-
Date submitted2024-05-15
-
Date accepted2024-11-07
-
Date published2025-04-14
Metacarbonate rocks of the Paleoproterozoic Khapchan series (southeastern part of the Anabar Shield): mineral and chemical composition, metamorphic conditions
The mineral composition of metacarbonate rocks (silicate marbles and carbonate-silicate rocks) of the Khapchan series (southeastern part of the Anabar Shield) was studied, and the PT (pressure and temperature)-parameters of their formation were established. Silicate marbles contain calcite, dolomite, forsterite, clinohumite, spinel, enstatite, diopside, pargasite, meionite, phlogopite, and feldspars. Carbonate-silicate rocks are composed of calcite, quartz, feldspars, diopside, grossular, marialite, and vesuvianite. Carbonate-silicate rocks are significantly enriched in SiO2, Al2O3, FeO, Na2O, K2O, TiO2 and contain less MgO, CaO than silicate marbles. A difference was revealed in PT-parameters determined for silicate marbles (temperatures 700-900 °C and pressure no more than 8 kbar) and for carbonate-silicate rocks (temperatures 680-820 °C, pressures 8-15 kbar). Silicate marbles have a primary sedimentary nature, as evidenced by their rare-element composition and the presence of fragments of host terrigenous rocks. There is no doubt about the primary sedimentary nature of carbonate-silicate rocks, which are very similar in REE distribution spectra and in rare-element composition to silicate marbles. A number of features indicate that metacarbonate rocks have undergone metasomatic alteration. Thus, in silicate marbles, reaction rims are observed around orthopyroxene, forsterite, potassium feldspar, as well as quartz veins bordered by accumulations of phlogopite, feldspars, and diopside. In carbonate-silicate rocks, the development of secondary marialite on potassium feldspar has been established; the rare-element composition of garnet may indicate its metasomatic origin.
-
Date submitted2024-06-04
-
Date accepted2025-01-28
-
Date published2025-04-04
Impact of dry and wet magnetic separator process parameters on iron oxide removal from Egyptian feldspar ore
The demand for feldspar as a raw material in the ceramic industry is continuously increasing. Feldspar is abundant in the Earth's crust and typically found alongside other silicate minerals, as well as titanium and iron oxides. This study aims to reduce the iron oxide content in feldspar ore from the Wadi Zirib region and achieve an optimal grade of feldspar concentrate for various industrial uses. The research involved dry and wet magnetic separation techniques followed by leaching with oxalic and citric acids to minimize iron impurities and enhance optical properties. The factors affecting the dry magnetic separation, for feldspar size of –250+45 µm, were optimized using the Box – Behnken factorial design and a non-magnetic concentrate with 0.29 % Fe2O3 and an 92.19 % feldspar yield was obtained. The wet magnetic separation for feldspar fines of size –45 µm was optimized and a concentrate with 0.27 % Fe2O3 was achieved. The acid leaching was conducted on the non-magnetic feldspar concentrates using oxalic and citric acid. Oxalic acid was more successful in reducing iron oxide of dry (to 0.19 %) and wet (to 0.12 %) non-magnetic feldspar concentrates. The optical properties of the leached concentrates were improved compared to the original sample, as the whiteness improved up to 90 %.
-
Date submitted2023-12-15
-
Date accepted2024-06-13
-
Date published2025-02-25
Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation
The results of the study of the functioning of the developed thickening equipment as part of the stowing complex for the formation of a flow of high-concentration hydromixture are presented. To explain the operation of the hydrotransport system of the stowing complex, equipped with a thickener of the developed design, its basic diagram is presented. A mathematical model has been created that describes the mechanism of inertial sedimentation of a solid component of a hydraulic mixture in a working chamber equipped with hydrodynamic profiles. Interaction with the profile leads to flow stratification due to a change in the trajectory of movement and a decrease in speed. The interval of rational velocity of primary pulp entering the input of the working chamber of the inertial thickener is substantiated. The synthesis of solutions of the thickening process model is performed in the COMSOL Multiphysics and Ansys Fluent programs. This made it possible to eliminate physical contradictions in the operation of the equipment and justify the overall dimensions of its main elements, ensuring the implementation of the mechanism of inertial sedimentation of the slurry. It was found that the concentration of the thickened flow at the outlet branch pipe of the thickener working chamber is determined by the level of the primary hydraulic fluid velocity, the characteristic length of the section of interaction with the deflecting profile, and the ratio of the flow and attack angles. A nomogram of the dynamics of the change in the hydraulic fluid concentration in the section of the outlet branch pipe depending on the ratios of the overall dimensions of the deflecting profile of the working chamber was compiled. The results of the study allowed formulating recommendations for selecting the dimensions of the thickener's deflecting hydrodynamic profile to form a flow of hydraulic mixture with a concentration of about 50 % by weight. The developed equipment can be used in a stowage complex and will increase the range of supply of the stowage mixture. This is due to the fact that a flow of primary slurry with a low concentration, due to lower pressure losses, can be moved in a pipeline system over a greater distance than a flow with a high filler content. The use of a thickener at the final stage of transportation is intended to increase the concentration of the hydraulic mixture immediately before production.
-
Date submitted2024-03-18
-
Date accepted2024-11-07
-
Date published2025-04-25
Public-private partnership in the mineral resources sector of Russia: how to implement the classical model?
A comparative financial and economic analysis is conducted of different public-private partnership (PPP) models for industrial infrastructure construction projects in an underdeveloped resource-rich region. The Stackelberg game theory-based model is used to build a parametrized family of bilevel mathematical programming models that describe an entire spectrum of partnership schemes. This approach enables a comparison of different strategies for the distribution of infrastructure investments between the government and the subsoil user and hence a scenario of transformation of Russia’s current PPP scheme into the classical partnership model, which is practiced in developed economies. To this end, a database is created on fifty polymetallic deposits in Transbaikalia, and a comparative analysis is conducted of Stackelberg equilibrium development programs that implement different PPP models. The numerical experiment results show the classical PPP model to be most effective in the case of a budget deficit. The analysis helps assess the economic consequences of a gradual transformation of the partnership institution in industrial infrastructure construction from investor support in the Russian model to government support in the classical scheme. Intermediate partnership models, which act as a transitional institution, help reduce the budget burden. These models can be implemented by clustering the deposits, developing subsoil user consortia, and practicing shared construction of necessary transport and energy infrastructure. The intensification of horizontal connections between subsoil users creates favorable conditions for additional effects from the consolidation of resources and can serve as a foundation for a practical partnership scheme within the framework of the classical model.
-
Date submitted2024-04-24
-
Date accepted2024-09-24
-
Date published2024-11-12
Study and justification of the combination of beneficiation processes for obtaining flake graphite from technogenic carbon-containing dusts
The most important task of modern production development is to provide the mineral and raw materials sector of the economy with resources included in the list of strategic raw materials, including flake graphite. In addition to natural raw materials, the source of its obtaining can be metallurgical production wastes not involved in processing. Development of metallurgical dust beneficiation technology will solve the problem of obtaining high-purity flake graphite with a crystal structure close to ideal and in demand in the production of high-tech materials. It will allow creating a renewable raw material base of graphite and utilising metallurgical production wastes. The research included the study of dust beneficiation by coarseness, magnetic and flotation methods, the influence of dust disintegration processes on beneficiation indicators. Based on the established technological properties of the components of dusts, magnetic, flotation and gravity beneficiation methods can be applied for their separation in different sequence. It is shown that dusts from different sites have different enrichability by these methods, and it should be taken into account when developing a complex technology of their processing. The degree of beneficiation increases in a row of dusts from the blast furnace shop (BF) – electric steel smelting shop (ESS) – oxygen-converter shop (OCS). The method of grinding has a significant influence on the separation indicators – at dry grinding in a centrifugal-impact mill with subsequent pneumatic classification the quality of graphite concentrates increases by 22.7 % of carbon for BF dust and by 13.48 % of carbon for ESS dust. OCS dust beneficiation indicators are high at coarse grinding with steel medium – mass fraction of carbon 96.1 %.
-
Date submitted2023-09-08
-
Date accepted2024-06-03
-
Date published2024-12-25
Modern approaches to barium ore benefication
Barite is one of the critically important minerals in several industries, including the fuel and energy, nuclear, and medical sectors. For decades, its extraction did not require any complex techniques; however, with the depletion of rich barite-bearing veins around the world, the circumstances have changed. While the demand for barite is growing widely, it is necessary to optimize and improve the existing methods for benefication of barite and barite-containing ores, and create new approaches to extracting this mineral, as well as develop technogenic barite deposits accumulated in large quantities during the previous ore production. Dumps and tailings often demonstrate high barite content, while new mining technologies make its extraction cost-efficient. Russian and foreign papers of the last 14 years provide data on the current state of primary and technogenic deposits, areas of barite use and the approaches employed for its benefication. Considering the expansion of the range of barite applications, the growing need for the mineral in the oil and gas industry and the difficulties in developing new barite deposits in Russia, the importance of new approaches to the enrichment of ore tailings in polymetallic deposits is revealed.
-
Date submitted2024-01-18
-
Date accepted2024-05-02
-
Date published2024-12-25
Industrial clusters as an organizational model for the development of Russia petrochemical industry
The article explores the challenges facing Russia petrochemical industry over the past decade and examines the reasons behind its significant lag compared to other industrialized nations. It presents a review of academic research on clusters accompanied by a comparative analysis, generalization, and consolidation of factors influencing the development of the petrochemical industry in Russia. It is argued that advancing the petrochemical industry from production plants to integrated production complexes necessitates a shift towards clustering, which will improve resource utilization efficiency, bolster product competitiveness, and reduce production costs. The article examines and consolidates key cluster concepts, encompassing definitions, characteristics, composition, and constituent elements. It also examines strategic documents guiding the development of the petrochemical sector, assesses the progress made in forming petrochemical clusters in Russia, and draws upon European and Asian experiences and government support tools in the domain of petrochemical clusters. The successful development of petrochemical clusters in Russia is argued to be strongly dependent on state initiatives and support for infrastructure development. Additionally, the presence of research organizations within clusters is crucial for fostering high-tech product innovation and forming an efficient value chain that integrates research and development with specific assets. When establishing petrochemical clusters in Russia, it is essential to consider the unique characteristics of each cluster, including the types of raw materials and resources used, the necessary infrastructure, and the specific support measures and incentives provided by the state.
-
Date submitted2023-04-10
-
Date accepted2024-12-27
-
Date published2024-04-25
Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure
The selection of efficient drilling and blasting technology to achieve the required particle size distribution of blasted rock mass and reduce ore dilution is directly related to the accurate definition of rock mass properties. The zoning of the rock massif by its hardness, drillability and blastability does not consider the variability of the geological structure of the block for blasting, resulting in an overestimated specific consumption of explosives. The decision of this task is particularly urgent for enterprises developing deposits with a high degree of variability of geological structure, for example, at alluvial deposits. Explosives overconsumption causes non-optimal granulometric composition of the blasted rock mass for the given conditions and mining technology. It is required to define physical and mechanical properties of rocks at deposits with complex geological structure at each block prepared for blasting. The correlation between the physical and mechanical properties of these rocks and drilling parameters should be used for calculation. The relation determined by the developed method was verified in industrial conditions, and the granulometric composition of the blasted rock mass was measured by an indirect method based on excavator productivity. The results demonstrated an increase in excavation productivity, thus indicating the accuracy of given approach to the task of identifying the rocks of the blasted block.
-
Date submitted2021-01-21
-
Date accepted2023-09-20
-
Date published2023-12-25
Adaptation of transient well test results
Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.
-
Date submitted2023-04-29
-
Date accepted2023-10-11
-
Date published2023-10-27
Pink-violet diamonds from the Lomonosov mine: morphology, spectroscopy, nature of colour
The article presents the results of the first comprehensive study of mineralogical and spectroscopic (IR, PL, EPR) characteristics of diamonds from the Lomonosov mine (Arkhangelskaya pipe) with a unique pink, pink-violet colour. It is shown that all crystals belong to the IaA type, with a total nitrogen content in the range of 500-1500 ppm, with a low degree of aggregation. The colour is heterogeneous, concentrated in narrow twin layers. It is presumably caused by the previously described M2 centres. The colour shade is affected by the content of P1 paramagnetic centres (C-defect). A positive correlation is observed between the colour saturation and the intensity of W7 paramagnetic centres. A convergent model of the formation of pink diamonds is assumed, according to which the determining factors are the ratio and concentration of structural impurities in the diamond, its thermal history, and conditions of plastic deformation, and not the origin of the diamond and the petrochemical properties of its host rocks.
-
Date submitted2022-09-30
-
Date accepted2023-02-13
-
Date published2024-02-29
Improving the efficiency of oil vapor recovery units in the commodity transport operations at oil terminals
- Authors:
- Vladimir V. Pshenin
- Gulnur S. Zakirova
In this paper the problem of losses from evaporation of light fractions of hydrocarbons during loading operations of tanker fleets vessels is considered. It was found that there is no unified approach to modeling the system “tanker – gas phase pipeline – vapor recovery units” in open sources. The absence of a generally recognized model makes it impossible to scientifically justify the application of instruments to reducing losses and the development of corresponding measures. In work it is showed that the dynamics of growth of pressure in the inner tanker capacity is described by a differential equation, considering for non-stationary essence of the process. This equation is converted to a non-dimensional form and investigated in relation to the similarity criteria of this system. This research has allowed to establish unambiguously the general character of pressure changes in the inner tanker capacity, and to predict the peak values of its growth at the initial stage of the loading operation. The obtained equations were tested on real tanker loading data and showed satisfactory convergence with the experimental data. At different stages of the loading opera-tion the component composition of vapor changes, which is shown by chromatographic analysis of the gas mixture. With the availability of a model of hydrocarbon vapor displacement from the inner of tanker, it is possible to propose measures to minimize the negative impact on the environment and return valuable vapors of the product to the technological chain of transportation.
-
Date submitted2022-10-29
-
Date accepted2023-02-13
-
Date published2023-04-25
The use of unmanned aerial photography for interpreting the technogenic transformation of the natural environment during the oilfield operation
The traditional approach to monitoring observations of the technogenic processes development in oilfields, which consists in determining the concentration of marker pollutants in various natural environments, does not provide the necessary completeness of information and the efficiency of its receipt. The paper considers an example of expanding the range of observations due to unmanned aerial photography and a number of other methods. Interpretation signs (for panchromatic survey) were determined that register such consequences of technogenic transformation of the natural environment as mechanogenesis, bitumization, and halogenesis. Technogenic mechanogenesis is understood as a physical violation of the integrity of ecosystems, the movement of soils and grounds. Bitumization is expressed in the migration of petroleum hydrocarbons through soils, ground, surface, subsurface, and underground waters, and their destruction. Salt migration in these media is defined as halogenesis. The most reliable indicators are linearly elongated areas of dead forests, dark red spots in drying microdepressions and reservoirs. It was found out that the oilfield impact on the raised bog leads to anthropogenic eutrophication, the introduction of plant species, uncharacteristic coenotic groups, the replacement of subshrubs with grasses, and morphometric changes in forest pine. In the peat deposits of the disturbed area, an unusual interlayer of whitish, undecomposed moss was recorded. The moment of the beginning of a pronounced technogenic transformation was registered in the course of work with the archive of multispectral space images. Continuous remote sensing with the help of unmanned aerial photography and interpretation by sedimentological, geobotanical methods significantly expand the possibilities of studying the technogenic transformation of the natural environment. To ensure environmental safety, it is advisable to develop remote methods and technologies to include them in the environmental monitoring system.
-
Date submitted2022-06-28
-
Date accepted2023-01-19
-
Date published2023-02-27
Influence of mining rent on the efficiency of using natural potential: the paradox of plenty and its Russian specifics
- Authors:
- Arunas A. Lapinskas
The most powerful potential of Russia's natural resources is only partially realized, and determining the reasons for the insufficient efficiency of its use is a current research topic. The exploitation of mineral resources that bring mining rent (primarily oil and gas) gives rise to the so-called “paradox of plenty” (PP), which in some cases manifests itself as a significant slowdown in economic development. The purpose of the article is to clarify the signs, degree and forms of PP manifestation and related problems (“resource curse”, “oil curse”, etc.) in the Russian economy. Since the causes of these phenomena are usually associated with rent extraction and peculiarities of the institutional structure of the economy, the works of leading economists who support the theories of “rent-oriented behavior” and the role of public institutions in the process of the PP emergence were critically analyzed. To determine the signs and degree of PP manifestation and related problems, an analysis of determining the shares of oil and gas in the structure of exports, revenues from their sale in the federal budget, and oil and gas products in the structure of GDP, was made. It is concluded that there are no sufficient grounds for ascertaining clear signs of a “rent-oriented” Russian economy and a “resource curse”; important counteracting factors that refute the unambiguous conclusions about the high degree of PP impact on the Russian economy were identified. The author's interpretation of the role of public institutions, the factors of formation and forms of PP manifestation, the specifics of differential mining rent and its role in the formation of PP are proposed; options for solving problems generated by PP – directions for improving the tax system in the field of oil and gas, etc.; substantiation of the need to develop a strategic state program for diversifying the sectoral structure of the Russian economy; directions for adjusting economic policy in the field of oil and gas industry development, etc.
-
Date submitted2022-05-12
-
Date accepted2022-11-17
-
Date published2023-04-25
Microbiological remediation of oil-contaminated soils
- Authors:
- Irina D. Sozina
- Aleksandr S. Danilov
Microbiological remediation is a promising technology for the elimination of environmental contamination by oil and petroleum products, based on the use of the metabolic potential of microorganisms. The issue of environmental contamination by crude oil and its refined products is relevant in the Russian Federation since the oil industry is one of the leading sectors of the country. Mechanical and physico-chemical methods of treatment are widely used to clean oil-contaminated soils. However, the methods belonging to these groups have a number of significant drawbacks, which actualizes the development of new methods (mainly biological), since they are more environmentally friendly, cost-effective, less labor-intensive, and do not require the use of technical capacities. Various bio-based products based on strains and consortia of microorganisms have been developed that have proven effectiveness. They include certain genera of bacteria, microscopic fungi, and microalgae, substances or materials acting as sorbents of biological agents and designed to retain them in the soil and increase the efficiency of bioremediation, as well as some nutrients. Statistical data, the most effective methods, and technologies, as well as cases of using microorganisms to restore oil-contaminated soils in various climatic conditions are presented.
-
Date submitted2022-05-31
-
Date accepted2022-11-17
-
Date published2022-12-29
Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field
Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.
-
Date submitted2021-07-05
-
Date accepted2022-11-17
-
Date published2022-12-29
Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation
A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.
-
Date submitted2022-05-17
-
Date accepted2022-09-06
-
Date published2022-11-03
Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation
- Authors:
- Alexandr S. Opalev
- Svetlana A. Alekseeva
The urgent task of improving the quality of iron ore concentrates was studied. We propose to use the stage-wise removal of the concentrate by combining fine screening, regrinding, and magnetic-gravity separation. Exemplified by magnetite ore from the Stoilensky GOK, a scientific and methodological approach to the search for optimal separation parameters and modes was substantiated. It includes several stages: studying the particle size distribution and release of useful components in the feed product to select classification parameters; a series of experiments on grinding oversize products to diverse sizes; beneficiation of the obtained products by MG separation. To select the optimal parameters of ore preparation, an analysis of the beneficiation efficiency was used, which is calculated according to the Hancock – Luyken criterion. The results of the research are experimental dependences that connect the process parameters of beneficiation with those of fine vibratory screening. For the studied ferruginous quartzite ore processed at the Stoilensky GOK, the obtained dependences can be described by a second-order polynomial with a high accuracy of approximation. The best performance is achieved with a particle size of 0.1 mm: Fe tot content in the concentrate is 69.7 %, recovery is 85 %, classification efficiency is 80.4 %. The top size of the product in this case is 0.076 mm, which corresponds to 70-73 % grinding size of –0.045 class.
-
Date submitted2022-04-20
-
Date accepted2022-07-21
-
Date published2022-11-03
Iron ore beneficiation technologies in Russia and ways to improve their efficiency
- Authors:
- Aleksei E. Pelevin
Increasing the efficiency of crushing circuits is associated with a decrease in the particle size of finely crushed ore and the use of dry magnetic separation of crushed ore. Reducing grinding costs is achieved by using drum mills jointly with mills of other designs. The use of automation systems, slurry demagnetization, technologies with staged concentrate separation, and beneficiation and fine screening in a closed grinding cycle lead to a reduction in grinding costs. The main industrial technology for improving the quality of concentrate is its additional beneficiation using regrinding, fine screening, flotation, and magnetic-gravity separators. Increasing the integrated use of iron ore raw materials is associated with an increase in the yield of iron concentrate and the production of hematite concentrate during the beneficiation of hematite-magnetite ores and ilmenite concentrate during the beneficiation of titanomagnetite ores. Incremented concentrate yield is possible by using magnetic separators with an increased magnetic induction up to 0.25-0.5 T in the first stages of beneficiation. To obtain hematite and ilmenite concentrates, combined technologies can be used, including fine screening, high-gradient magnetic, gravity, flotation, and electrical separation.
-
Date submitted2022-05-03
-
Date accepted2022-07-21
-
Date published2022-11-03
Determination of rational steam consumption in steam-air mixture flotation of apatite-nepheline ores
Relevance of the study is determined by the decisions taken to increase the production volume of certain commercial products from mineral raw materials. The scale, impact and consequences of the projects on developing the resource-saving technologies for beneficiation of mineral raw materials are socially significant, and the economic growth of mining production complies with the sustainable development goals. The aim of the study is to develop the flotation circuit and mode that improve the technological performance of beneficiation of apatite-nepheline ores of the Khibiny Massif in the Kola Peninsula. The scientific idea of the work is to develop the flotation circuit, the movement of beneficiation products in which ensures a major increase in the content of the recovered component in the rougher flotation procedure with a simultaneous increase in dressability of the material. The above condition is met when mixing the feedstock with rough concentrate. Recovery of the valuable component from the resulting mixture is accomplished in a mode differing from the known ones in that the heat of steam condensation is used to increase water temperature in the interphase film between the particle and the bubble. For pulp aeration during flotation, a mixture of air and hot steam is used as the gas phase. A high recovery of the valuable component in ore flotation according to the developed circuit and mode is facilitated by increasing water temperature in wetting films due to the steam condensation heat. A high selectivity of flotation with a steam-air mixture can be explained using the concepts of a phonon component of disjoining pressure, the value and sign of which are associated with a difference in the dynamic structure of liquid in the wetting film and bulk liquid.
-
Date submitted2022-05-12
-
Date accepted2022-09-06
-
Date published2022-11-03
Morphometric parameters of sulphide ores as a basis for selective ore dressing
To assess the possibility of selective disintegration and reduction of overgrinding of hard-to-reproduce ores, optical microscopic and X-ray microtomographic studies were carried out and quantitative characteristics of morphological parameters of disseminated and rich cuprous ore samples from Norilsk-type Oktyabrsky deposit were identified. Among quantitative morphological parameters the most informative are area, perimeter, edge roughness, sphericity, elongation and average grain spacing for disseminated copper-nickel ores; area, perimeter, edge roughness and elongation for rich cuprous ores. The studied parameters are characterized by increased values and dispersion in ore zones, which is especially important for fine-grained ores, which are difficult to diagnose by optical methods. Three-dimensional modelling of the internal structure of sulphide mineralisation samples was carried out using computed X-ray microtomography, which allows observation of quantitative parameters of grains, aggregates and their distribution in the total rock volume and interrelationship with each other. The evaluation of rock pore space by computer microtomography made it possible to compare the results obtained with the strength characteristics of rocks and ores, including those on different types of crushers. The obtained quantitative characteristics of structural-textural parameters and analysis of grain size distribution of ore minerals allow us to evaluate the possibility of applying selective crushing at various stages of ore preparation
-
Date submitted2022-05-17
-
Date accepted2022-09-06
-
Date published2022-11-03
On the need to classify rock mass fed to dry magnetic separation
The hypothesis of a possible use of dry magnetic separation is substantiated on the example of ores from ferruginous quartzite deposits operated by plants of PAO “Severstal” Holding. Size class of ore after medium crushing is –80+0 mm when the vibrating feeder is used for feeding ore mass to the separation zone. The rationale is based on the analysis of video recording of physical simulation on a laboratory drum magnetic separator of SMBS-L series, in the VSDC Video Editor, and simulation modelling of dry magnetic separation on its virtual prototype in Rocky DEM software package. It has been proved that the use of a vibrating feeder for feeding the material to the working area of a magnetic separator makes it possible to: form a monolayer on the surface of the vibrating feeder chute with a thickness close to the maximum size of a lump of separated ore; implement batch feed of material to the separation zone; increase the spacing between lumps in the separation zone when passing through the free fall area, thereby allowing dry magnetic separation of ferruginous quartzites of size class –80+0 mm without pre-preparation.
-
Date submitted2022-06-17
-
Date accepted2022-10-18
-
Date published2022-11-03
Scientific experimental bases for dry beneficiation of mineral ores
The article presents the results of research on the development of processes and equipment for ore preparation and pneumatic dry beneficiation of mineral ores. The methods of crushing and grinding before enrichment of minerals have been considered, dry enrichment of geomaterials is investigated. Highly efficient prototypes of beneficiation equipment are developed and tested: crushers of multiple dynamic impact RD-MDV-900, DKD-300, centrifugal grinders CMVU-800 and VCI-12, pneumatic separator POS-2000. Fundamental designs are created, and a number of new ore preparation and pneumatic beneficiation instruments are being designed. The efficiency of approbation of an autonomous dry beneficiation complex with new safe environmental standards for the processing of gold-bearing ores, which makes it possible to fully release and extract free gold with a particle size from 10,000 to 100 µm, is shown. The introduction of the dry beneficiation method is very promising for the mining industry. It will allow to reduce capital costs for the construction of stationary beneficiation plants, completely or partially withdraw from the use of process water, the construction of a water supply system, a traditional tailing dam, etc.
-
Date submitted2021-05-27
-
Date accepted2022-09-06
-
Date published2022-11-10
Application of resonance functions in estimating the parameters of interwell zones
It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.
-
Date submitted2021-07-19
-
Date accepted2022-05-31
-
Date published2022-07-13
Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter
The factors influencing the qualitative and quantitative components of the result of surveying in open-pit mining using a quadcopter were identified and systematized, and the mathematical dependence of the influence of factors on the final error of surveying was determined. After a large number of field observations – numerous flights of a geodesic quadcopter over mining facilities – the subsequent mathematical justification of the results of the aerial photogrammetric surveying was made, which allowed to analyze the degree of participation in the final accuracy of the survey of each of the considered factors. The results of this study demonstrate the source of errors, which provide the surveyor with the opportunity to efficiently and competently carry out pre-flight preparation and planning of fieldwork. The study and subsequent consideration of the factors affecting the accuracy of surveying with the use of an unmanned aerial vehicle are the basis for the subsequent development and formation of a methodology for using a geodesic quadcopter in the conditions of open-pit mining.
-
Date submitted2021-09-17
-
Date accepted2022-04-07
-
Date published2022-12-29
Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover
Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.