Submit an Article
Become a reviewer
JOURNAL IMPACT FACTOR
2.4
WEB OF SCIENCE (ESCI)
citescore
7.5
scopus

Vol 256

Previous
Vol 255
Editorial
  • Date submitted
    2022-11-03
  • Date accepted
    2022-11-03
  • Date published
    2022-11-03

Сomplex and deep processing of mineral raw materials of natural and technogenic origin: state and prospects

Article preview

In the special issue of the Journal of Mining Institute we collected articles considering the problems of Russian and world science in the field of complex and deep processing of mineral raw materials of natural and anthropogenic origin, development of theory and methods of intensification of selective disintegration of finely dispersed mineral clusters, and leaching of noble metals and rare-earth elements from resistant ores and un-conventional raw materials and concentrates, improvement of basic and auxiliary processes of concentration and their digitalization

How to cite: Aleksandrova T.N. Сomplex and deep processing of mineral raw materials of natural and technogenic origin: state and prospects // Journal of Mining Institute. 2022. Vol. 256. p. 503-504.
Metallurgy and concentration
  • Date submitted
    2022-02-22
  • Date accepted
    2022-05-11
  • Date published
    2022-11-03

Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate

Article preview

Based on a package of modern analysis methods, the influence of various acids and energy effects on the morphology, elemental composition, structural and chemical transformations of the mineral surface, and the efficiency of eudialyte concentrate leaching was studied. The mechanism and the optimal conditions and specific features of the destruction of eudialyte and rock minerals and the extraction of zirconium and REE under the influence of various acids, powerful nanosecond pulses, dielectric barrier discharge, electrochemical processing, mechanochemical activation and ultrasound were revealed. The mechanism of formation and the optimal conditions for the dispersion of silica gel, depending on the methods and parameters of energy effects, was theoretically and experimentally substantiated. A combined three-stage circuit of nitric acid leaching of eudialyte concentrate with ultrasonic treatment of the suspension, providing 97.1 % extraction of zirconium and 94.5 % REE, were scientifically substantiated and tested. The conditions for the selective deposition of zirconium and REE were theoretically and experimentally substantiated.

How to cite: Chanturiya V.A. Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate // Journal of Mining Institute. 2022. Vol. 256. p. 505-516. DOI: 10.31897/PMI.2022.31
Metallurgy and concentration
  • Date submitted
    2022-04-13
  • Date accepted
    2022-05-25
  • Date published
    2022-11-03

Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit

Article preview

The growing demand for ferrous metallurgy products necessitates the introduction of technologies that increase the efficiency of the processing of iron-bearing raw materials. A promising trend in this area is the implementation of solutions based on the possibility of selective disintegration of ores. The purpose of this work was to establish the laws of selective disintegration of ferruginous quartzites based on the results of the study of mineralogical and technological properties of raw materials. We present data on the study of mineralogical and technological features of ferruginous quartzites of the Mikhailovskoye deposit. The data were obtained using X-ray fluorescence analysis and automated mineralogical analysis. Based on studies of the nature of dissemination and the size of grains of rock-forming and ore minerals, the tasks of ore preparation are formulated. The parameters for the iron and silicon oxide distribution by grain-size classes in the grinding products were established during the study. Based on empirical dependences, the grain size of grinding was predicted, at which the most effective release of intergrowths of ore minerals and their minimum transition to the size class of –44 µm should be achieved.

How to cite: Aleksandrova T.N., Chanturiya A.V., Kuznetsov V.V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit // Journal of Mining Institute. 2022. Vol. 256. p. 517-526. DOI: 10.31897/PMI.2022.58
Metallurgy and concentration
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Morphometric parameters of sulphide ores as a basis for selective ore dressing

Article preview

To assess the possibility of selective disintegration and reduction of overgrinding of hard-to-reproduce ores, optical microscopic and X-ray microtomographic studies were carried out and quantitative characteristics of morphological parameters of disseminated and rich cuprous ore samples from Norilsk-type Oktyabrsky deposit were identified. Among quantitative morphological parameters the most informative are area, perimeter, edge roughness, sphericity, elongation and average grain spacing for disseminated copper-nickel ores; area, perimeter, edge roughness and elongation for rich cuprous ores. The studied parameters are characterized by increased values and dispersion in ore zones, which is especially important for fine-grained ores, which are difficult to diagnose by optical methods. Three-dimensional modelling of the internal structure of sulphide mineralisation samples was carried out using computed X-ray microtomography, which allows observation of quantitative parameters of grains, aggregates and their distribution in the total rock volume and interrelationship with each other. The evaluation of rock pore space by computer microtomography made it possible to compare the results obtained with the strength characteristics of rocks and ores, including those on different types of crushers. The obtained quantitative characteristics of structural-textural parameters and analysis of grain size distribution of ore minerals allow us to evaluate the possibility of applying selective crushing at various stages of ore preparation

How to cite: Duryagina A.M., Talovina I.V., Lieberwirth H., Ilalova R.K. Morphometric parameters of sulphide ores as a basis for selective ore dressing // Journal of Mining Institute. 2022. Vol. 256. p. 527-538. DOI: 10.31897/PMI.2022.76
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-07
  • Date published
    2022-11-03

Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading

Article preview

One of the most reliable methods for assessing the physical and mechanical properties of rocks as a result of their destruction are laboratory tests using hard or servo-driven test presses. They allow to obtain reliable information about changes in these properties beyond the limit of compressive strength. The results of laboratory tests of rich sulfide ore samples are presented, which made it possible to obtain graphs of their extreme deformation. Both monolithic samples and samples with stress concentrators in the form of circular holes with a diameter of 3, 5 and 10 mm were tested. It was revealed that during the destruction of the samples, the modules of elasticity and deformation decrease by 1.5-2 times, and in the zone of residual strength – by 5-7 times.

How to cite: Gospodarikov A.P., Trofimov A.V., Kirkin A.P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading // Journal of Mining Institute. 2022. Vol. 256. p. 539-548. DOI: 10.31897/PMI.2022.87
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-10
  • Date published
    2022-11-03

Monitoring of grinding condition in drum mills based on resulting shaft torque

Article preview

Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.

How to cite: Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque // Journal of Mining Institute. 2022. Vol. 256. p. 686-700. DOI: 10.31897/PMI.2022.91
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition

Article preview

In this paper, an adaptive approach has been developed for automatic initialization of the thickening curve using machine vision technology, which makes it possible to determine with high accuracy the material parameters necessary for the design of thickening and clarification apparatuses. Software has been developed that made it possible to search for the coordinates of the condensation critical point in automatic mode. Studies on two samples of materials (tailings of apatite-containing ores and gold-bearing concentrate) were carried out and made it possible to statistically prove the reproducibility of the results obtained using the parametric criteria of Fisher and Bartlett. It has been established that the deposition curves are approximated with high accuracy by the Weibull model, which, together with the piecewise linear approximation, makes it possible to formalize the method for determining the critical point coordinates. The empirical coefficients of the Weibull model for two samples are found, and the final liquefaction and settling rates of the studied materials are determined.

How to cite: Romashev A.O., Nikolaeva N.V., Gatiatullin B.L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition // Journal of Mining Institute. 2022. Vol. 256. p. 677-685. DOI: 10.31897/PMI.2022.77
Metallurgy and concentration
  • Date submitted
    2022-05-13
  • Date accepted
    2022-09-24
  • Date published
    2022-11-03

Rapid detection of coal ash based on machine learning and X-ray fluorescence

Article preview

Real-time testing of coal ash plays a vital role in the chemical, power generation, metallurgical, and coal separation sectors. The rapid online testing of coal ash using radiation measurement as the mainstream technology has problems such as strict coal sample requirements, poor radiation safety, low accuracy, and complicated equipment replacement. In this study, an intelligent detection technique based on feed-forward neural networks and improved particle swarm optimization (IPSO-FNN) is proposed to predict coal quality ash content in a fast, accurate, safe,and convenient manner. The data set was obtained by testing the elemental content of 198 coal samples with X-ray fluorescence (XRF). The types of input elements for machine learning (Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, P) were determined by combining the X-ray photoelectron spectroscopy (XPS) data with the change in the physical phase of each element in the coal samples during combustion. The mean squared error and coefficient of determination were chosen as the performance measures for the model. The results show that the IPSO algorithm is useful in adjusting the optimal number of nodes in the hidden layer. The IPSO-FNN model has strong prediction ability and good accuracy in coal ash prediction. The effect of the input element content of the IPSO-FNN model on the ash content was investigated, and it was found that the potassium content was the most significant factor affecting the ash content. This study is essential for real-time online, accurate, and fast prediction of coal ash.

How to cite: Huang J., Li Z., Chen B., Cui S., Lu Z., Dai W., Zhao Y., Duan C., Dong L. Rapid detection of coal ash based on machine learning and X-ray fluorescence // Journal of Mining Institute. 2022. Vol. 256. p. 663-676. DOI: 10.31897/PMI.2022.89
Metallurgy and concentration
  • Date submitted
    2021-03-31
  • Date accepted
    2022-04-26
  • Date published
    2022-11-03

Features of obtaining metallurgical products in the solid-state hydride synthesis conditions

Article preview

A scientific substantiation of solid-phase feedstock choice and preparation has been carried out, and the thermodynamic and kinetic aspects of solid-state hydride synthesis (SHS) of metal products have been analyzed using the nickel dichloride reduction as an example. The preliminary dehydration modes and methods for controlling the complete removal of crystalline water from chloride raw materials and Olenegorsk superconcentrate, which is natural oxide raw material, are described. Conditions, including initial solid chloride particle sizes, are established under which diffusion complications of reduction to metal in methyldichlorosilane vapor are minimized. Thermodynamic estimates of nickel chlorides and oxides reduction possibility, iron and copper with ammonia and methane at temperatures of 400-1000 K in equilibrium conditions have been carried out. It has been shown that the stoichiometric coefficients of the nickel dichloride in ammonia overall reduction reaction calculated by thermodynamic modeling are in agreement with experimental data. In contrast to the copper dichloride reduction, for nickel dichloride the formation of metal monochloride at the intermediate stage is uncharacteristic, which is associated with a higher thermal stability of nickel dichloride. The main kinetic regularities of the reduction of nickel, copper, and iron to metal under SHS conditions in ammonia, monosilane, and methane, as well as the nickel dichloride with methyldichlorosilane vapor and methane successive reduction, are considered. Approximation of experimental data by topochemical equations in a linear form showed that for reduction degrees a up to 0.7-0.8, these data are satisfactorily described by the Roginsky – Schultz equation. For a > 0,8 the “shrinking sphere” model works better, which confirms the localization of the solid-state reduction reaction at the interface, moves deep into the crystal with the formation of a of interlocked metal germs. The importance and prospects of the results obtained for the theory development of metallurgical processes, deep complex processing of natural iron oxide raw materials, metal products and new generation materials production, including superhydrophobic ones, are discussed. The relevance of the study from the point of view of applying the method of physical and chemical analysis to the study of complex heterogeneous metallurgical processes is noted.

How to cite: Syrkov A.G., Yachmenova L.A. Features of obtaining metallurgical products in the solid-state hydride synthesis conditions // Journal of Mining Institute. 2022. Vol. 256. p. 651-662. DOI: 10.31897/PMI.2022.25
Metallurgy and concentration
  • Date submitted
    2022-04-14
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit)

Article preview

Technological mineralogy of titanium ores is the basis for assessing their complexity. It enables, from a unified standpoint, to trace the entire course of changes in mineral matter through operating procedures, including beneficiation, processing, and obtaining target industrial products. The study targets are Pizhemskoye ilmenite-leucoxene sandstones, which are distinguished by a complex polymineral composition. Along with the main ore components, there are other metals with different speciation (isomorphic admixture, independent mineral phases). The optimal set of mineralogical analysis methods for the predictive assessment of their further use is substantiated exemplified by titanium ores of the Pizhemskoye deposit, which are complex, noted for a variable content of iron oxides and contain rare earth metals. Examinations by X-ray phase analysis and scanning electron microscopy confirm that the main titanium phases of sandstones are pseudorutile and a polymineral aggregate, “leucoxene”. Considering the granulometric peculiarities of the magnetic and non-magnetic fractions of the gravity concentrate, the prospects of technologies for processing titanium raw materials are discussed. Along with the problems of obtaining high-quality raw materials, the transformations of mineral phases as a result of extreme impacts and their physicochemical properties as a consequence of isomorphic substitution of a part of Ti atoms with natural modifier agents (Fe and V) in the synthesis of titanium oxide nanostructures for industrial applications are considered (photocatalytic nanoreactor).

How to cite: Kotova O.B., Ozhogina E.G., Ponaryadov A.V. Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit) // Journal of Mining Institute. 2022. Vol. 256. p. 632-641. DOI: 10.31897/PMI.2022.78
Metallurgy and concentration
  • Date submitted
    2022-04-14
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions

Article preview

In-situ leaching of molybdenum and uranium is becoming an increasingly common process. The features of the material composition of ores, leading to a decrease in their filtration properties, were considered. Activation leaching with leaching solutions that have undergone electrophotochemical activation before contact with the ore mass were studied. Activation preparation of leaching solutions promotes the synthesis of clustered water molecules with collectivized protons and hydroxyl ions, as well as active forms of oxygen and hydrogen. Cell leaching of molybdenum from mature tailings of the Shakhtaminsk deposit was studied experimentally. After pre-oxidation with an active carbonate solution, a model borehole leaching was carried out with a chloride-hypochlorite solution. Molybdenum extraction on resin a was 85 % in 30 days. Experiments on the percolation leaching of uranium from the ores of the Uchkuduk and Sugraly deposits confirmed the potential possibility of a significant increase in the extraction of uranium by electrophotoactivated percarbonate solutions relative to aqueous solutions of sodium and ammonium carbonate. When leaching with carbonate solutions without an additional oxidizing agent, the extraction of uranium from the Sugraly deposit ore sample was 52 and 59 % (sodium carbonate and ammonium carbonate). The use of hydrogen peroxide as an oxidizing agent made it possible to achieve 87-88 % extraction into pregnant solutions in 21 days without pre-oxidation. The performed studies confirm the processing capability of extracting uranium and molybdenum by percolation leaching in columns and borehole leaching.

How to cite: Rasskazov I.Y., Sekisov A.G., Rasskazova A.V. In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions // Journal of Mining Institute. 2022. Vol. 256. p. 623-631. DOI: 10.31897/PMI.2022.60
Metallurgy and concentration
  • Date submitted
    2022-06-17
  • Date accepted
    2022-10-18
  • Date published
    2022-11-03

Scientific experimental bases for dry beneficiation of mineral ores

Article preview

The article presents the results of research on the development of processes and equipment for ore preparation and pneumatic dry beneficiation of mineral ores. The methods of crushing and grinding before enrichment of minerals have been considered, dry enrichment of geomaterials is investigated. Highly efficient prototypes of beneficiation equipment are developed and tested: crushers of multiple dynamic impact RD-MDV-900, DKD-300, centrifugal grinders CMVU-800 and VCI-12, pneumatic separator POS-2000. Fundamental designs are created, and a number of new ore preparation and pneumatic beneficiation instruments are being designed. The efficiency of approbation of an autonomous dry beneficiation complex with new safe environmental standards for the processing of gold-bearing ores, which makes it possible to fully release and extract free gold with a particle size from 10,000 to 100 µm, is shown. The introduction of the dry beneficiation method is very promising for the mining industry. It will allow to reduce capital costs for the construction of stationary beneficiation plants, completely or partially withdraw from the use of process water, the construction of a water supply system, a traditional tailing dam, etc.

How to cite: Matveev A.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Scientific experimental bases for dry beneficiation of mineral ores // Journal of Mining Institute. 2022. Vol. 256. p. 613-622. DOI: 10.31897/PMI.2022.90
Metallurgy and concentration
  • Date submitted
    2022-05-17
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation

Article preview

The urgent task of improving the quality of iron ore concentrates was studied. We propose to use the stage-wise removal of the concentrate by combining fine screening, regrinding, and magnetic-gravity separation. Exemplified by magnetite ore from the Stoilensky GOK, a scientific and methodological approach to the search for optimal separation parameters and modes was substantiated. It includes several stages: studying the particle size distribution and release of useful components in the feed product to select classification parameters; a series of experiments on grinding oversize products to diverse sizes; beneficiation of the obtained products by MG separation. To select the optimal parameters of ore preparation, an analysis of the beneficiation efficiency was used, which is calculated according to the Hancock – Luyken criterion. The results of the research are experimental dependences that connect the process parameters of beneficiation with those of fine vibratory screening. For the studied ferruginous quartzite ore processed at the Stoilensky GOK, the obtained dependences can be described by a second-order polynomial with a high accuracy of approximation. The best performance is achieved with a particle size of 0.1 mm: Fe tot content in the concentrate is 69.7 %, recovery is 85 %, classification efficiency is 80.4 %. The top size of the product in this case is 0.076 mm, which corresponds to 70-73 % grinding size of –0.045 class.

How to cite: Opalev A.S., Alekseeva S.A. Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation // Journal of Mining Institute. 2022. Vol. 256. p. 593-602. DOI: 10.31897/PMI.2022.80
Metallurgy and concentration
  • Date submitted
    2022-04-20
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Iron ore beneficiation technologies in Russia and ways to improve their efficiency

Article preview

Increasing the efficiency of crushing circuits is associated with a decrease in the particle size of finely crushed ore and the use of dry magnetic separation of crushed ore. Reducing grinding costs is achieved by using drum mills jointly with mills of other designs. The use of automation systems, slurry demagnetization, technologies with staged concentrate separation, and beneficiation and fine screening in a closed grinding cycle lead to a reduction in grinding costs. The main industrial technology for improving the quality of concentrate is its additional beneficiation using regrinding, fine screening, flotation, and magnetic-gravity separators. Increasing the integrated use of iron ore raw materials is associated with an increase in the yield of iron concentrate and the production of hematite concentrate during the beneficiation of hematite-magnetite ores and ilmenite concentrate during the beneficiation of titanomagnetite ores. Incremented concentrate yield is possible by using magnetic separators with an increased magnetic induction up to 0.25-0.5 T in the first stages of beneficiation. To obtain hematite and ilmenite concentrates, combined technologies can be used, including fine screening, high-gradient magnetic, gravity, flotation, and electrical separation.

How to cite: Pelevin A.E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency // Journal of Mining Institute. 2022. Vol. 256. p. 579-592. DOI: 10.31897/PMI.2022.61
Metallurgy and concentration
  • Date submitted
    2022-05-03
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Determination of rational steam consumption in steam-air mixture flotation of apatite-nepheline ores

Article preview

Relevance of the study is determined by the decisions taken to increase the production volume of certain commercial products from mineral raw materials. The scale, impact and consequences of the projects on developing the resource-saving technologies for beneficiation of mineral raw materials are socially significant, and the economic growth of mining production complies with the sustainable development goals. The aim of the study is to develop the flotation circuit and mode that improve the technological performance of beneficiation of apatite-nepheline ores of the Khibiny Massif in the Kola Peninsula. The scientific idea of ​​the work is to develop the flotation circuit, the movement of beneficiation products in which ensures a major increase in the content of the recovered component in the rougher flotation procedure with a simultaneous increase in dressability of the material. The above condition is met when mixing the feedstock with rough concentrate. Recovery of the valuable component from the resulting mixture is accomplished in a mode differing from the known ones in that the heat of steam condensation is used to increase water temperature in the interphase film between the particle and the bubble. For pulp aeration during flotation, a mixture of air and hot steam is used as the gas phase. A high recovery of the valuable component in ore flotation according to the developed circuit and mode is facilitated by increasing water temperature in wetting films due to the steam condensation heat. A high selectivity of flotation with a steam-air mixture can be explained using the concepts of a phonon component of disjoining pressure, the value and sign of which are associated with a difference in the dynamic structure of liquid in the wetting film and bulk liquid.

How to cite: Evdokimov S.I., Gerasimenko T.E. Determination of rational steam consumption in steam-air mixture flotation of apatite-nepheline ores // Journal of Mining Institute. 2022. Vol. 256. p. 567-578. DOI: 10.31897/PMI.2022.62
Metallurgy and concentration
  • Date submitted
    2022-05-10
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Flotation separation of titanite concentrate from apatite-nepheline-titanite ores of anomalous zones of the Khibiny deposits

Article preview

Titanium raw materials are widely used for the synthesis of various functional materials – sorbents of radionuclides and rare earth elements, various additives, filler pigments, etc. Since most of titanium concentrates are imported, in line with the import substitution program, production of titanite concentrate from apatite-nepheline ores of the Khibiny deposits is a promising trend for supplying national industry with titanium raw materials. The article presents the results of laboratory studies of flotation separation of titanite concentrate from apatite-nepheline-titanite ores extracted from the upper ore horizon of the Koashvinskoye deposit, where titanite-enriched ores are concentrated. Recovery of titanite concentrate was accomplished using two reagent modes – a mixture of alkyl hydroxamic and carboxylic acids with the addition of distilled tall oil and a mixture of tall oils with the addition of polyalkyl benzene sulfonic acids. The results of the research showed that the first flotation mode, which allows a selective recovery of titanite into the concentrate (titanite content in the concentrate was 93.5 %) is the most efficient. It was shown that flotation separation of titanite concentrate is preferable compared to the chemical method based on sulfuric acid leaching.

How to cite: Mitrofanova G.V., Marchevskaya V.V., Taran A.E. Flotation separation of titanite concentrate from apatite-nepheline-titanite ores of anomalous zones of the Khibiny deposits // Journal of Mining Institute. 2022. Vol. 256. p. 560-566. DOI: 10.31897/PMI.2022.81
Metallurgy and concentration
  • Date submitted
    2022-03-17
  • Date accepted
    2022-06-20
  • Date published
    2022-11-03

Assessment of collecting activity of physically sorbed reagents on the example of easily floatable coking coal sludge

Article preview

The article presents one of the new approaches to theoretical assessment of collecting ability of reagents. The efficiency of reagents-collectors with different chemical composition used for flotation of coking coals was studied. A comparative assessment of the flotation activity of kerosene, mineral oil, thermal gas oil, KETGOL and FLOTEK is given. The criteria of collecting activity of the above reagents-collectors for coal sludge flotation were specified. A correlation was established between the indicators of coal sludge flotation by the above reagents and their physical parameters. It is shown that the rate of spreading over water surface can characterize the flotation activity of reagents. Based on dependence of the collecting activity of a reagent on its rate of spreading along the “gas – liquid” interface and surface pressure, the main approaches to determining the structure and composition of molecules of an effective flotation collector can be determined. A new concept of the function performed by a physically sorbed collector in the elementary act of flotation and a criterion for the flotation activity of reagents used in coal sludge beneficiation are proposed. It is shown that the collector used in coal flotation, in addition to hydrophobizing the surface of the extracted particles, should reduce the induction time and remove the kinetic constraint on formation of a flotation aggregate.

How to cite: Kondratev S.A., Khamzina T.A. Assessment of collecting activity of physically sorbed reagents on the example of easily floatable coking coal sludge // Journal of Mining Institute. 2022. Vol. 256. p. 549-559. DOI: 10.31897/PMI.2022.52
Metallurgy and concentration
  • Date submitted
    2022-05-17
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

On the need to classify rock mass fed to dry magnetic separation

Article preview

The hypothesis of a possible use of dry magnetic separation is substantiated on the example of ores from ferruginous quartzite deposits operated by plants of PAO “Severstal” Holding. Size class of ore after medium crushing is –80+0 mm when the vibrating feeder is used for feeding ore mass to the separation zone. The rationale is based on the analysis of video recording of physical simulation on a laboratory drum magnetic separator of SMBS-L series, in the VSDC Video Editor, and simulation modelling of dry magnetic separation on its virtual prototype in Rocky DEM software package. It has been proved that the use of a vibrating feeder for feeding the material to the working area of a magnetic separator makes it possible to: form a monolayer on the surface of the vibrating feeder chute with a thickness close to the maximum size of a lump of separated ore; implement batch feed of material to the separation zone; increase the spacing between lumps in the separation zone when passing through the free fall area, thereby allowing dry magnetic separation of ferruginous quartzites of size class –80+0 mm without pre-preparation.

How to cite: Shibaeva D.N., Tereshchenko S.V., Asanovich D.A., Shumilov P.A. On the need to classify rock mass fed to dry magnetic separation // Journal of Mining Institute. 2022. Vol. 256. p. 603-612. DOI: 10.31897/PMI.2022.79
Metallurgy and concentration
  • Date submitted
    2022-06-27
  • Date accepted
    2022-09-09
  • Date published
    2022-11-03

Study of the composition and properties of the beneficiation tailings of currently produced loparite ores

Article preview

The increase in demand for rare earth metals and the depletion of natural resources inevitably causes the need to search for alternative unconventional sources of rare metal raw materials. The article presents the results of a study of the composition and properties of the beneficiation tailings of currently produced loparite ores. Sieve, mineralogical, chemical, and radionuclide analyses were carried out. The average content of loparite in tailings was determined. Using scanning electron microscopy, minerals-concentrators of rare earth elements in the loparite ore beneficiation tailings were diagnosed. The distribution of valuable components and thorium in the tailings was determined depending on the particle size class. The radium-thorium nature of radioactivity was established, the values of the effective specific activity of the samples were calculated. We concluded that it is necessary to develop an integrated technology for processing the beneficiation tailings of loparite ore, due to the complex and heterogeneous mineral and chemical composition of the tailings material.

How to cite: Maksimova V.V., Krasavtseva E.A., Savchenko Y.E., Ikkonen P.V., Elizarova I.R., Masloboev V.A., Makarov D.V. Study of the composition and properties of the beneficiation tailings of currently produced loparite ores // Journal of Mining Institute. 2022. Vol. 256. p. 642-650. DOI: 10.31897/PMI.2022.88