Submit an Article
Become a reviewer

Normalized impulse response testing in underground constructions monitoring

Authors:
Aleksei A. Churkin1
Vladimir V. Kapustin2
Mikhail S. Pleshko3
About authors
  • 1 — Ph.D. Senior Researcher Gersevanov Research Institute of Bases and Underground Structures ▪ Orcid
  • 2 — Ph.D. Junior Researcher Lomonosov Moscow State University ▪ Orcid
  • 3 — Ph.D., Dr.Sci. Professor National University of Science and Technology “MISiS” ▪ Orcid
Date submitted:
2023-07-27
Date accepted:
2024-06-03
Online publication date:
2024-08-01

Abstract

Impulse Response testing is a widespread geophysical technique of monolithic plate-like structures (foundation slabs, tunnel lining, and supports for vertical, inclined and horizontal mine shafts, retaining walls) contact state and grouting quality evaluation. Novel approach to data processing based on normalized response attributes analysis is presented. It is proposed to use the energy of the normalized signal calculated in the time domain and the normalized spectrum area and the average-weighted frequency calculated in the frequency domain as informative parameters of the signal. The proposed technique allows users a rapid and robust evaluation of underground structure’s grouting or contact state quality. The advantage of this approach is the possibility of using geophysical equipment designed for low strain impact testing of piles length and integrity to collect data. Experimental study has been carried out on the application of the technique in examining a tunnel lining physical model with a known position of the loose contact area. As examples of the application of the methodology, the results of the several monolitic structures of operating municipal and transport infrastructure underground structures survey are presented. The applicability of the technique for examining the grouting of the tunnel lining and the control of injection under the foundation slabs is confirmed. For data interpretation the modified three-sigma criteria and the joint analysis of the attribute’s behavior were successfully used. The features of the field work methodology, data collection and analysis are discussed in detail. Approaches to the techniques' development and its application in the framework of underground constructions monitoring are outlined. The issues arising during acoustic examination of reinforced concrete plate-like structures are outlined.

Keywords:
nondestructive testing technical geophysics impulse response testing underground constructions soil-structure contact state grouting quality void detection attribute analysis
Online First

References

  1. Плешко М.С., Плешко М.В., Войнов И.В. Оценка технического состояния железнодорожных тоннелей с большим сроком эксплуатации // Горный информационно-аналитический бюллетень. 2018. № 1. С. 34-40. DOI: 10.25018/0236-1493-2018-1-0-34-40
  2. Prokopov A., Prokopova M., Rubtsova Y. The experience of strengthening subsidence of the soil under the existing building in the city of Rostov-on-Don // MATEC Web of Conferences. 2017. Vol. 106. № 02001. DOI: 10.1051/matecconf/201710602001
  3. Wuzhou Zhai, David Chapman, Dongming Zhang, Hongwei Huang. Experimental study on the effectiveness of strengthening over-deformed segmental tunnel lining by steel plates // Tunnelling and Underground Space Technology. 2020. Vol. 104. № 103530. DOI: 10.1016/j.tust.2020.103530
  4. Zhi-Feng Wang, Wen-Chieh Cheng, Ya-Qiong Wang. Quantitative Evaluation of Ground Movements Caused by Grouting during Shield Tunnelling in Clay // Advances in Civil Engineering. 2019. Vol. 2019. № 7498367. DOI: 10.1155/2019/7498367
  5. James C. Ni, Wen-Chieh Cheng. Trial Grouting under Rigid Pavement: A Case History in Magong Airport, Penghu // Journal of Testing and Evaluation. 2012. Vol. 40. Iss. 1. P. 107-118. DOI: 10.1520/JTE103776
  6. Qing Yu, Kexin Yin, Jinrong Ma, Hideki Shimada. Vertical Shaft Support Improvement Studies by Strata Grouting at Aquifer Zone // Advances in Civil Engineering. 2018. Vol. 2018. № 5365987. DOI: 10.1155/2018/5365987
  7. João Ricardo Marques Conde Da Silva. Use of cement based grouts in the rehabilitation of concrete dams: a review / 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, 27-29 August 2019, Potsdam, Germany. e-Journal of Nondestructive Testing. 2020. Vol. 25 (1). 8 p.
  8. Cardarelli E., Marrone C., Orlando L. Evaluation of tunnel stability using integrated geophysical methods // Journal of Applied Geophysics. 2003. Vol. 52. Iss. 2-3. P. 93-102. DOI: 10.1016/S0926-9851(02)00242-2
  9. Davis A.G., Lim M.K., Petersen C.G. Rapid and economical evaluation of concrete tunnel linings with impulse response and impulse radar non-destructive methods // NDT & E International. 2005. Vol. 38, Iss. 3. P. 181-186. DOI: 10.1016/j.ndteint.2004.03.011
  10. Hertlein B., Davis A. Nondestructive Testing of Deep Foundations. John Wiley & Sons, 2006. 296 p. DOI: 10.1002/0470034831
  11. Капустин В.В., Владов М.Л. Техническая геофизика. Методы и задачи // Геотехника. 2020. Т. XII. № 4. С. 72-85. DOI: 10.25296/2221-5514-2020-12-4-72-85
  12. Sheng Zhang, Wenchao He, Yongsuo Li, Yuchi Zou. Thickness Identification of Tunnel Lining Structure by Time–Energy Density Analysis Based on Wavelet Transform // Journal of Engineering Science and Technology Review. 2019. Vol. 12. Iss. 4. P. 28-37. DOI: 10.25103/jestr.124.04
  13. Kravitz B., Mooney M., Karlovsek J. et al. Void detection in two-component annulus grout behind a pre-cast segmental tunnel liner using Ground Penetrating Radar // Tunnelling and Underground Space Technology. 2019. Vol. 83. P. 381-392. DOI: 10.1016/j.tust.2018.09.032
  14. Ming Peng, Dengyi Wang, Liu Liu et al. Recent Advances in the GPR Detection of Grouting Defects behind Shield Tunnel Segments // Remote Sensing. 2021. Vol. 13. Iss. 22. № 4596. DOI: 10.3390/rs13224596
  15. Набатов В.В., Гайсин Р.М. Обработка данных георадиолокационной съемки при выявлении полостей в заобделочном пространстве // Горный информационно-аналитический бюллетень. 2018. № 1. С. 19-25. DOI: 10.25018/0236-1493-2018-1-0-19-25
  16. Hui Qin, Yu Tang, Zhengzheng Wang et al. Shield tunnel grouting layer estimation using sliding window probabilistic inversion of GPR data // Tunnelling and Underground Space Technology. 2021. Vol. 112. № 103913. DOI: 10.1016/j.tust.2021.103913
  17. White J.B., Wieghaus K.T., Karthik M.M. et al. Nondestructive Testing Methods for Underwater Tunnel Linings: Practical Application at Chesapeake Channel Tunnel // Journal of Infrastructure Systems. 2017. Vol. 23. Iss. 3. 4 p. DOI: 10.1061/(ASCE)IS.1943-555X.0000350
  18. Zatar W.A., Nguyen H.D., Nghiem H.M. Ultrasonic pitch and catch technique for non-destructive testing of reinforced concrete slabs // Journal of Infrastructure Preservation and Resilience. 2020. Vol. 1. № 12. DOI: 10.1186/s43065-020-00012-z
  19. Chia-Chi Cheng, Chih-peng Yu, Jiunn-Hong Wu et al. Evaluating the integrity of the reinforced concrete structure repaired by epoxy injection using simulated transfer function of impact-echo response / 40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing, 21-26 July 2013, Baltimore, MD, USA. AIP Conference Proceedings, 2014. Vol. 1581. Iss. 1. P. 836-843. DOI: 10.1063/1.4864908
  20. Bahati P.A., Le V.D., Lim Y. An impact echo method to detect cavities between railway track slabs and soil foundation // Journal of Engineering and Applied Science. 2021. Vol. 68. № 7. DOI: 10.1186/s44147-021-00008-w
  21. Shokouhi P., Wöstmann J., Schneider G. et al. Nondestructive Detection of Delamination in Concrete Slabs: Multiple-Method Investigation // Transportation Research Record: Journal of the Transportation Research Board. 2011. Vol. 2251. Iss. 1. P. 103-113. DOI: 10.3141/2251-11
  22. Sadowski Ł. Multi-Scale Evaluation of the Interphase Zone between the Overlay and Concrete Substrate: Methods and Descriptors // Applied Sciences. 2017. Vol. 7. Iss. 9. № 893. DOI: 10.3390/app7090893
  23. Terzioglu T., Karthik M.M., Hurlebaus S. et al. Nondestructive evaluation of grout defects in internal tendons of post-tensioned girders // NDT & E International. 2018. Vol. 99. P. 23-35. DOI: 10.1016/j.ndteint.2018.05.013
  24. Hai-xiang Tang, Shi-guo Long, Ting Li. Quantitative evaluation of tunnel lining voids by acoustic spectrum analysis // Construction and Building Materials. 2019. Vol. 228. № 116762. DOI: 10.1016/j.conbuildmat.2019.116762
  25. Hendricks L.J., Baxter J.S., Chou Y. et al. High-Speed Acoustic Impact-Echo Sounding of Concrete Bridge Decks // Journal of Nondestructive Evaluation. 2020. Vol. 39. Iss. 3. № 58. DOI: 10.1007/s10921-020-00695-0
  26. Чуркин А.А., Хмельницкий А.Ю., Капустин В.В. Оценка условий контакта конструкций с грунтовым массивом по атрибутам нормированного акустического отклика // Основания, фундаменты и механика грунтов. 2022. № 5. С. 17-21.
  27. Konishi S., Kawakami K., Taguchi M. Inspection Method with Infrared Thermometry for Detect Void in Subway Tunnel Lining // Procedia Engineering. 2016. Vol. 165. P. 474-483. DOI: 10.1016/j.proeng.2016.11.723
  28. Jong-Ho Shin, Yong-Seok Shin, Jong-Ryeo Yoon, Ho-Jong Kim. A Study on leakage monitoring of tunnel linings using the electric resistivity survey // Journal of Korean Tunnelling and Underground Space Association. 2008. Vol. 10. № 3. P. 257-267.
  29. Kumar J., Gohil R.R. Non-destructive testing of slab-like structures including pavements using Lamb and Rayleigh waves-based dispersion analysis // International Journal of Pavement Engineering. 2023. Vol. 24. Iss. 1. № 2180147. DOI: 10.1080/10298436.2023.2180147
  30. Tremblay S.-P., Mhenni A., Karray M. et al. Non-intrusive Characterization of Shallow Soils and Utility Structures Below Pavements Using Rayleigh Waves // Pure and Applied Geophysics. 2020. Vol. 177. Iss. 2. P. 737-762. DOI: 10.1007/s00024-019-02333-x
  31. Goel A. Applicability of SASW method for subsurface structural evaluation of layered asphalt pavements / NDE 2017 Conference & Exhibition of the society for NDT (ISNT), 14-16 December 2017, Chennai, T.N., India. e-Journal of Nondestructive Testing, 2018. 8 p.
  32. Azari H., Yuan D., Nazarian S., Gucunski N. Sonic Methods to Detect Delamination in Concrete Bridge Decks: Impact of Testing Configuration and Data Analysis Approach // Transportation Research Record: Journal of the Transportation Research Board. 2012. Vol. 2292. Iss. 1. P. 113-124. DOI: 10.3141/2292-14
  33. Cao R., Ma M., Liang R., Niu C. Detecting the Void behind the Tunnel Lining by Impact-Echo Methods with Different Signal Analysis Approaches // Applied Sciences. 2019. Vol. 9. Iss. 9. № 3280. DOI: 10.3390/app9163280
  34. Chaudhary M.T.A. Effectiveness of Impact Echo testing in detecting flaws in prestressed concrete slabs // Construction and Building Materials. 2013. Vol. 47. P. 753-759. DOI: 10.1016/j.conbuildmat.2013.05.021
  35. Solodov I., Bai J., Bekgulyan S., Busse G. A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation // Applied Physics Letters. 2011. Vol. 99. Iss. 21. № 211911. DOI: 10.1063/1.3663872
  36. Sajid S., Chouinard L. Impulse response test for condition assessment of concrete: A review // Construction and Building Materials. 2019. Vol. 211. P. 317-328. DOI: 10.1016/j.conbuildmat.2019.03.174
  37. Ottosen N.S., Ristinmaa M., Davis A.G. Theoretical Interpretation of Impulse Response Tests of Embedded Concrete Structures // Journal of Engineering Mechanics. 2004. Vol. 130. Iss. 9. P. 1062-1071. DOI: 10.1061/(ASCE)0733-9399(2004)130:9(1062)
  38. Voznesenskii A.S., Nabatov V.V. Identification of filler type in cavities behind tunnel linings during a subway tunnel surveys using the impulse-response method // Tunnelling and Underground Space Technology. 2017. Vol. 70. P. 254-261. DOI: 10.1016/J.TUST.2017.07.010
  39. Шмурак Д.В., Чуркин А.А., Лозовский И.Н., Жостков Р.А. Спектральный анализ данных параллельного сейсмического метода обследования подземных конструкций // Известия Российской академии наук. Серия физическая. 2022. Т. 86. № 1. С. 116-121. DOI: 10.31857/S0367676522010252
  40. Чуркин А.А., Лозовский И.Н., Володин Г.В., Жостков Р.А. Оценка качества контакта «плита-грунт» сейсмоакустическим методом: результаты численного моделирования // Основания, фундаменты и механика грунтов. 2024. № 1. С. 27-31.
  41. Hafiz A., Schumacher T., Raad A. A self-referencing non-destructive test method to detect damage in reinforced concrete bridge decks using nonlinear vibration response characteristics // Construction and Building Materials. 2022. Vol. 318. № 125924. DOI: 10.1016/j.conbuildmat.2021.125924
  42. Sajid S., Chouinard L., Carino N. Condition assessment of concrete plates using impulse-response test with affinity propagation and homoscedasticity // Mechanical Systems and Signal Processing. 2022. Vol. 178. № 109289. DOI: 10.1016/j.ymssp.2022.109289

Similar articles

Geochemical studies of rocks of the Siberian igneous province and their role in the formation theory of unique platinum-copper-nickel deposits
2024 Nadezhda А. Krivolutskaya
Substantiation of the optimal performance parameters for a quarry during the stage-wise development of steeply dipping ore deposits
2022 Sergey I. Fomin, Maxim P. Ovsyannikov
A new formula for calculating the required thickness of the frozen wall based on the strength criterion
2024 Mikhail А. Semin, Lev Yu. Levin
M1 formation tectono-structural features and gas-oil potential within Archinskaya area Paleozoic basement (Western Siberia)
2024 Mikhail O. Korovin
Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method
2024 Binh Van Duong, Igor K. Fomenko, Kien Trung Nguyen, Oleg Vladimirovich Zerkal, Olga N. Sirotkina, Dang Hong Vu
Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities
2024 Ivan S. Tokarev