly(urethane-semicarbazides) containing thiadiazoles on the backbone of the polymers as inhibitors for steel pipelines corrosion in CO2-saturated oilfield water // Journal of Molecular Structure. 2020. Vol. 1201. № 127223. DOI: 10.1016/j.molstruc.2019.127223
  52. Umoren S., Solomon M.M., Israel A.U. et al. Comparative Study of the Corrosion Inhibition Efficacy of Polypropylene Glycol and Poly (Methacrylic Acid) for Mild Steel in Acid Solution // Journal of Dispersion Science and Technology. 2015. Vol. 36. P. 1721-1735. DOI: 10.1080/01932691.2015.1004411
  53. Sun A., Cui G., Liu Q. Capsule corrosion inhibitor loaded with hyperbranched chitosan: Carbon dioxide corrosion protection for downhole pipelines in oil fields // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. Vol. 664. № 131106. DOI: 10.1016/j.colsurfa.2023.131106
  54. Джанелидзе С.З., Журавлев В.В., Жуков А.Ю. и др. Борьба с солеотложением на добывающих скважинах «Газпромнефть-Востока»: результаты опытно-промысловых испытаний и технико-экономическая оценка применения капсулированного ингибитора // PROнефть. Профессионально о нефти. 2021. Т. 6. № 1. С. 94-101. DOI: 10.51890/2587-7399-2021-6-1-94-101
  55. Salleh S.Z., Yusoff A.H., Zakaria S.K. et al. Plant extracts as green corrosion inhibitor for ferrous metal alloys: A review // Journal of Cleaner Production. 2021. Vol. 304. № 127030. DOI: 10.1016/j.jclepro.2021.127030
  56. Popoola L.T. Organic green corrosion inhibitors (OGCIs): a critical review // Corrosion Reviews. 2019. Vol. 37. Iss. 2. P. 71-102. DOI: 10.1515/corrrev-2018-0058
  57. Reza N.A., Akhmal N.H., Fadil N.A., Taib M.F.M. A Review on Plants and Biomass Wastes as Organic Green Corrosion Inhibitors for Mild Steel in Acidic Environment // Metals. 2021. Vol. 11. Iss. 7. № 1062. DOI: 10.3390/met11071062
  58. Shahini M.H., Ramezanzadeh B., Eivaz Mohammadloo H. Recent advances in biopolymers/carbohydrate polymers as effective corrosion inhibitive macro-molecules: A review study from experimental and theoretical views // Journal of Molecular Liquids. 2021. Vol. 325. № 115110. DOI: 10.1016/j.molliq.2020.115110
  59. de Haro J.C., Magagnin L., Turri S., Griffini G. Lignin-Based Anticorrosion Coatings for the Protection of Aluminum Surfaces // ACS Sustainable Chemistry & Engineering. 2019. Vol. 7. Iss. 6. P. 6213-6222. DOI: 10.1021/acssuschemeng.8b06568
  60. Gowraraju N.D., Jagadeesan S., Ayyasamy K. et al. Adsorption characteristics of Iota-carrageenan and Inulin biopolymers as potential corrosion inhibitors at mild steel/sulphuric acid interface // Journal of Molecular Liquids. 2017. Vol. 232. P. 9-19. DOI: 10.1016/j.molliq.2017.02.054
  61. Umoren S.A., AlAhmary A.A., Gasem Z.M., Solomon M.M. Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel // International Journal of Biological Macromolecules. 2018. Vol. 117. P. 1017-1028. DOI: 10.1016/j.ijbiomac.2018.06.014
  62. Umoren S.A., Eduok U.M. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review // Carbohydrate Polymers. 2016. Vol. 140. P. 314-341. DOI: 10.1016/j.carbpol.2015.12.038
  63. Brindha T., Malarvizhi M., Mallika J. Kinetic and thermodynamic adsorption study of mild steel corrosion and inhibition of Azadirachta Indica gum in hydrochloric acid solution // International Journal of Current Research. 2015. Vol. 7. Iss. 9. P. 20510-20518.
  64. Qing Zhao, Jixiang Guo, Guodong Cui et al. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment // Colloids and Surfaces B: Biointerfaces. 2020. Vol. 194. № 111150. DOI: 10.1016/j.colsurfb.2020.111150

Similar articles

Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses
2025 Tatiana V. Minnikova, Sergey I. Kolesnikov
Study of the pore structure in granite and gabbrodolerite crushed stone grains of various sizes
2025 Elena E. Kameneva, Viktoriya S. Nikiforova
Evaluation of the impact of the distance determination function on the results of optimization of the geographical placement of renewable energy sources-based generation using a metaheuristic algorithm
2025 Andrei M. Bramm, Stanislav A. Eroshenko
Study of wormhole channel formation resulting from hydrochloric acid treatment in complex-type reservoirs using filtration and X-ray computed tomography methods
2025 Andrei A. Аbrosimov
Crustal movement model in the ITRF2020 – a case study in Northern Vietnam
2025 Bui Thi Hong Tham, Phi Truong Thanh
Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations
2025 Mikhail Ya. Bryn, Murat G. Mustafin, Dinara R. Bashirova, Bogdan Yu. Vasilev