Submit an Article
Become a reviewer
Alexey V. Ponaryadov
Alexey V. Ponaryadov
Junior Researcher
Institute of Geology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences
Junior Researcher
Institute of Geology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Articles

Metallurgy and concentration
  • Date submitted
    2022-04-14
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit)

Article preview

Technological mineralogy of titanium ores is the basis for assessing their complexity. It enables, from a unified standpoint, to trace the entire course of changes in mineral matter through operating procedures, including beneficiation, processing, and obtaining target industrial products. The study targets are Pizhemskoye ilmenite-leucoxene sandstones, which are distinguished by a complex polymineral composition. Along with the main ore components, there are other metals with different speciation (isomorphic admixture, independent mineral phases). The optimal set of mineralogical analysis methods for the predictive assessment of their further use is substantiated exemplified by titanium ores of the Pizhemskoye deposit, which are complex, noted for a variable content of iron oxides and contain rare earth metals. Examinations by X-ray phase analysis and scanning electron microscopy confirm that the main titanium phases of sandstones are pseudorutile and a polymineral aggregate, “leucoxene”. Considering the granulometric peculiarities of the magnetic and non-magnetic fractions of the gravity concentrate, the prospects of technologies for processing titanium raw materials are discussed. Along with the problems of obtaining high-quality raw materials, the transformations of mineral phases as a result of extreme impacts and their physicochemical properties as a consequence of isomorphic substitution of a part of Ti atoms with natural modifier agents (Fe and V) in the synthesis of titanium oxide nanostructures for industrial applications are considered (photocatalytic nanoreactor).

How to cite: Kotova O.B., Ozhogina E.G., Ponaryadov A.V. Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit) // Journal of Mining Institute. 2022. Vol. 256. p. 632-641. DOI: 10.31897/PMI.2022.78
Geology
  • Date submitted
    2022-04-14
  • Date accepted
    2022-07-21
  • Date published
    2022-07-13

Mullite production: phase transformations of kaolinite, thermodynamics of the process

Article preview

The growing demand for mullite raw materials, which meet industrial requirements originates the search for new and alternative sources, as well as efficient technologies for obtaining the target products (nanocomposites). The article suggests a method for obtaining mullite from kaolinite experimentally (Vezhayu-Vorykvinsky deposit, Russia). Structural kaolinite transformations (Al-Si-O-Me system), mineral phases transformations, and thermodynamics of the process have been studied. Based on the estimation of the thermodynamics of the reactions, the preferable reaction of mullite formation was determined. The article shows, that formation of the target product, mullite nanocomposite, has several intermediate phases (metakaolinite, pseudomullite). The transformations of the initial kaolinite structure include the removal of structural water and separation of the silica-oxygen tetrahedral and alumina-oxygen octahedral layers, the decomposition into free oxides, breaking of bonds between the silica-oxygen tetrahedrons and the partial increase in the coordination number of aluminium ions, the formation of mullite and cristobalite from free oxides. The proposed approach controls the ratio of Al 2 O 3 and SiO 2 phases at certain stages, which will further improve the mechanical and other properties of the matrix of the obtained raw materials for the target prototypes of industrial products.

How to cite: Kotova O.B., Ustyugov V.A., Sun S., Ponaryadov A.V. Mullite production: phase transformations of kaolinite, thermodynamics of the process // Journal of Mining Institute. 2022. Vol. 254. p. 129-135. DOI: 10.31897/PMI.2022.43