Исследования точности построения цифровых моделей рельефа техногенных массивов по данным спутниковых определений координат
- 1 — д-р техн. наук профессор Петербургский государственный университет путей сообщения Императора Александра I ▪ Orcid
- 2 — д-р техн. наук заведующий кафедрой Санкт-Петербургский горный университет императрицы Екатерины II ▪ Orcid
- 3 — канд. техн. наук главный специалист отдела АО «Газпром диагностика» ▪ Orcid
- 4 — канд. техн. наук ведущий инженер Санкт-Петербургский горный университет императрицы Екатерины II ▪ Orcid
Аннотация
На всех этапах жизненного цикла зданий и сооружений выполняется геодезическое сопровождение электронными средствами измерений – системой лазерного сканирования, беспилотными воздушными суднами и спутниковым оборудованием. При этом получают набор геопространственных данных, которые можно представить в виде цифровой модели. Актуальность настоящей работы – практические рекомендации для построения локальной модели квазигеоида и цифровой модели рельефа (ЦМР) определенной точности. В качестве объектов исследования выбраны локальная модель квазигеоида и ЦМР. Отмечено, что ЦМР часто создается на обширные территории, и тогда на такие модели необходимо создавать локальную модель квазигеоида. Рассматривается задача оценки точности построения таких моделей, решение которой позволит получить лучшее приближение к реальным данным на заданных наборах полевых материалов. Представлен общий алгоритм создания как ЦМР, так и локальных моделей квазигеоида в программном продукте Golden Software Surfer. Построения выполнялись методами пространственной интерполяции. При построении локальной модели квазигеоида для площадного объекта отмечены методы триангуляции с линейной интерполяцией (наименьшее значение средней квадратической погрешности (СКП) интерполяции составило 0,003 м) и кригинга (0,003 м). Наименьшее значение СКП определения высот по контрольным точкам для площадного объекта получено методами естественного соседа (0,004 м) и кригинга (0,004 м). При построении локальной модели квазигеоида на линейный объект выделены методы кригинга (0,006 м) и триангуляции с линейной интерполяцией (0,006 м). Построение цифровой модели рельефа привело к наименьшему совокупному значению оцениваемых параметров: на равнинном участке земной поверхности – метод естественного соседа, для горного участка местности с антропогенным рельефом – метод квадратичного кригинга, для горного участка местности – квадратичный кригинг.
Литература
- Пономаренко М.Р., Кутепов Ю.И., Шабаров А.Н. Информационно-аналитическое обеспечение мониторинга состояния объектов открытых горных работ на базе технологий веб-картографии // Горный информационно-аналитический бюллетень. 2022. № 8. С. 56-70. DOI: 10.25018/0236_1493_2022_8_0_56
- Рагузин И.И., Быкова Е.Н., Лепихина О.Ю. Метод полигональной метрической сетки для оценки кадастровой стоимости земельных участков // Вестник Московского университета. Серия 5. География. 2023. Т. 78. № 3. С. 92-103. DOI: 10.55959/MSU0579-9414.5.78.3.8
- Bykowa E., Skachkova M., Raguzin I. et al. Automation of Negative Infrastructural Externalities Assessment Methods to Determine the Cost of Land Resources Based on the Development of a «Thin Client» Model // Sustainability. 2022. Vol. 14. Iss. 15. № 9383. DOI: 10.3390/su14159383
- Бажин В.Ю., Масько О.Н., Мартынов С.А. Автоматизированный контроль и управление балансом шихты при производстве металлургического кремния // Цветные металлы. 2023. № 4. С. 53-60. DOI: 10.17580/tsm.2023.04.07
- Bazhin V.Yu., Masko O.N., Huy H. Nguyen. Increasing the speed of information transfer and operational decision-making in metallurgical industry through an industrial bot // Non-ferrous Metals. 2023. № 1. P. 62-67. DOI: 10.17580/nfm.2023.01.10
- Гендлер С.Г., Крюкова М.С. Управление тепловым режимом линий метрополитена, включающих в себя двухпутные и однопутные тоннели // Горный информационно-аналитический бюллетень. 2023. № 9-1. С. 248-269. DOI: 10.25018/0236_1493_2023_91_0_248
- Карасев М.А., Поспехов Г.Б., Астапенко Т.С., Шишкина В.С. Анализ моделей прогноза напряженно-деформированного состояния техногенных грунтов низкой прочности // Горный информационно-аналитический бюллетень. 2023. № 11. С. 49-69. DOI: 10.25018/0236_1493_2023_11_0_49
- Кульчицкий А.А., Мансурова О.К., Николаев М.Ю. Распознавание дефектов грузоподъемных канатов металлургического оборудования оптическим методом с помощью нейронных сетей // Черные металлы. 2023. № 3. С. 81-88. DOI: 10.17580/chm.2023.03.13
- Петров П.А., Шестаков А.К., Николаев М.Ю. Сбор и обработка данных алюминиевого электролизера с использованием многофункционального пробойного устройства и системы технического зрения // Цветные металлы. 2023. № 4. С. 45-53. DOI: 10.17580/tsm.2023.04.06
- Петрова Т.А., Астапенко Т.С., Кологривко А.А., Есман Н.М. Снижение геоэкологических последствий при складировании галитовых отходов // Горный информационно-аналитический бюллетень. 2022. № 10-1. С. 155-162 (in English). DOI: 10.25018/0236_1493_2022_101_0_155
- Беликов А.А., Беляков Н.А. Методика прогноза напряженно-деформированного состояния междукамерных целиков, закрепленных податливой тросовой крепью // Горный информационно-аналитический бюллетень. 2023. № 4. С. 20-34. DOI: 10.25018/0236_1493_2023_4_0_20
- Беляков Н.А., Беликов А.А. Прогноз целостности водозащитной толщи на Верхнекамском месторождении калийных руд // Горный информационно-аналитический бюллетень. 2022. № 6-2. С. 33-46. DOI: 10.25018/0236_1493_2022_62_0_33
- Huxiong Li, Weiya Ye, Jun Liu et al. High-Resolution Terrain Modeling Using Airborne LiDAR Data with Transfer Learning // Remote Sensing. 2021. Vol. 13. Iss. 17. № 3448. DOI: 10.3390/rs13173448
- Hashemi-Beni L., Jones J., Thompson G. et al. Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina // Sensors. 2018. Vol. 18. Iss. 11. № 3843. DOI: 10.3390/s18113843
- Гусев В.Н., Блищенко А.А., Санникова А.П. Исследование комплекса факторов, оказывающих влияние на погрешность реализации маркшейдерской съемки горных объектов с применением геодезического квадрокоптера // Записки Горного института. 2022. № 254. С. 173-179. DOI: 10.31897/PMI.2022.35
- Кремчеев Э.А., Данилов А.С., Смирнов Ю.Д. Состояние метрологического обеспечения систем мо-ниторинга на базе беспилотных воздушных судов // Записки Горного института. 2019. Т. 235. C. 96-105. DOI: 10.31897/PMI.2019.1.96
- Меньшиков С.Н., Джалябов А.А., Васильев Г.Г. и др. Пространственные модели, разрабатываемые с применением лазерного сканирования на газоконденсатных месторождениях северной строительно-климатической зоны // Записки Горного института. 2019. Т. 238. С. 430-437. DOI: 10.31897/PMI.2019.4.430
- Luethje F., Tiede D., Eisank C. Terrain Extraction in Built-Up Areas from Satellite Stereo-Imagery-Derived Surface Models: A Stratified Object-Based Approach // ISPRS International Journal of Geo-Information. 2017. Vol. 6. Iss. 1. № 9.DOI: 10.3390/ijgi6010009
- Das R.K., Samanta S., Jana S.K., Rosa R. Polynomial interpolation methods in development of local geoid model // The Egyptian Journal of Remote Sensing and Space Science. 2018. Vol. 21. Iss. 3. P. 265-271. DOI: 10.1016/j.ejrs.2017.03.002
- Ahmed H.M., Mohamed E.A., Bahaa S.A. Evaluating two numerical methods for developing a local geoid model and a local digital elevation model for the Red Sea Coast, Egypt // Journal of King Saud University – Engineering Sciences. 2023. Vol. 35. Iss. 6. P. 384-392. DOI: 10.1016/j.jksues.2021.04.004
- Banasik P., Bujakowski K. The Use of Quasigeoid in Leveling Through Terrain Obstacles // Reports on Geodesy and Geoinformatics. 2017. Vol. 104. Iss. 1. P. 57-64. DOI: 10.1515/rgg-2017-0015
- Borowski Ł., Banaś M. The Best Robust Estimation Method to Determine Local Surface // Baltic Journal of Modern Computing. 2019. Vol. 7. № 4. P. 525-540. DOI: 10.22364/bjmc.2019.7.4.06
- Habib M., Alzubi Y., Malkawi A., Awwad M. Impact of interpolation techniques on the accuracy of large-scale digital elevation model // Open Geosciences. 2020. Vol. 12. Iss. 1. P. 190-202. DOI: 10.1515/geo-2020-0012
- Amodio A.M., Aucelli P.P.C., Garfì V., Rosskopf C.M. Digital photogrammetric analysis approaches for the realization of detailed terrain models // Rendiconti Online della Società Geologica Italiana. 2020. Vol. 52. P. 69-75. DOI: 10.3301/ROL.2020.21
- Bui L.K., Glennie C.L., Hartzell P.J. Rigorous Propagation of LiDAR Point Cloud Uncertainties to Spatially Regular Grids by a TIN Linear Interpolation // IEEE Geoscience and Remote Sensing Letters. 2022. Vol. 19. № 7003105. DOI: 10.1109/LGRS.2021.3134587
- Boreggio M., Bernard M., Gregoretti C. Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps) // Frontiers in Earth Science. 2018. Vol. 6. № 89. DOI: 10.3389/feart.2018.00089
- Fazilova D., Magdiev H. Comparative Study of Interpolation Methods in Development of Local Geoid // International Journal of Geoinformatics. 2018. Vol. 14. № 1. P. 29-33.
- Banasik P., Bujakowski K., Kudrys J. et al. Development of a precise local quasigeoid model for the city of Krakow – QuasigeoidKR2019 // Reports on Geodesy and Geoinformatics. 2020. Vol. 109. Iss. 1. P. 25-31. DOI: 10.2478/rgg-2020-0004
- Mysen E. On the uncertainty of height anomaly differences predicted by least-squares collocation // Journal of Geodetic Science. 2020. Vol. 10. Iss. 1. P. 53-61. DOI: 10.1515/jogs-2020-0111
- Hosseini-Asl M., Amiri-Simkooei A.R., Safari A. Establishment of a corrective geoid surface by spline approximation of Iranian GNSS/levelling network // Measurement. 2022. Vol. 197. № 111341. DOI: 10.1016/j.measurement.2022.111341
- Medved K., Kuhar M., Koler B. Regional gravimetric survey of central Slovenia // Measurement. 2019. Vol. 136. P. 395-404. DOI: 10.1016/j.measurement.2018.12.065
- Chymyrov A. Comparison of different DEMs for hydrological studies in the mountainous areas // The Egyptian Journal of Remote Sensing and Space Science. 2021. Vol. 24. Iss. 3. Part 2. P. 587-594. DOI: 10.1016/j.ejrs.2021.08.001
- Mahbuby H., Safari A., Foroughi I. Local gravity field modeling using spherical radial basis functions and a genetic algorithm // Comptes Rendus Geoscience. 2017. Vol. 349. № 3. P. 106-113. DOI: 10.1016/j.crte.2017.03.001
- Belay E.Y., Godah W., Szelachowska M., Tenzer R. ETH-GQS: An estimation of geoid-to-quasigeoid separation over Ethiopia // Geodesy and Geodynamics. 2022. Vol. 13. Iss. 1. P. 31-37. DOI: 10.1016/j.geog.2021.09.006
- Qingwang Liu, Liyong Fu, Qiao Chen et al. Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and Photogrammetry // Remote Sensing. 2020. Vol. 12. Iss. 18. № 2884. DOI: 10.3390/rs12182884
- Мустафин М.Г., Баландин В.Н., Брынь М.Я. и др. Топографо-геодезическое и картографическое обеспечение Арктической зоны Российской Федерации // Записки Горного института. 2018. Т. 232. С. 375-382. DOI: 10.31897/PMI.2018.4.375
- Mustafin M.G., Valkov V.A., Kazantsev A.I. Monitoring of Deformation Processes in Buildings and Structures in Metropolises // Procedia Engineering. 2017. Vol. 189. P. 729-736. DOI: 10.1016/j.proeng.2017.05.115
- Rusli N., Majid M.R., Nur Fakihin Auni A. Razali, Nur Fatma Fadilah Yaacob. Accuracy Assessment of DEM from UAV and TanDEM-X Imagery // 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications, 8-9 March 2019, Penang, Malaysia. IEEE Xplore, 2019. P. 127-131. DOI: 10.1109/CSPA.2019.8696088
- Habib M. Evaluation of DEM interpolation techniques for characterizing terrain roughness // Catena. 2021. Vol. 198. № 105072. DOI: 10.1016/j.catena.2020.105072
- Li L., Nearing M.A., Nichols M.H. et al. The effects of DEM interpolation on quantifying soil surface roughness using terrestrial LiDAR // Soil and Tillage Research. 2020. Vol. 198. № 104520. DOI: 10.1016/j.still.2019.104520
- Chuanfa Chen, Yixuan Bei, Yanyan Li, Weiwei Zhou. Effect of interpolation methods on quantifying terrain surface roughness under different data densities // Geomorphology. 2022. Vol. 417. № 108448. DOI: 10.1016/j.geomorph.2022.108448
- Cățeanu M., Ciubotaru A. Accuracy of Ground Surface Interpolation from Airborne Laser Scanning (ALS) Data in Dense Forest Cover // ISPRS International Journal of Geo-Information. 2020. Vol. 9. Iss. 4. № 224. DOI: 10.3390/ijgi9040224
- Tao Zhang, Xiaosu Xu, Shengbao Xu. Method of establishing an underwater digital elevation terrain based on kriging interpolation // Measurement. 2015. Vol. 63. P. 287-298. DOI: 10.1016/j.measurement.2014.12.025
- Ikechukwu M.N., Ebinne E., Idorenyin U., Raphael N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study // Journal of Geographic Information System. 2017. Vol. 9. № 3. P. 354-371. DOI: 10.4236/jgis.2017.93022
- Павлова А.И. Анализ методов интерполирования высот точек для создания цифровых моделей рельефа // Автометрия. 2017. Т. 53. № 2. С. 86-94. DOI: 10.15372/AUT20170210
- Helwig Z.D., Guggenberger J., Elmore A.C., Uetrecht R. Development of a variogram procedure to identify spatial outliers using a supplemental digital elevation model // Journal of Hydrology X. 2019. Vol. 3. № 100029. DOI: 10.1016/j.hydroa.2019.100029
- Arun P.V. A comparative analysis of different DEM interpolation methods // The Egyptian Journal of Remote Sensing and Space Science. 2013. Vol. 16. Iss. 2. P. 133-139. DOI: 10.1016/j.ejrs.2013.09.001
- Bui L.K., Glennie C.L. Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density // ISPRS Open Journal of Photogrammetry and Remote Sensing. 2023. Vol. 7. № 100028. DOI: 10.1016/j.ophoto.2022.100028
- Agüera-Vega F., Agüera-Puntas M., Martínez-Carricondo P. et al. Effects of point cloud density, interpolation method and grid size on derived Digital Terrain Model accuracy at micro topography level // International Journal of Remote Sensing. 2020. Vol. 41. Iss. 21. P. 8281-8299. DOI: 10.1080/01431161.2020.1771788
- McRoberts R.E., Domke G.M., Qi Chen et al. Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data // Remote Sensing of Environment. 2016. Vol. 184. P. 387-395. DOI: 10.1016/j.rse.2016.07.007