Submit an Article
Become a reviewer

Search articles for by keywords:
morphological analysis

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-20
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

A new formula for calculating the required thickness of the frozen wall based on the strength criterion

Article preview

The study delves into the elastoplastic deformation of a frozen wall (FW) with an unrestricted advance height, initially articulated by S.S.Vyalov. It scrutinizes the stress and displacement fields within the FW induced by external loads across various boundary scenarios, notably focusing on the inception and propagation of a plastic deformation zone throughout the FW's thickness. This delineation of the plastic deformation zone aligns with the FW's state of equilibrium, for which S.S.Vyalov derived a formula for FW thickness based on the strength criterion. These findings serve as a pivotal launchpad for the shift from a one-dimensional (1D) to a two-dimensional (2D) exploration of FW system deformation with finite advance height. The numerical simulation of FW deformation employs FreeFEM++ software, adopting a 2D axisymmetric approach and exploring two design schemes with distinct boundary conditions at the FW cylinder's upper base. The initial scheme fixes both vertical and radial displacements at the upper base, while the latter applies a vertical load equivalent to the weight of overlying soil layers. Building upon the research outcomes, a refined version of S.S.Vyalov's formula emerges, integrating the Mohr – Coulomb strength criterion and introducing a novel parameter – the advance height. The study elucidates conditions across various soil layers wherein the ultimate advance height minimally impacts the calculated FW thickness. This enables the pragmatic utilization of S.S.Vyalov's classical formula for FW thickness computation, predicated on the strength criterion and assuming an unrestricted advance height.

How to cite: Semin M.А., Levin L.Y. A new formula for calculating the required thickness of the frozen wall based on the strength criterion // Journal of Mining Institute. 2024. Vol. 268. p. 656-668. EDN WEJUBT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-27
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Normalized impulse response testing in underground constructions monitoring

Article preview

Impulse Response testing is a widespread geophysical technique of monolithic plate-like structures (foundation slabs, tunnel lining, and supports for vertical, inclined and horizontal mine shafts, retaining walls) contact state and grouting quality evaluation. Novel approach to data processing based on normalized response attributes analysis is presented. It is proposed to use the energy of the normalized signal calculated in the time domain and the normalized spectrum area and the average-weighted frequency calculated in the frequency domain as informative parameters of the signal. The proposed technique allows users a rapid and robust evaluation of underground structure’s grouting or contact state quality. The advantage of this approach is the possibility of using geophysical equipment designed for low strain impact testing of piles length and integrity to collect data. Experimental study has been carried out on the application of the technique in examining a tunnel lining physical model with a known position of the loose contact area. As examples of the application of the methodology, the results of the several monolitic structures of operating municipal and transport infrastructure underground structures survey are presented. The applicability of the technique for examining the grouting of the tunnel lining and the control of injection under the foundation slabs is confirmed. For data interpretation the modified three-sigma criteria and the joint analysis of the attribute’s behavior were successfully used. The features of the field work methodology, data collection and analysis are discussed in detail. Approaches to the techniques' development and its application in the framework of underground constructions monitoring are outlined. The issues arising during acoustic examination of reinforced concrete plate-like structures are outlined.

How to cite: Churkin A.A., Kapustin V.V., Pleshko M.S. Normalized impulse response testing in underground constructions monitoring // Journal of Mining Institute. 2024. Vol. 270. p. 963-976. EDN BPIOTO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-16
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems

Article preview

The article describes an X-ray fluorescence method for quantitative analysis of sulfate and total sulfur in bottom sediments of watercourses and reservoirs located in the area of industrial enterprises impact. The quantitative determination of sulfur forms was carried out by analyzing the characteristic curves SKα1,2 and SKβ1,3, as well as the satellite line SKβ′ on X-ray emission spectra measured by an X-ray fluorescence spectrometer with wavelength dispersion. The study shows that these characteristic curves allow not only to determine the predominant form of sulfur, but also to separately conduct quantitative analyses of sulfates and total sulfur after fitting peaks and to separately analyze overlapping spectral lines. The results of quantitative analysis of the chemical state of sulfur by the proposed X-ray fluorescence method were compared with the results of inductively coupled plasma atomic emission spectroscopy and elemental analysis, as well as certified standard samples of soils and sediments. The results are in good agreement with each other.

How to cite: Sverchkov I.P., Povarov V.G. Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems // Journal of Mining Institute. 2024. Vol. 267. p. 372-380. EDN PUUADY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-25
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

Finite element analysis of slope failure in Ouenza open-pit iron mine, NE Algeria: causes ‎and lessons for stability control

Article preview

Slope failures in mining engineering pose significant risks to slope stability control, necessitating a thorough investigation into their root causes. This paper focuses on a back analysis of a slope failure in the Zerga section of the Ouenza – Algeria open-pit iron mine. The primary objectives are to identify the causes of slope failure, propose preventive measures, and suggest techniques to enhance stability, thereby providing crucial insights for monitoring slope stability during mining operations. The study commenced with a reconstruction of the slopes in the affected zones, followed by a numerical analysis utilizing the Shear strength reduction method within the Finite element method (SSR-FE). This approach enables the examination of slope stability under both static and dynamic loads. The dynamic load assessment incorporated an evaluation of the vibrations induced by the blasting process during excavation, introducing seismic loading into the finite element analysis. The findings reveal that the primary triggering factor for the landslide was the vibration generated by the blasting process. Furthermore, the slope stability was found to be critically compromised under static loads, highlighting a failure to adhere to exploitation operation norms. The challenging geology, particularly the presence of marl layers where maximum shear strain occurs, contributed to the formation of the landslide surface. The study not only identifies the causes of slope failure but also provides valuable lessons for effective slope stability management in mining operations.

How to cite: Belgueliel F., Fredj M., Saadoun A., Boukarm R. Finite element analysis of slope failure in Ouenza open-pit iron mine, NE Algeria: causes ‎and lessons for stability control // Journal of Mining Institute. 2024. Vol. 268. p. 576-587. EDN XIQXNW
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-01-16
  • Date accepted
    2023-06-20
  • Date published
    2024-04-25

Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan

Article preview

Coal is one of the world's most important energy substances. China is rich in coal resources, accounting for more than 90 % of all ascertained fossil energy reserves. The consumption share of coal energy reaches 56.5 % in 2021. Due to the high moisture content of low-rank coal, it is easy to cause equipment blockage in the dry sorting process. This paper considers low-rank coal coming from Inner Mongolia (NM samples) and Yunnan (YN samples). The weight loss performance of the samples was analyzed using thermogravimetric experiments to determine the appropriate temperature for drying experiments. Thin-layer drying experiments were carried out at different temperature conditions. The drying characteristics of low-rank coal were that the higher the drying temperature, the shorter the drying completion time; the smaller the particle size, the shorter the drying completion time. The effective moisture diffusion coefficient was fitted using the Arrhenius equation. The effective water diffusion coefficient of NM samples was 5.07·10–11 - 9.58·10–11 m2/s. The effective water diffusion coefficients of the three different particle sizes of YN samples were 1.89·10–11 - 4.92·10–11 (–1 mm), 1.38·10–10 - 4.13·10–10 (1-3 mm), 5.26·10–10 - 1.49·10–9 (3-6 mm). The activation energy of Inner Mongolia lignite was 10.97 kJ/mol (–1 mm). The activation energies of Yunnan lignite with different particle sizes were 17.97 kJ/mol (–1 mm), 33.52 kJ/mol (1-3 mm), and 38.64 kJ/mol (3-6 mm). The drying process was simulated using empirical and semi-empirical formulas. The optimal model for Inner Mongolia samples was the Two-term diffusion model, and Yunnan samples were the Hii equation was used.

How to cite: Wang C., Wang D., Chen Z., Duan C., Zhou C. Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan // Journal of Mining Institute. 2024. Vol. 266. p. 326-338. EDN XMIQWH
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-13
  • Date accepted
    2023-10-25
  • Date published
    2025-02-25

Assessment of the ecological state of aquatic ecosystems by studying lake bottom sediments

Article preview

The article presents the results of coupled palynological and geochemical studies of five various genesis lakes, located along the route of the expedition “In the footsteps of Alexander von Humboldt in Siberia, Altai and Eastern Kazakhstan”, dedicated to the double anniversary: the 190th anniversary of the expedition across Russia of the famous scientist and his 250th birthday. A geochemical analysis of water and bottom sediments of Ik Lake (Siberia), Lakes Kolyvanskoe and Beloe (Altai), Lake Bezymyannoe (Kazakhstan) and Nagornyi Pond (Altai) was carried out. Based on their results an assessment of studied lakes ecological state was given through single and integral criteria. A high level of pollution was noted for Nagornyi Pond and Lake Bezymyannoe, which is caused by a significant technogenic load from nearby mines. This is consistent with the data of palynological research. The aquatic ecosystems of Lakes Kolyvanskoe and Beloe are characterized by a satisfactory ecological situation, but they experience an increased recreational load. The results of spore-pollen analysis and analysis of non-pollen palynomorphs showed the low ability of these lakes to self-healing. The most favorable ecological state and high self-cleaning capacity were noted for Lake Ik, which is consistent with the data of palynological studies. It is being confirmed with the results of palynological studies. It was therefore concluded about the ability to make a quick assessment of the aquatic ecosystems’ ecological state by studying lakes using coupled palynological and geochemical analysis.

How to cite: Chukaeva M.A., Sapelko T.V. Assessment of the ecological state of aquatic ecosystems by studying lake bottom sediments // Journal of Mining Institute. 2025. Vol. 271. p. 53-62. EDN IXRSRC
Energy industry
  • Date submitted
    2023-03-10
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Enhancement of energy efficiency of the vacuum oil distillation unit using pinch analysis

Article preview

The actual task of the state is to increase the energy efficiency of the oil refinery. The object of research is a vacuum distillation unit, including a preheating unit for raw materials and a furnace for heating fuel oil before the column. Pinch analysis allows to analyze and optimize a large number of heat flows. In this study the analysis and enhancement of efficiency of the research object is carried out by enthalpy pinch analysis. In order to reduce the heat load of the furnaces, the additional flows were introduced into the heat exchange system of the oil heating unit. Parametric optimization of the new heat exchange system was carried out. The minimum needs of the heat exchange system in external energy carriers are determined. An enthalpy cascade of the heat exchange system has been constructed, which clearly shows the distribution of heat between each heat flow of the system. In the analysis of the energy efficiency of a furnace, an important point is the determination of the optimal heat capacity of the combustion products. In this work, we have determined the optimal flow heat capacity, at which the heat loss with the exhaust gases is minimal. As a result of the studies carried out, the efficiency of the fuel oil preheating unit has been increased by maximizing heat recovery, and the cost of external energy carriers has been minimized. By reducing heat loss with flue gases, it was possible to increase the efficiency of the furnace.

How to cite: Yushkova Е.А., Lebedev V.A. Enhancement of energy efficiency of the vacuum oil distillation unit using pinch analysis // Journal of Mining Institute. 2023. Vol. 261. p. 415-427. EDN LXDVDP
Economic Geology
  • Date submitted
    2022-05-03
  • Date accepted
    2022-11-22
  • Date published
    2023-02-27

Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex

Article preview

Theoretical and applied aspects of scenario analysis of investment projects of enterprises in the mineral resource sector of the economy are considered, its advantages and disadvantages are analyzed. Taking into account the organizational and economic features of mineral resources management, a number of new modifications of the scenario analysis method, aimed at solving an urgent problem - reducing the information uncertainty in assessing the expected efficiency and risk of investment projects, are proposed. The peculiarity of the proposed new modifications is the use of the interval-probabilistic approach in the implementation of the scenario analysis procedure. This approach is based on a moderately pessimistic system of preferences in obtaining point values of the investment project initial parameters. Fishburn estimates and the hierarchy analysis method were used to reduce subjective uncertainty. The maximum likelihood values in the sense of the maximum a priori probability are used as expected estimates. An additional indicator of risk assessment, which characterizes the probability of the event that the net present value of the project will take a value less than the specified one, is proposed. When analyzing one project, this indicator is more informative than the standard deviation. A statistical hypothesis was tested on the improvement of the validity of investment decisions developed using the modified scenario analysis method compared to the standard method.

How to cite: Matrokhina K.V., Trofimets V.Y., Mazakov E.B., Makhovikov A.B., Khaykin M.M. Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex // Journal of Mining Institute. 2023. Vol. 259. p. 112-124. DOI: 10.31897/PMI.2023.3
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-03-24
  • Date accepted
    2022-12-15
  • Date published
    2023-08-28

Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit

Article preview

Geomechanical monitoring of the rock mass state is an actively developing branch of geomechanics, in which it is impossible to distinguish a single methodology and approaches for solving problems, collecting and analyzing data when developing seismic monitoring systems. During mining operations, all natural factors are subject to changes. During the mining of a rock mass, changes in the state of structural inhomogeneities are most clearly manifested: the existing natural structural inhomogeneities are revealed; there are movements in discontinuous disturbances (faults); new man-made disturbances (cracks) are formed, which are accompanied by changes in the natural stress state of various blocks of the rock mass. The developed method for evaluating the results of monitoring geomechanical processes in the rock mass on the example of the United Kirovsk mine of the CF AO Apatit allowed to solve one of the main tasks of the geomonitoring system – to predict the location of zones of possible occurrence of dangerous manifestations of rock pressure.

How to cite: Gospodarikov A.P., Revin I.E., Morozov K.V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit // Journal of Mining Institute. 2023. Vol. 262. p. 571-580. DOI: 10.31897/PMI.2023.9
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-31
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field

Article preview

Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.

How to cite: Kochnev A.A., Kozyrev N.D., Krivoshchekov S.N. Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field // Journal of Mining Institute. 2022. Vol. 258. p. 1026-1037. DOI: 10.31897/PMI.2022.102
Metallurgy and concentration
  • Date submitted
    2022-05-17
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

On the need to classify rock mass fed to dry magnetic separation

Article preview

The hypothesis of a possible use of dry magnetic separation is substantiated on the example of ores from ferruginous quartzite deposits operated by plants of PAO “Severstal” Holding. Size class of ore after medium crushing is –80+0 mm when the vibrating feeder is used for feeding ore mass to the separation zone. The rationale is based on the analysis of video recording of physical simulation on a laboratory drum magnetic separator of SMBS-L series, in the VSDC Video Editor, and simulation modelling of dry magnetic separation on its virtual prototype in Rocky DEM software package. It has been proved that the use of a vibrating feeder for feeding the material to the working area of a magnetic separator makes it possible to: form a monolayer on the surface of the vibrating feeder chute with a thickness close to the maximum size of a lump of separated ore; implement batch feed of material to the separation zone; increase the spacing between lumps in the separation zone when passing through the free fall area, thereby allowing dry magnetic separation of ferruginous quartzites of size class –80+0 mm without pre-preparation.

How to cite: Shibaeva D.N., Tereshchenko S.V., Asanovich D.A., Shumilov P.A. On the need to classify rock mass fed to dry magnetic separation // Journal of Mining Institute. 2022. Vol. 256. p. 603-612. DOI: 10.31897/PMI.2022.79
Metallurgy and concentration
  • Date submitted
    2022-05-13
  • Date accepted
    2022-09-24
  • Date published
    2022-11-03

Rapid detection of coal ash based on machine learning and X-ray fluorescence

Article preview

Real-time testing of coal ash plays a vital role in the chemical, power generation, metallurgical, and coal separation sectors. The rapid online testing of coal ash using radiation measurement as the mainstream technology has problems such as strict coal sample requirements, poor radiation safety, low accuracy, and complicated equipment replacement. In this study, an intelligent detection technique based on feed-forward neural networks and improved particle swarm optimization (IPSO-FNN) is proposed to predict coal quality ash content in a fast, accurate, safe,and convenient manner. The data set was obtained by testing the elemental content of 198 coal samples with X-ray fluorescence (XRF). The types of input elements for machine learning (Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, P) were determined by combining the X-ray photoelectron spectroscopy (XPS) data with the change in the physical phase of each element in the coal samples during combustion. The mean squared error and coefficient of determination were chosen as the performance measures for the model. The results show that the IPSO algorithm is useful in adjusting the optimal number of nodes in the hidden layer. The IPSO-FNN model has strong prediction ability and good accuracy in coal ash prediction. The effect of the input element content of the IPSO-FNN model on the ash content was investigated, and it was found that the potassium content was the most significant factor affecting the ash content. This study is essential for real-time online, accurate, and fast prediction of coal ash.

How to cite: Huang J., Li Z., Chen B., Cui S., Lu Z., Dai W., Zhao Y., Duan C., Dong L. Rapid detection of coal ash based on machine learning and X-ray fluorescence // Journal of Mining Institute. 2022. Vol. 256. p. 663-676. DOI: 10.31897/PMI.2022.89
Metallurgy and concentration
  • Date submitted
    2022-04-13
  • Date accepted
    2022-05-25
  • Date published
    2022-11-03

Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit

Article preview

The growing demand for ferrous metallurgy products necessitates the introduction of technologies that increase the efficiency of the processing of iron-bearing raw materials. A promising trend in this area is the implementation of solutions based on the possibility of selective disintegration of ores. The purpose of this work was to establish the laws of selective disintegration of ferruginous quartzites based on the results of the study of mineralogical and technological properties of raw materials. We present data on the study of mineralogical and technological features of ferruginous quartzites of the Mikhailovskoye deposit. The data were obtained using X-ray fluorescence analysis and automated mineralogical analysis. Based on studies of the nature of dissemination and the size of grains of rock-forming and ore minerals, the tasks of ore preparation are formulated. The parameters for the iron and silicon oxide distribution by grain-size classes in the grinding products were established during the study. Based on empirical dependences, the grain size of grinding was predicted, at which the most effective release of intergrowths of ore minerals and their minimum transition to the size class of –44 µm should be achieved.

How to cite: Aleksandrova T.N., Chanturiya A.V., Kuznetsov V.V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit // Journal of Mining Institute. 2022. Vol. 256. p. 517-526. DOI: 10.31897/PMI.2022.58
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-10
  • Date published
    2022-11-03

Monitoring of grinding condition in drum mills based on resulting shaft torque

Article preview

Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.

How to cite: Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque // Journal of Mining Institute. 2022. Vol. 256. p. 686-700. DOI: 10.31897/PMI.2022.91
Economic Geology
  • Date submitted
    2022-06-02
  • Date accepted
    2022-07-21
  • Date published
    2022-10-05

Substantiation of the optimal performance parameters for a quarry during the stage-wise development of steeply dipping ore deposits

Article preview

The use of stage-wise schemes in the development of deep quarries is one of the ways to increase the economic efficiency of mining a deposit and determining the optimal stage parameters remains an urgent task. Such parameters are stage depth, bench height, block length, etc. However, there is a wide range of values for these parameters. Therefore, to select the optimal values and evaluate the effectiveness of design solutions, it is advisable to use the net present value, which is an international notion. As a result of the analysis of data on deposits, a large number of variable indicators can be identified that presumably affect the efficiency of mining. The article proposes to divide all parameters of the quarry mining into two types: mine engineering and economic. The importance of each of them is determined by the measure of influence on the net present value. Thus, to assess the measure of influence of mining indicators, the average values of each of them are taken, and as a result of the alternating change of one parameter under study, the measure of its influence on the discounted income received is estimated. The results of the analysis of relevant factors, their evaluation and comparative analysis are important indicators that significantly affect the design decisions made and the effectiveness of the investment project.

How to cite: Fomin S.I., Ovsyannikov M.P. Substantiation of the optimal performance parameters for a quarry during the stage-wise development of steeply dipping ore deposits // Journal of Mining Institute. 2022. p. DOI: 10.31897/PMI.2022.73
Geology
  • Date submitted
    2022-04-17
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE)

Article preview

A study of the trace element composition of beryl varieties (469 SIMS analyses) was carried out. Red beryls are distinguished by a higher content of Ni, Sc, Mn, Fe, Ti, Cs, Rb, K, and B and lower content of Na and water. Pink beryls are characterized by a higher content of Cs, Rb, Na, Li, Cl, and water with lower content of Mg and Fe. Green beryls are defined by the increased content of Cr, V, Mg, Na, and water with reduced Cs. A feature of yellow beryls is the reduced content of Mg, Cs, Rb, K, Na, Li, and Cl. Beryls of various shades of blue and dark blue (aquamarines) are characterized by higher Fe content and lower Cs and Rb content. For white beryls, increased content of Na and Li has been established. Principal Component Analysis (PCA) for the CLR-transformed dataset showed that the first component separates green beryls from other varieties. The second component divides pink and red beryls. The stochastic neighborhood embedding method with t-distribution (t-SNE) with CLR-transformed data demonstrated the contrasting compositions of green beryls relative to other varieties. Red and pink beryls form the most compact clusters.

How to cite: Skublov S.G., Gavrilchik A.K., Berezin A.V. Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) // Journal of Mining Institute. 2022. Vol. 255. p. 455-469. DOI: 10.31897/PMI.2022.40
Geology
  • Date submitted
    2022-04-11
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Magma feeding paleochannel in the Monchegorsk ore region: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia)

Article preview

A comprehensive study of a 340 m thick lenticular-sheet body of ultramafic composition penetrated by structural well M-1 at a depth of about 2.2 km was accomplished. Its main volume is composed of plagioharzburgite; fine-grained rocks of norite and orthopyroxenite chilling zones are preserved on endocontacts. The rocks of the body are similar in composition to the rocks near the underlying ore-bearing layered intrusion – the Monchepluton. The age of intrusion of the ultramafic body is 2510 ± 9 Ma (U-Pb, ID-TIMS, zircon) and, taking into account analytical errors, is comparable with the formation period of the Monchepluton (2507-2498 Ma). According to the study of the Sm-Nd system in rocks and minerals, a positive value of the e Nd (+1.1) parameter was established, similar to that in dunites and chromitites of the Monchepluton. Based on these results, the ultramafic body penetrated at depth was assigned to the magma feeding paleochannel through which the ultramafic, weakly contaminated magma entered the overlying magma chamber. This body is a unique example of a magma-feeding system for the ore-bearing layered intrusion of Precambrian age.

How to cite: Smolkin V.F., Mokrushin A.V., Bayanova T.B., Serov P.A., Ariskin A.A. Magma feeding paleochannel in the Monchegorsk ore region: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia) // Journal of Mining Institute. 2022. Vol. 255. p. 405-418. DOI: 10.31897/PMI.2022.48
Geology
  • Date submitted
    2022-02-18
  • Date accepted
    2022-05-25
  • Date published
    2022-07-13

Remote sensing techniques in the study of structural and geotectonic features of Iturup Island (the Kuril Islands)

Article preview

The article presents structural and geotectonic features of Iturup Island, the largest island in the Greater Kuril Ridge, a unique natural site, which can be considered as a geological reference. The structural and geotectonic analysis carried out on the basis of a comprehensive study of the new Earth remote sensing data, maps of anomalous geophysical geophysical fields, and other geological and geophysical materials using modern modelling methods made it possible for the first time to identify or clarify the location of previously discovered discontinuous faults, typify them and determine the kinematics, as well as to establish a more reliable spatial relationship of the identified structures with magmatism with the stages of the geological development of the region. The constructed diagram of the density distribution of the zones with increased tectonic fracturing shows a significant correlation between the distribution of minerals and weakened areas of the Earth's crust and can be used as an alternative method for predicting minerals in the study region, especially in remote and hard-to-reach areas. The presented approach can be extended to the other islands of the Greater Kuril Ridge, thereby bringing research geologists closer to obtaining the answers to questions about the features of the geotectonic structure and evolution of the island arc. The use of customized software products significantly speeds up the process of interpreting a large array of geological and geophysical data.

How to cite: Talovina I.V., Krikun N.S., Yurchenko Y.Y., Ageev A.S. Remote sensing techniques in the study of structural and geotectonic features of Iturup Island (the Kuril Islands) // Journal of Mining Institute. 2022. Vol. 254. p. 158-172. DOI: 10.31897/PMI.2022.45
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-07-19
  • Date accepted
    2022-05-31
  • Date published
    2022-07-13

Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter

Article preview

The factors influencing the qualitative and quantitative components of the result of surveying in open-pit mining using a quadcopter were identified and systematized, and the mathematical dependence of the influence of factors on the final error of surveying was determined. After a large number of field observations – numerous flights of a geodesic quadcopter over mining facilities – the subsequent mathematical justification of the results of the aerial photogrammetric surveying was made, which allowed to analyze the degree of participation in the final accuracy of the survey of each of the considered factors. The results of this study demonstrate the source of errors, which provide the surveyor with the opportunity to efficiently and competently carry out pre-flight preparation and planning of fieldwork. The study and subsequent consideration of the factors affecting the accuracy of surveying with the use of an unmanned aerial vehicle are the basis for the subsequent development and formation of a methodology for using a geodesic quadcopter in the conditions of open-pit mining.

How to cite: Gusev V.N., Blishchenko A.A., Sannikova A.P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter // Journal of Mining Institute. 2022. Vol. 254. p. 173-179. DOI: 10.31897/PMI.2022.35
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-14
  • Date accepted
    2022-04-07
  • Date published
    2022-04-29

The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow

Article preview

The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.

How to cite: Smirnyakov V.V., Rodionov V.A., Smirnyakova V.V., Orlov F.A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow // Journal of Mining Institute. 2022. Vol. 253. p. 71-81. DOI: 10.31897/PMI.2022.12
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-19
  • Date accepted
    2022-04-07
  • Date published
    2022-04-29

On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs

Article preview

The paper analyses features of the species composition and diversity of biotic communities living within the ferromanganese nodule fields (the Clarion-Clipperton field), cobalt-manganese crusts (the Magellan Seamounts) and deep-sea polymetallic sulphides (the Ashadze-1, Ashadze-2, Logatchev and Krasnov fields) in the Russian exploration areas of the Pacific and Atlantic Oceans. Prospects of mining solid minerals of the world’s oceans with the least possible damage to the marine ecosystems are considered that cover formation of the sediment plumes and roiling of significant volumes of water as a result of collecting the minerals as well as conservation of the hydrothermal fauna and microbiota, including in the impact zone of high temperature hydrothermal vents. Different concepts and layout options for deep-water mining complexes (the Indian and Japanese concepts as well as those of the Nautilus Minerals and Saint Petersburg Mining University) are examined with respect to their operational efficiency. The main types of mechanisms that are part of the complexes are identified and assessed based on the defined priorities that include the ecological aspect, i.e. the impact on the seabed environment; manufacturing and operating costs; and specific energy consumption, i.e. the technical and economic indicators. The presented morphological analysis gave grounds to justify the layout of a deep-sea minerals collecting unit, i.e. a device with suction chambers and a grip arm walking gear, selected based on the environmental key priority. Pilot experimental studies of physical and mechanical properties of cobalt-manganese crust samples were performed through application of bilateral axial force using spherical balls (indenters) and producing a rock strength passport to assess further results of the experimental studies. Experimental destructive tests of the cobalt-manganese crust by impact and cutting were carried out to determine the impact load and axial cutting force required for implementation of the collecting system that uses a clamshell-type effector with a built-in impactor.

How to cite: Sudarikov S.M., Yungmeister D.A., Korolev R.I., Petrov V.A. On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs // Journal of Mining Institute. 2022. Vol. 253. p. 82-96. DOI: 10.31897/PMI.2022.14
Oil and gas
  • Date submitted
    2021-08-10
  • Date accepted
    2021-12-10
  • Date published
    2021-12-27

Possibilities of accounting the fracturing of Kashiro-Vereyskian carbonate objects in planning of proppant hydraulic fracturing

Article preview

One of the effective methods of oil production intensification for heterogeneous Kashiro-Vereyskian clay-carbonate sediments of the Volga-Ural oil and gas bearing province is proppant hydraulic fracturing. Prospects of realization for this technology are considered in the article on the example of the Vereyskian development object of Moskud’inskoye field. Based on the analysis of rocks samples investigations of Vereyiskian sediments, lithological types of carbonate rocks differing in their structural features are distinguished. Tomographic investigations of rock samples were carried out, as a result of which the rock fracturing for some lithotypes was determined and studieds. Under natural geological conditions, depending on the degree of fracturing progression and technological conditions of development, these intervals may or may not be involved in well operation. When hydraulic fracturing is performed, potentially fractured areas that are not in operation can be successfully added to oil production. Based on analysis of hydrodynamic well investigations, the fracturing of the Vereyskian object of the Moskud’inskoye field was studied on the basis of the Warren-Ruth model. With the help of geological and technological indicators of development, prediction fracturing was obtained, which was used for the construction of the natural fracturing scheme. Areas of both pore and fractured reservoirs development were identified on the deposit area. As a result of statistical analysis, the influence of fracturing on efficiency of proppant hydraulic fracturing was determined. Based on the linear discriminant analysis, a statistical model for predicting the efficiency of proppant fracturing was developed. It was shown that in addition to natural fracturing, the results are most strongly influenced by specific proppant yield, formation pressure, permeability of the remote bottomhole zone and skin effect. Based on the developed model, prospective production wells of the Moskud’inskoye field are identified for proppant hydraulic fracturing.

How to cite: Votinov A.S., Seredin V.V., Kolychev I.Y., Galkin S.V. Possibilities of accounting the fracturing of Kashiro-Vereyskian carbonate objects in planning of proppant hydraulic fracturing // Journal of Mining Institute. 2021. Vol. 252. p. 861-871. DOI: 10.31897/PMI.2021.6.8
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2020-12-24
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Natural gas methane number and its influence on the gas engine working process efficiency

Article preview

The natural gas usage as a vehicle fuel in the mining industry is one of the priority tasks of the state. The article pays special attention to the component composition of natural gas from the point of view of its thermal efficiency during combustion in the combustion chamber of a power plant on a heavy-duty vehicle in difficult quarry conditions. For this, domestic and foreign methods for determining the main indicator characterizing the knock resistance of fuel in the combustion process – the methane number – are considered. Improvement of technical and economic indicators will be carried out by changing the composition of the gas mixture based on methane to fit the design features of the gas power plant, the methane number will be the determining indicator. A theoretical analysis of the influence of the methane number on such engine parameters as the compression ratio and the maximum speed of the flame front propagation in the second phase of combustion in the engine cylinder, expressed through the angle of rotation of the crankshaft, is presented. Based on the results of theoretical and experimental studies, the dependences of the influence of the methane number on the efficiency of the working process of the engine and its external speed characteristic were obtained.

How to cite: Didmanidze O.N., Afanasev A.S., Khakimov R.T. Natural gas methane number and its influence on the gas engine working process efficiency // Journal of Mining Institute. 2021. Vol. 251. p. 730-737. DOI: 10.31897/PMI.2021.5.12
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-11
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Comprehensive assessment and analysis of the oil and gas potential of Meso-Cenozoic sediments in the North Caucasus

Article preview

At the present stage, the development of the oil and gas industry in the Russian Federation is impossible without replenishing the raw material base, so the urgent task is to conduct investigations, prospecting and evaluation of oil and gas bearing capacity prospects in undiscovered areas. The purpose of the investigations is to analyze facies and thicknesses, choose the methodology of prospecting and exploration in reservoirs, make a comprehensive assessment of oil and gas bearing capacity prospects based on experimental investigations and construct a map of oil and gas bearing capacity prospects of the studied sediment structure. The methodology of the conducted investigations was to identify and trace zones of increased fracturing by qualitative interpretation of time seismic sections. Methods for qualitative interpretation of time seismic sections, the model of physical, chemical and geochemical criteria developed by I.A.Burlakov, gas and geochemical surveying and correlation analysis were used in the investigations. A number of prospecting criteria, established based on the analysis of reference seismic materials on well-studied areas in comparison with the results of well tests, were also used. Structural plan for forecast prospects of oil and gas bearing capacity in the studied area was made; zonal and local objects with prospects for oil and gas were identified. Graphical plotting of Eh and pH concentrations distribution and various gas and geochemical indicators allowed identifying zones of possible oil and gas accumulations and starting their detailed survey. Processing of gas and geochemical materials by means of software allowed efficient assessment of prospects for oil and gas bearing capacity of the investigated objects.

How to cite: Bosikov I.I., Мaier A.V. Comprehensive assessment and analysis of the oil and gas potential of Meso-Cenozoic sediments in the North Caucasus // Journal of Mining Institute. 2021. Vol. 251. p. 648-657. DOI: 10.31897/PMI.2021.5.4
Geoeconomics and Management
  • Date submitted
    2020-07-29
  • Date accepted
    2021-03-29
  • Date published
    2021-09-20

Critical analysis of methodological approaches to assessing sustainability of arctic oil and gas projects

Article preview

Development of hydrocarbon resources in the Arctic is one of the priority tasks for the economy of the Russian Federation; however, such projects are associated with significant risks for the environment of nearby regions. Large-scale development of hydrocarbon resources in the Arctic should be based on the principles of sustainable development, which imply a balance between socio-economic benefits and environmental risks. The purpose of this study is to analyze the gaps in scientific knowledge on the issues of assessing sustainability of Arctic oil and gas projects (OGPs) and systematize the key problematic elements of such assessments. The analysis was carried out in terms of four key elements that determine the feasibility of implementing Arctic OGPs in the context of sustainable development: economic efficiency, social effects, environmental safety and technological availability. The methodology for conducting bibliometric analysis, which included more than 15.227 sources from the Scopus database over the period of 2005-2020, was based on PRISMA recommendations for compiling systematic reviews and meta-analyses. Methodological problems of assessing sustainability of Arctic OGPs were mapped and divided into four key sectors: consideration of factors that determine sustainability; sustainability assessment; interpretation of assessment results; sustainability management. This map can serve as a basis for conducting a series of point studies, aimed at eliminating existing methodological shortcomings of the sustainable development concept with respect to Arctic OGPs.

How to cite: Cherepovitsyn A.E., Tcvetkov P.S., Evseeva O.O. Critical analysis of methodological approaches to assessing sustainability of arctic oil and gas projects // Journal of Mining Institute. 2021. Vol. 249. p. 463-479. DOI: 10.31897/PMI.2021.3.15