Submit an Article
Become a reviewer
Vol 263
Pages:
724-741
Download volume:

Results of complex experimental studies at Vostok station in Antarctica

Authors:
Aleksei V. Bolshunov1
Dmitrii A. Vasilev2
Andrei N. Dmitriev3
Sergei A. Ignatev4
Vyacheslav G. Kadochnikov5
Nikita S. Krikun6
Danil V. Serbin7
Vyacheslav S. Shadrin8
About authors
  • 1 — Ph.D. Scientific Director of the Laboratory Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 2 — Research Engineer Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 3 — Ph.D. Associate Professor Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 4 — Ph.D. Head of Department Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 5 — Ph.D. Leading Engineer Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 6 — Assistant Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 7 — Leading Engineer Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 8 — Research Engineer Empress Catherine II Saint Petersburg Mining University ▪ Orcid
Date submitted:
2023-08-16
Date accepted:
2023-10-24
Date published:
2023-10-27

Abstract

Scientific research in the area close to the Russian Antarctic station Vostok has been carried out since its founding on December 16, 1957. The relevance of work to study the region is steadily increasing, which is confirmed by the Strategy for the Development of Activities of the Russian Federation in the Antarctica until 2030. As part of the Strategy implementation, Saint Petersburg Mining University solves the comprehensive study issues of the Vostok station area, including the subglacial Lake Vostok, related to the development of modern technologies and technical means for drilling glaciers and underlying rocks, opening subglacial reservoirs, sampling water and bottom sediments, as well as carrying out comprehensive geological and geophysical research. For the successful implementation of the Strategy, at each stage of the work it is necessary to identify and develop interdisciplinary connections while complying with the requirements for minimizing the impact on the environment. During the season of the 68th Russian Antarctic Expedition, the staff of the Mining University, along with the current research works , began research of the dynamic interactions between the forces of the Earth, from the deepest depths to the surface glacier. Drilling and research programs have been completed. The drilling program was implemented jointly with colleagues from the Arctic and Antarctic Research Institute at the drilling complex of the 5G well. The research program included: shallow seismic studies, core drilling of snow-firn strata, study of the snow-firn strata petrostructural features, studies of cuttings collection filters effectiveness when drilling snow-firn strata and the process of ice destruction in a reciprocating rotational method, bench testing of an acoustic scanner. As a result of drilling in 5G well at the depth range of 3453.37-3534.43 m, an ice core more than 1 million years old was obtained.

Keywords:
Antarctica Vostok station ice cover drilling research works interdisciplinary connection
Go to volume 263

References

  1. Litvinenko V. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development. Geochemistry. 2020. Vol. 80. Iss. 3. N 125652. DOI: 10.1016/j.chemer.2020.125652
  2. Lipenkov V.Ya., Ekaykin A.A. Hunting for Antarctica's oldest ice. Ice and Snow. 2018. Vol. 58. N 2, p. 255-260 (in Russian). DOI: 10.15356/2076-6734-2018-2-255-260
  3. Leitchenkov G., Antonov A., Luneov P., Lipenkov V. Geology and environments of subglacial Lake Vostok. Philosophical Transactions of The Royal Society A. 2016. Vol. 374. Iss. 2059. N 20140302. DOI: 10.1098/rsta.2014.0302
  4. Popov S.V. Six decades of radar and seismic research in Antarctica. Ice and Snow. 2021. Vol. 61. N 4, p. 587-619 (in Russian). DOI: 10.31857/S2076673421040110
  5. Popov S.V., Chernoglazov Yu.B. Подледниковое озеро Восток, Восточная Антарктида: береговая линия и окружающие водоемы. Led i Sneg. 2011. Vol. 1 (113), p. 13-24 (in Russian).
  6. Yang Y., Song X. Multidecadal variation of the Earth’s inner-core rotation. Nature Geoscience. 2023. Vol. 16, p. 182-187. DOI: 10.1038/s41561-022-01112-z
  7. Mikhalsky E.V., Tkacheva D.A., Skublov S.G. et.al. Low-grade Sandow Group metasediments of the Denman Glacier area (East Antarctica): Chemical composition, age and provenance from U–Pb detrital zircon data, with some palaeotectonic implications. Polar Science. 2020. Vol. 26. N 100587, p. 1-18. DOI: 10.1016/j.polar.2020.100587
  8. Jacobs J., Mikhalsky E., Henjes-Kunst F. et.al. Neoproterozoic geodynamic evolution of easternmost Kalahari: Constraints from U-Pb-Hf-O zircon, Sm-Nd isotope and geochemical data from the Schirmacher Oasis, East Antarctica. Precambrian Research. 2020. Vol. 342. N 105553, p.1-20. DOI: 10.1016/j.precamres.2019.105553
  9. Popov S.V., Masolov V.N., Lukin V.V., Popkov A.M. Отечественные сейсмические, радиолокационные и сейсмологические исследования подледникового озера Восток. Led i Sneg. 2012. Vol. 52. N 4, p. 31-38 (in Russian). DOI: 10.15356/2076-6734-2012-4-31-38
  10. Sysoev A.P., Gorelik G.D. Parametric method of compensation for near-surface heterogeneity in processing CDP data. Russian Geology and Geophysics. 2017. Vol. 58. N 6, p. 948-954 (in Russian). DOI: 10.15372/GiG20170610
  11. Gospodarikov A.P., Revin I.E., Morozov K.V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit. Journal of Mining Institute. 2023. Vol. 262, p. 571-580. DOI: 10.31897/PMI.2023.9
  12. Ignatiev S.A., Vasilev D.A., Bolshunov A.V. et al. Experimental research of ice cuttings transport by air while drilling of the snow-firn layer. Ice and Snow. 2023. Vol. 63. N 1, p. 141-152 (in Russian). DOI: 10.31857/S2076673423010076
  13. Ekaykin A.A., Tchikhatchev K.B., Veres A.N. et al. Vertical profile of snow-firn density in the vicinity of Vostok station, Central Antarctica. Ice and Snow. 2022. Vol. 62. N 4, p. 504-511 (in Russian). DOI: 10.31857/S2076673422040147
  14. Lange G.R. Deep rotary core drilling in ice: Technical Report 94. Hanover, New Hampshire: USA CRREL, 1973, p. 47.
  15. Kapitsa A.P. Опыт бурения льда в Антарктиде с очисткой забоя воздухом. Бурение геологоразведочных скважин колонковым способом с очисткой забоя воздухом. Moscow: Gosgeoltekhizdat, 1958, p. 78-81 (in Russian).
  16. Patenaude R.W., Marshall E.W., Gow A.J. Deep core drilling in ice, Byrd Station, Antarctica. Technical Report 60. Wilmette, Illinois: USA SIPRE, 1959, p. 12.
  17. Veres A.N., Ekaykin A.A., Lipenkov V.Ya. et al. First data on the climate variability in the vicinity of Vostok Station (central Аntarctica) over the past 2,000 years based on the study of a snow-firn core. Arctic and Antarctic Research. 2020. Vol. 66, N 4, p. 482-500 (in Russian). DOI: 10.30758/0555-2648-2020-66-4-482-500
  18. Shibayev Yu.A., Tchikhatchev K.B., Lipenkov V.Ya et al. Seasonal variations of snowpack temperature and thermal conductivity of snow in the vicinity of Vostok station, Antarctica. Arctic and Antarctic Research. 2019. Vol. 65. N 2, p. 169-185 (in Russian). DOI: 10.30758/0555-2648-2019-65-2-169-185
  19. Ekaykin A.A., Teben’kova N.A., Lipenkov V.Ya. et al. Underestimation of Snow Accumulation Rate in Central Antarctica (Vostok Station) Derived from Stake Measurements. Meteorologiya i Gidrologiya. 2020. N 2, p. 114-125 (in Russian).
  20. Lipenkov V.Ya. How air bubbles form in polar ice. Earth’s Cryosphere. 2018. Vol. 22. № 2, p. 16-28 (in Russian). DOI: 10.21782/KZ1560-7496-2018-2(16-28)
  21. Lipenkov V.Ya., Salamatin A.N. Steady-state size distribution of air bubbles in polar ice. Ice and Snow. 2014. Vol. 54. N 4, p. 20-31 (in Russian). DOI: 10.15356/2076-6734-2014-4-20-31
  22. Ekaikin A.A., Vladimirova D.O., Teben'kova N.A. et al. Пространственная изменчивость изотопного состава и скорости накопления снега на снегомерном полигоне станции Восток (Центральная Антарктида). Problemy Arktiki i Antarktiki. 2019. Vol. 65. N 1, p. 46-62 (in Russian). DOI: 10.30758/0555-2648-2019-65-1-46-62
  23. Tchikhatchev K.B., Lipenkov V.Ya. On modeling the non-stationary process of snow-firndensification in the polar ice sheet. Arctic and Antarctic Research. 2015. N 4 (106), p. 76-87 (in Russian).
  24. Machguth H., MacFerrin M., van As D. et al. Greenland meltwater storage in firn limited by near surface ice formation. Nature Climate Change. 2016. Vol. 6. N 4, p. 390-395. DOI: 10.1038/nclimate2899
  25. Sirotkin A.N., Talovina I.V., Duriagina A.M. Mineralogy and geochemistry of alkaline lamprophyres of north-western Spitsbergen (Svalbard). Geochemistry. 2020. Vol. 80. Iss. 3. N 125508. DOI: 10.1016/j.chemer.2019.04.004
  26. Krikun N.S., Grokhotov E.I., Volkova V.I. Первичные результаты исследований петроструктурных особенностей приповерхностной части ледового купола Антарктиды и планы на перспективую Прорывные технологии в разведке, разработке и добыче углеводородных ресурсов: Tezisy dokladov II Mezhdunarodnoi nauchno-prakticheskoi konfe-rentsii, 7-9 iyunya 2023, Sankt-Peterburg, Rossiya. St. Petersburg: Sankt-Peterburgskii gornyi universitet, 2023, p. 35 (in Russian).
  27. Lipenkov V.Ya., Polyakova E.V., Duval P., Preobrazhenskaya A.V. Internal structure of the Antarctic ice sheet in the vicinity of Vostok station from the deep-ice core thin-section studies. Arctic and Antarctic Research. 2007. N 76, p. 68-77 (in Russian).
  28. Kulchitskiy A.A., Mansurova O.K., Nikolaev M.Yu. Recognition of defects in hoisting ropes of metallurgical equipment by an optical method using neural networks. Ore and Metals. 2023. N 3, p. 81-88 (in Russian). DOI: 10.17580/chm.2023.03.13
  29. Ueda H.T., Garfield D.E. Drilling through the Greenland Ice Sheet. Special Report 126. Hanover, New Hampshire: USA CRREL, 1968, p. 7.
  30. Donnou D., Gillet F., Manouvrier A. et al. Deep Core Drilling: Electro-Mechanical or Thermal Drill? Proceedings of the Second International Workshop/Symposium on Ice Drilling Technology, 30-31 Aug 1982, Calgary, Alberta, Canada. USA CRREL, 1984. Spec. Rep. 84-34, p. 81-84.
  31. Tanaka Y., Takahashi A., Fujii Y. et al. Development of a JARE deep ice core drill system. Memoirs of National Institute of Polar Research. 1994. Spec. Iss. 49, p. 113-123.
  32. Johnsen S.J., Hansen S.B., Sheldon S.G. et al. The Hans Tausen drill: design, performance, further developments and some lessons learned. Annals of Glaciology. 2007. Vol. 47, p. 89-98. DOI: 10.3189/172756407786857686
  33. Mason W.P., Shturmakov A.J., Johnson J.A. et al. A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 2. Mechanical design. Annals of Glaciology. 2007. Vol. 47, p. 35-40. DOI: 10.3189/172756407786857640
  34. Zagrivny E.A., Poddubny D.A. Dynamically balanced drilling machine for a load-carrying cable for taking bottom sediments of subglacial lakes in Antarctica. Issues in Modern Machines Mechanics: Proceedings of the VII International scientific Conference, June 25-30 2018, Russia. Ulan-Ude: Publishing Department of East Siberia State University of Technology and Management, 2018. Vol. 1, p. 197 (in Russian).
  35. Zagrivniy E.A., Poddubniy D.A. Drill at a carrying cable with senserless control of electrc drive with autoresonant swinging movement. Izvestiya Tula State University. 2016. Iss. 3, p.178-187 (in Russian).
  36. Siegert M.J., Makinson K., Blake D. et al. An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13. Annals of Glaciology. 2014. Vol. 55. Iss. 65, p. 59-73. DOI: 10.3189/2014AoG65A008
  37. Morin R.H., Williams T., Henrys S. et al. Downhole Measurements in the AND-1B Borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica. Terra Antarctica. 2007. Vol. 14. Iss. 3, p. 167-174.
  38. Rudakov M.L., Duka N.E. Analysis of properties of deafeners to design personal ear protectors. Mining Informational and Analytical Bulletin. 2022. N 3, p. 165-180 (in Russian). DOI: 10.25018/0236_1493_2022_3_0_165
  39. McAfee C.W.I., Rix J., Quirk S.J. et al. Non-contact measurement system for hot water drilled ice boreholes. Annals of Glaciology. 2021. Vol. 62, p. 223-232. DOI: 10.1017/aog.2020.85
  40. Van T.N., Thang V.P. et al. A comprehensive method for determining the dewaxing interval period in gas lift wells. Journal of Petroleum Exploration and Production Technology. 2023. N 13, p. 1163-1179. DOI: 10.1007/s13202-022-01598-8
  41. Islamov S.R., Bondarenko A.V., Gabibov A.F., Mardashov D.V. Polymer compositions for well killing operation in fractured reservoirs. Advances in Raw Material Industries for Sustainable Development Goals. London, UK. Taylor&Francis Group, 2021. p. 343-351. DOI: 10.1201/9781003164395-43
  42. Islamov S.R., Bondarenko A.V., Mardashov D.V. A selection of emulsifiers for preparation of invert emulsion drilling fluids. Topical Issues of Rational Use of Natural Resources: Proceedings of the XV International Forum-Contest of Students and Young Researchers under the auspices of UNESCO, May 17-19, 2019, St. Petersburg. Vol. 2. London: Taylor & Francis Group, 2020, p. 487-494. DOI: 10.1201/9781003014638-2
  43. Ekaykin A.A., Lipenkov V.Ya., Veres A.N. et al. On the possibility to restore the climatic signal in the disturbed record of stable water isotope content in the old (0.4–1.2 Ma) Vostok ice (Central Antarctica). Ice and Snow. 2019. Vol. 59. N 4, p. 437-451 (in Russian). DOI: 10.15356/2076-6734-2019-4-463
  44. Egorov A.S., Vinokurov I.Yu., Telegin A.N. Scientific and Methodical Approaches to Increase Prospecting Efficiency of the Russian Arctic Shelf State Geological Mapping. Journal of Mining Institute. 2018. Vol. 233, p. 447-458. DOI: 10.31897/PMI.2018.5.447
  45. Litvinenko V.S., Kozlov A.V., Stepanov V.A. Hydrocarbon potential of the Ural–African transcontinental oil and gas belt. Journal of Petroleum Exploration and Production Technology. 2017. Vol. 7. N 1, p. 1-9. DOI: 10.1007/s13202-016-0248-4
  46. Litvinenko V.S., Leitchenkov G.L., Vasiliev N.I. Anticipated sub-bottom geology of Lake Vostok and technological approaches considered for sampling. Geochemistry. 2020. Vol. 80. Iss. 3. N 125556. DOI: 10.1016/j.chemer.2019.125556

Similar articles

Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability
2023 Regina E. Dashko, Angelina G. Karpenko
Structure maintenance experience and the need to control the soils thermal regime in permafrost areas
2023 Anatolii V. Brushkov, Andrei G. Alekseev, Svetlana V. Badina, Dmitrii S. Drozdov, Vladimir A. Dubrovin, Oleg V. Zhdaneev, Mikhail N. Zheleznyak, Vladimir P. Melnikov, Sergei N. Okunev, Aleksei B. Osokin, Nikolai A. Ostarkov, Marat R. Sadurtinov, Dmitrii O. Sergeev, Roman Yu. Fedorov, Konstantin N. Frolov
Experimental simulation of a system of swamp biogeocenoses to improve the efficiency of quarry water treatment
2023 Mariya A. Pashkevich, Anna E. Korotaeva, Vera A. Matveeva
Mineral composition and thermobarometry of metamorphic rocks of Western Ny Friesland, Svalbard
2023 Yurii L. Gulbin, Sima A. Akbarpuran Khaiyati, Aleksandr N. Sirotkin
Pink-violet diamonds from the Lomonosov mine: morphology, spectroscopy, nature of colour
2023 Galina Yu. Kriulina, Sergei V. Vyatkin, Evgenii A. Vasilev
Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia
2023 Vyacheslav А. Rudko, Renat R. Gabdulkhakov, Igor N. Pyagai