Crustal movement model in the ITRF2020 – a case study in Northern Vietnam
- 1 — Ph.D. Dean Hanoi University of Natural Resources and Environment ▪ Orcid
- 2 — Dean Hanoi University of Natural Resources and Environment ▪ Orcid
Abstract
In the North area of Vietnam, the crustal movement velocity of 38 GNSS points belonging to different international Earth reference frames (ITRF2000, ITRF2005, ITRF2008) is adjusted to the international Earth reference frame ITRF2020. This is the latest frame up to now. Since then, the picture of crustal movement in the North area of Vietnam has been unified in a dynamic coordinate system. In the study area, the rate of crustal movement is about 35 mm/year, and the direction of displacement is from northwest to southeast. To build a model of the crustal movement of the Earth in the northern area of Vietnam, the movement velocity data of 38 stations in ITRF2020 is evaluated with high accuracy. All points are also satisfactory. And then, the crustal movement velocity model is built by using the collocation method in the form of the 3-order Markov function. Within 38 stations, 34 stations are used to build the model and 4 remaining stations are used as checked stations. The obtained results show that the Earth's crust movement velocity model has an accuracy of about 2 mm/year for movement velocity and 2 deg for movement direction. This is the first model of Earth's crust movement in the North of Vietnam that has been built in the latest dynamic coordinate system ITRF2020. These results have important significance in the research and practical application of the movement of the Earth's crust. The steps of building the movement velocity model in this study can be applied to other experimental areas in the territory of Vietnam.
References
- Altamimi Z., Rebischung P., Métivier L., Collilieux X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions // Journal of Geophysical Research: Solid Earth. 2016. Vol. 121. Iss. 8. P. 6109-6131. DOI: 10.1002/2016JB013098
- Amagua C.G.P., Euriques J.F., Alves S. da C., Krueger C.P. Analysis of local surface displacement using repeated GPS measurements: a case study of the Guabirotuba area, Curitiba, Brazil // Bulletin of Geodetic Sciences. 2022. Vol. 28. Iss. 1. № e2022005. DOI: 10.1590/s1982-21702022000100005
- Araszkiewicz A. Integration of Distributed Dense Polish GNSS Data for Monitoring the Low Deformation Rates of Earth’s Crust // Remote Sensing. 2023. Vol. 15. Iss. 6. № 1504. DOI: 10.3390/rs15061504
- Bevis M., Bedford J., Caccamise II D.J. The Art and Science of Trajectory Modelling / Geodetic Time Series Analysis in Earth Sciences // Springer. 2020. P. 1-27. DOI: 10.1007/978-3-030-21718-1_1
- Bilgen B., Inal C. An open-source software for geodetic deformation analysis in GNSS networks // Earth Science Informatics. 2022. Vol. 15. Iss. 3. P. 2051-2062. DOI: 10.1007/s12145-022-00844-1
- Bui T.H.T. Transformation coordinates between international terrestrial reference frames // Journal of Mining and Earth Sciences. 2013. Vol. 41. № 1. P. 53-57 (in Vietnamese).
- Bui T.H.T. Research on the theoretic basis for the modernization of the national geodetic control network in Vietnam by global navigation satellite system GNSS: Specialty Geodesy and Mapping Ph.D. thesis, Hanoi University of Mining and Geology, Hanoi, Vietnam (2014). 142 p.
- Bui T.H.T. Determination of absolute crustal movements of Việt Nam territory from data of Differential Global Navigation Satellite System (DGNSS) // Journal of Geology. Series A. 2014. Vol. 340 (1-2). P. 46-52.
- Butwong K., Thongtan T., Boonterm K. Precision coordinate transformations for Thai national geodetic infrastructure // 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 9-12 May 2023, Nakhon Phanom, Thailand. IEEE, 2023. 4 p. DOI: 10.1109/ECTI-CON58255.2023.10153290
- Gang Chen, Anmin Zeng, Feng Ming, Yifan Jing. Multi-quadric collocation model of horizontal crustal movement // Solid Earth. 2015. Vol. 7. Iss. 3. P. 817-825. DOI: 10.5194/se-7-817-2016
- Pengfei Cheng, Yingyan Cheng, Xiaoming Wang, Yantian Xu. Update China geodetic coordinate frame considering plate motion // Satellite Navigation. 2021. Vol. 2. № 2. DOI: 10.1186/s43020-020-00032-w
- Gill J., Shariff N.S., Omar K., Amin Z.M. Tectonic motion of Malaysia: analysis from years 2001 to 2013 // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Joint International Geoinformation Conference, 28-30 October 2015, Kuala Lumpur, Malaysia. Copernicus Publications, 2015. Vol. II-2/W2. P. 199-206. DOI: 10.5194/isprsannals-II-2-W2-199-2015
- Guohua Gu, Wuxing Wang. Advantages of GNSS in Monitoring Crustal Deformation for Detection of Precursors to Strong Earthquakes // Positioning. 2013. Vol. 4. № 1. P. 11-19. DOI: 10.4236/pos.2013.41003
- Häkli P., Evers K., Jivall L. et al. NKG2020 transformation: An updated transformation between dynamic and static reference frames in the Nordic and Baltic countries // Journal of Geodetic Science. 2023. Vol. 13. Iss. 1. № 20220155. DOI: 10.1515/jogs-2022-0155
- Hodgkinson K.M., Mencin D.J., Feaux K. et al. Evaluation of Earthquake Magnitude Estimation and Event Detection Thresholds for Real‐Time GNSS Networks: Examples from Recent Events Captured by the Network of the Americas // Seismological Research Letters. 2020. Vol. 91. № 3. P. 1628-1645. DOI: 10.1785/0220190269
- Jagoda M., Rutkowska M. An Analysis of the Eurasian Tectonic Plate Motion Parameters Based on GNSS Stations Positions in ITRF2014 // Sensors. 2020. Vol. 20. Iss. 21. № 6065. DOI: 10.3390/s20216065
- Maciuk K., Szombara S. Annual crustal deformation based on GNSS observations between 1996 and 2016 // Arabian Journal of Geosciences. 2018. Vol. 11. Iss. 21. № 667. DOI: 10.1007/s12517-018-4022-4
- Kuncoro H., Meilano I., Susilo S. Sunda and Sumatra Block Motion in ITRF2008 // International Symposium on Global Navigation Satellite System 2018, 21-23 November 2018, Bali, Indonesia. E3S Web of Conferences. 2019. Vol. 94. № 04006. DOI: 10.1051/e3sconf/20199404006
- Minh L.H., Masson R.., Bourdillon A. et al. Recent crustal motion in Vietnam and in the Southeast Asia region by continuous GPS data // Vietnam Journal of Earth Sciences. 2014. Vol. 36. № 1. P. 1-13 (in Vietnamese). DOI: 10.15625/0866-7187/36/1/4132
- Minh L.H., Hung V.T., Hu J.-C. et al. Contemporary movement of the Earth’s crust in the Northwestern Vietnam by continuous GPS data // Vietnam Journal of Earth Sciences. 2020. Vol. 42. № 4. P. 334-350. DOI: 10.15625/0866-7187/42/4/15282
- Azhari M., Altamimi Z., Azman G. et al. Semi-kinematic geodetic reference frame based on the ITRF2014 for Malaysia // Journal of Geodetic Science. 2020. Vol. 10. Iss. 1. P. 91-109. DOI: 10.1515/jogs-2020-0108
- Mattioli G., Mencin D., Hodgkinson K. et al. The EarthScope Plate Boundary Observatory and allied networks, the makings of nascent Earthquake and Tsunami Early Warning System in Western North America // European Geosciences Union General Assembly, 23-28 April 2017, Vienna, Austria. Geophysical Research Abstracts. 2016. Vol. 18. № EGU2016-10953.
- Duong N., Sagiya T., Kimata F. et al. Contemporary horizontal crustal movement estimation for northwestern Vietnam inferred from repeated GPS measurements // Earth, Planets and Space. 2013. Vol. 65. Iss. 12. P. 1399-1410. DOI: 10.5047/eps.2013.09.010
- Trọng N.G., Nghĩa N.V., Khải P.C. et al. Determination of tectonic velocities in Vietnam territory based on data of CORS stations of VNGEONET network // Journal of Hydro-Meteorology. 2022. Vol. 739. P. 59-66 (in Vietnamese). DOI: 10.36335/VNJHM.2022(739).59-66
- Ohta Y., Ohzono M. Potential for crustal deformation monitoring using a dense cell phone carrier Global Navigation Satellite System network // Earth, Planets and Space. 2022. Vol. 74. Iss. 1. № 25. DOI: 10.1186/s40623-022-01585-7
- Wei Qu, Hailu Chen, Shichuan Liang et al. Adaptive Least-Squares Collocation Algorithm Considering Distance Scale Factor for GPS Crustal Velocity Field Fitting and Estimation // Remote Sensing. 2019. Vol. 11. Iss. 22. № 2692. DOI: 10.3390/rs11222692
- Rabah M., Shaker A., Farhan M. Towards a Semi-Kinematic Datum for Egypt // Positioning. 2015. Vol. 6. № 3. P. 49-60. DOI: 10.4236/pos.2015.63006
- Rudenko S., Esselborn S., Schöne T., Dettmering D. Impact of terrestrial reference frame realizations on altimetry satellite orbit quality and global and regional sea level trends: a switch from ITRF2008 to ITRF2014 // Solid Earth. 2019. Vol. 10. Iss. 1. P. 293-305. DOI: 10.5194/se-10-293-2019
- Steffen R., Legrand J., Ågren J. et al. HV-LSC-ex2: velocity field interpolation using extended least-squares collocation // Journal of Geodesy. 2022. Vol. 96. Iss. 3. № 15. DOI: 10.1007/s00190-022-01601-4
- Tamay J., Galindo-Zaldivar J., Soto J., Gil A.J. GNSS Constraints to Active Tectonic Deformations of the South American Continental Margin in Ecuador // Sensors. 2021. Vol. 21. Iss. 12. № 4003. DOI: 10.3390/s21124003
- Tran D.T., Nguyen Q.L., Nguyen D.H. General Geometric Model of GNSS Position Time Series for Crustal Deformation Studies – A Case Study of CORS Stations in Vietnam // Journal of the Polish Mineral Engineering Society. 2021. Vol. 1. № 2. P. 183-198. DOI: 10.29227/IM-2021-02-16
- Trần Đ.T., Nguyễn T.Y., Dương C.C. et al. Recent crustal movements of northern Vietnam from GPS data // Journal of Geodynamics. 2013. Vol. 69. P. 5-10. DOI: 10.1016/j.jog.2012.02.009
- Tucikešić S., Milinković A., Božić B. et al. GNSS Time Series as a Tool for Seismic Activity Analysis Related to Infrastructure Utilities // Contributions to International Conferences on Engineering Surveying. Cham: Springer, 2021. P. 246-256. DOI: 10.1007/978-3-030-51953-7_21
- Hai V.Q., Cuong T.Q., Thuan N.V. Crustal movement along the Red River Fault zone from GNSS data // Vietnam Journal of Earth Sciences. 2016. Vol. 38. № 1. P. 14-21 (in Vietnamese). DOI: 10.15625/0866-7187/38/1/7846
- Wang Wei, Dang Ya-Min, Zhang Chuan-Yin et al. Monitoring crustal deformation and gravity change caused by the terrestrial water load in the three gorges area base on CORS network // Chinese Journal of Geophysics. 2017. Vol. 60. Iss. 2. P. 154-163. DOI: 10.1002/cjg2.30035
- Jarmołowski W. A priori noise and regularization in least squares collocation of gravity anomalies // Geodesy and Cartography. 2013. Vol. 62. № 2. P. 199-216. DOI: 10.2478/geocart-2013-0013
- Jarmołowski W., Bakuła M. Two covariance models in Least Squares Collocation (LSC) tested in interpolation of local topography // Contributions to Geophysics and Geodesy. 2013. Vol. 43. № 1. P. 1-19. DOI: 10.2478/congeo-2013-0001