Submit an Article
Become a reviewer
Chenyang Zhou
Chenyang Zhou
Associate Professor, Ph.D., Dr.Sci., Associate Professor
Key Laboratory of Coal Processing and Efficient Clean Utilization of Ministry of Education, China University of Mining and Technology
Associate Professor, Ph.D., Dr.Sci., Associate Professor
Key Laboratory of Coal Processing and Efficient Clean Utilization of Ministry of Education, China University of Mining and Technology
Xuzhou
China

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-01-16
  • Date accepted
    2023-06-20
  • Date published
    2024-04-25

Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan

Article preview

Coal is one of the world's most important energy substances. China is rich in coal resources, accounting for more than 90 % of all ascertained fossil energy reserves. The consumption share of coal energy reaches 56.5 % in 2021. Due to the high moisture content of low-rank coal, it is easy to cause equipment blockage in the dry sorting process. This paper considers low-rank coal coming from Inner Mongolia (NM samples) and Yunnan (YN samples). The weight loss performance of the samples was analyzed using thermogravimetric experiments to determine the appropriate temperature for drying experiments. Thin-layer drying experiments were carried out at different temperature conditions. The drying characteristics of low-rank coal were that the higher the drying temperature, the shorter the drying completion time; the smaller the particle size, the shorter the drying completion time. The effective moisture diffusion coefficient was fitted using the Arrhenius equation. The effective water diffusion coefficient of NM samples was 5.07·10–11 - 9.58·10–11 m2/s. The effective water diffusion coefficients of the three different particle sizes of YN samples were 1.89·10–11 - 4.92·10–11 (–1 mm), 1.38·10–10 - 4.13·10–10 (1-3 mm), 5.26·10–10 - 1.49·10–9 (3-6 mm). The activation energy of Inner Mongolia lignite was 10.97 kJ/mol (–1 mm). The activation energies of Yunnan lignite with different particle sizes were 17.97 kJ/mol (–1 mm), 33.52 kJ/mol (1-3 mm), and 38.64 kJ/mol (3-6 mm). The drying process was simulated using empirical and semi-empirical formulas. The optimal model for Inner Mongolia samples was the Two-term diffusion model, and Yunnan samples were the Hii equation was used.

How to cite: Wang C., Wang D., Chen Z., Duan C., Zhou C. Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan // Journal of Mining Institute. 2024. Vol. 266. p. 326-338. EDN XMIQWH