Submit an Article
Become a reviewer
emerging sources
citation index
clarivate analytics
citescore
5.4
scopus

Vol 255

Previous
Vol 254
Editorial
  • Date submitted
    2022-11-02
  • Date accepted
    2022-11-02
  • Date published
    2022-07-26

Geological structure and mineral resources of Russia

Article preview

The special geological issue of the Journal of the Mining Institute includes articles discussing the problems of domestic geological science and reproduction of mineral resources of the country.

How to cite: Skublov S.G. Geological structure and mineral resources of Russia // Journal of Mining Institute. 2022. Vol. 255. p. 273-274.
Geology
  • Date submitted
    2022-03-14
  • Date accepted
    2022-05-13
  • Date published
    2022-07-26

Unique titanium Deposits of Timan: genesis and age issues

Article preview

The article critically analysesthe hypotheses about the formation, age, and sources of material of large Timan titanium deposits, which were previously considered ancient buried placers formed along the weathering crusts of the Riphean shales. We discuss an alternative hydrothermal-metamorphic hypothesis about the formation of these deposits and the source of ore material. It is established that the incoming zircon of different ages (570-3200 Ma), as well as two other geochronometers, rutile and monazite, underwent a thermal effect common for all varieties as a result of a hydrothermal process about 600 Ma ago. According to modern concepts, the closing temperature of the U-Pb system in rutile exceeds 500 °С, which suggests high-temperature conditions for the hydrothermal processing of rutile during the formation of the considered deposits in the Riphean.

How to cite: Makeyev A.B., Bryanchaninova N.I., Krasotkina A.O. Unique titanium Deposits of Timan: genesis and age issues // Journal of Mining Institute. 2022. Vol. 255. p. 275-289. DOI: 10.31897/PMI.2022.32
Geology
  • Date submitted
    2022-04-18
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Results and prospects of geological mapping of the Arctic shelf of Russia

Article preview

The results of compiling the sets of the State Geological Map at a scale of 1:1,000,000 for the Arctic continental shelf of Russia are analyzed. Results are summed up, and the main problems of geological mapping are outlined. The results of geological and geophysical studies of the Arctic Ocean are of great importance for deciphering the geological evolution. The Arctic shelf is the widest shelf in the world, while the spreading ocean basin is one of the narrowest and is characterized by anomalous structural features. The main problems of geological mapping include identification the sedimentary cover/folded basement boundary, interpretation the geodynamic evolution of the shelf and adjacent ocean, determining the rates of sedimentation and stratigraphic subdivision of the sedimentary cover due to a small number of key boreholes. It is promising to further study problem areas with unclear features of geological structure as well as small-scale mapping in areas of industrial development on the Arctic continental shelf.

How to cite: Gusev E.A. Results and prospects of geological mapping of the Arctic shelf of Russia // Journal of Mining Institute. 2022. Vol. 255. p. 290-298. DOI: 10.31897/PMI.2022.50
Geology
  • Date submitted
    2022-05-04
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Prospecting models of primary diamond deposits of the north of the East European Platform

Article preview

As a result of a comprehensive study of the geological structure and diamond presense of the northern part of the East European Platform, generalization of the data accumulated by various organizations in the USSR, the Russian Federation, and other states, three main prospecting models of primary diamond deposits have been identified and characterized: Karelian, Finnish, and Arkhangelsk. Geological, structural, mineralogical, and petrographic criteria of local prediction, as well as the features of the response of kimberlite and lamproite bodies in dispersion haloes and geophysical fields, are considered using known examples, including data on the developed M.V.Lomonosov and V.P.Grib mines. It is shown that the most complicated prospecting environments occur in the covered areas of the Russian Plate, where, in some cases, the primary diamond-bearing rocks are similar in their petrophysical properties to the host formations. The buried dispersion haloes of kimberlite minerals in the continental Carboniferous and Quaternary deposits are traced at a short distance from the sources. Differences in the prospecting features of magnesian (Lomonosov mine) and ferromagnesian (Grib mine) kimberlites are also shown. Conclusions about the diamond potential of the model objects of various types are given in this paper.

How to cite: Ustinov V.N., Mikoev I.I., Piven G.F. Prospecting models of primary diamond deposits of the north of the East European Platform // Journal of Mining Institute. 2022. Vol. 255. p. 299-318. DOI: 10.31897/PMI.2022.49
Geology
  • Date submitted
    2022-01-28
  • Date accepted
    2022-04-26
  • Date published
    2022-07-26

On the presence of the postmagmatic stage of diamond formation in kimberlites

Article preview

On nowadays multiphase and the facies heterogeneity of the formations are distinguished at the study of kimberlite pipes. Most researchers associate the formation of diamonds only with the mantle source. To date, satellite minerals with specific compositions associated with kimberlite diamonds have been identified as deep mantle diamond association. They are extracted from the concentrate of the kimberlites heavy fraction and may reflect the diamond grade of the pipe. For some minerals in the diamond association, however, they can not be reliable. Some researchers also revealed shallow diamond associations, related to the formation of serpentine, calcite, apatite, and phlogopite. There is recent data on the formation of diamonds in rocks of the oceanic crust. In the last years microdiamonds were identified in chromites of the oceanic crust in association with antigorite formed at 350-650 °C and 0.1-1.6 GPa. As a result, the authors established a postmagmatic kimberlitic stage of diamond formation associated with secondary mineral associations based on the experimental and mineralogical data for the conditions of the shallow upper mantle and crust. Mineralogical and petrographic studies of Angolan kimberlite pipe show that antigorite is the indicator mineral of this stage.

How to cite: Simakov S.K., Stegnitskiy Y.B. On the presence of the postmagmatic stage of diamond formation in kimberlites // Journal of Mining Institute. 2022. Vol. 255. p. 319-326. DOI: 10.31897/PMI.2022.22
Geology
  • Date submitted
    2022-04-13
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Thermal history of diamond from Arkhangelskaya and Karpinsky-I kimberlite pipes

Article preview

This work studies and compares the main morphological, structural, and mineralogical features of 350 diamond crystals from the Karpinsky-I and 300 crystals of the Arkhangelskaya kimberlite pipes. The share of crystals of octahedral habit together with individual crystals of transitional forms with sheaf-like and splintery striation is higher in the Arkhangelskaya pipe and makes 15 %. The share of cuboids and tetrahexahedroids is higher in the Karpinsky-I pipe and stands at 14 %. The share of dodecahedroids in the Arkhangelskaya and Karpinsky-I pipes are 60 % and 50 %, respectively. The indicator role of the nitrogen-vacancy N3 center active in absorption and luminescence is shown. Crystals with the N3 absorption system have predominantly octahedral habit or dissolution forms derived from the octahedra. Their thermal history is the most complex. Absorption bands of the lowest-temperature hydrogen-containing defects (3050, 3144, 3154, 3188, 3310 cm −1 , 1388, 1407, 1432, 1456, 1465, 1503, 1551, 1563 cm −1 ), are typical for crystals without N3 system, where in the absorption spectra nitrogen is in the form of low-temperature A and C defects. The above mentioned bands are registered in the spectra of 16 % and 42 % of crystals from the Arkhangelskaya and Karpinsky-I pipes, respectively. The diamond of the studied deposits is unique in the minimum temperature (duration) of natural annealing. Based on a set of features, three populations of crystals were distinguished, differing in growth conditions, post-growth, and thermal histories. The established regularities prove the multi-stage formation of diamond deposits in the north of the East European Platform and significant differences from the diamonds of the Western Cisurals. The results suggest the possibility of the existence of primary deposits dominated by diamonds from one of the identified populations.

How to cite: Vasilev E.A., Kriulina G.Y., Garanin V.K. Thermal history of diamond from Arkhangelskaya and Karpinsky-I kimberlite pipes // Journal of Mining Institute. 2022. Vol. 255. p. 327-336. DOI: 10.31897/PMI.2022.57
Geology
  • Date submitted
    2022-03-03
  • Date accepted
    2022-04-27
  • Date published
    2022-07-26

Peculiarities of rare-metal mineralization and genetic relationship of mineral associations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt)

Article preview

The paper presents features of the location and composition, as well as a generalization of data on the age of rare-metal mineralization developed at the deposits and occurrences of rare metals and gemstones in the eastern rim of Murzinsko-Aduysky anticlinorium, within the Ural Emerald Belt, which is a classic ore and mineralogical object and has been studied for almost two hundred years. With a significant number and variety of prospecting, research and scientific works devoted mainly to emerald-bearing mica complexes and beryl mineralization, as well as rare-metal pegmatites, scientific literature has so far lacked generalizations on the formation of numerous mineral associations and ore formations that represents a uniform genetic process in this ore district. The aim of the work is a comprehensive geological-mineralogical analysis of mineral associations of the eastern rim of Murzinsko-Aduysky anticlinorium and studying their age, formation conditions and characteristic features to determine the possibility of expanding and using the mineral resource base of the Urals through developing new prognostic and prospecting criteria for rare-metal and gemstone ore formations and creating the new devices for promising objects prospecting

How to cite: Popov M.P. Peculiarities of rare-metal mineralization and genetic relationship of mineral associations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt) // Journal of Mining Institute. 2022. Vol. 255. p. 337-348. DOI: 10.31897/PMI.2022.19
Geology
  • Date submitted
    2022-03-31
  • Date accepted
    2022-05-11
  • Date published
    2022-07-26

Carbonatite complexes of the South Urals: geochemical features, ore mineralization, and geodynamic settings

Article preview

The article presents the results of study of the Ilmeno-Vishnevogorsky and Buldym carbonatite complexes in the Urals. It has been established that the carbonatites of the Ilmeno-Vishnevogorsky complex are represented by high-temperature calciocarbonatites (sövites I and II) with pyrochlore ore mineralization. U-Ta-rich populations of uranium pyrochlores (I) and fluorocalciopyrochlores (II) crystallize in miaskite-pegmatites and sövites I; fluorocalciopyrochlores (III) and Sr-REE-pyrochlores (IV) of late populations form in sövites II. In the Buldym complex, along with high-temperature calciocarbonatites containing fluorocalciopyrochlore (III), medium-temperature varieties of magnesiocarbonatites with REE-Nb mineralization (monazite, niobo-aeschynite, columbite, etc.) are widespread. Miaskites and carbonatites of the Urals are characterized by high contents of LILE (Sr, Ba, K, Rb) and HFSE (Nb, Ta, Zr, Hf, Ti), which are close to the contents in rift-related carbonatite complexes of intraplate settings and significantly differ from synorogenic collisional carbonatite complexes. The Ural carbonatite complexes formed on continental rift margins during the opening of the Ural Ocean at the time of transition from extensional to compressional tectonics. Later on, they were captured and deformed in the suture zone as a result of collision. Plastic and brittle deformations, anatexis, recrystallization of rocks and ores of carbonatite complexes in the Urals are associated with orogenic and post-collision settings.

How to cite: Nedosekova I.L. Carbonatite complexes of the South Urals: geochemical features, ore mineralization, and geodynamic settings // Journal of Mining Institute. 2022. Vol. 255. p. 349-368. DOI: 10.31897/PMI.2022.28
Geology
  • Date submitted
    2022-04-06
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Geological and structural position of the Svetlinsky gold deposit (Southern Urals)

Article preview

The paper presents the geological and structural position of the large Svetlinsky gold deposit in the Kochkar anticline (Southern Urals), localized in the zone of the Late Paleozoic (D 3 ) deep thrust of the western dip. The study confirms and clarifies the notion of its multiphase and polychronism. The thrust caused bending moments in its wings, subsidence of the lying crust, emergence of a shallow marine basin with rapid accumulation of terrigenous carbonate sediments (C 1 v), and formation of numerous landslide structures. The heating of rocks in the anticline core was accompanied by granitization and dome formation. A small Svetlinsky dome formed in the immediate vicinity of the thrust, creating a thermobaric gradient field (С 2 ). The zone of dome dynamic influence also includes the adjoining thrust area, complicated by a series of sub-vertical thrusts of sub meridional strike and numerous steeply dipping subparallel cracks of the latitudinal strike, synchronously filled with vein quartz and accompanied by hydrothermal metasomatic rock transformations. The formation of the gold deposit occurred during the post-collisional relaxation stage (from P 1 to, probably, the Early Jurassic). The association of gold mineralization with the Svetlinsky dome is indicated by the presence of native gold in Neogene ravine placers in the dome area and marbles of the Svetlinsky deposit, in association with fluorite, F-phlogopite, Cr-muscovite, pink topaz, pure quartz, and native sulphur. The presence of native gold in Neogene ravine placers in the dome area and marbles of the Svetlinsky deposit, in association with fluorite, F-phlogopite, Cr-muscovite, pink topaz, pure quartz, and native sulphur, indicates the association of gold mineralization with the Svetlinsky dome.

How to cite: Kissin A.Y., Pritchin M.E., Ozornin D.A. Geological and structural position of the Svetlinsky gold deposit (Southern Urals) // Journal of Mining Institute. 2022. Vol. 255. p. 369-376. DOI: 10.31897/PMI.2022.46
Geology
  • Date submitted
    2022-02-26
  • Date accepted
    2022-04-27
  • Date published
    2022-07-26

Type intrusive series of the Far East belt of lithium-fluoric granites and its ore content

Article preview

The evolution and ore content of granitoid magmatism in the Far East belt of lithium-fluoric granites lying in the Russian sector of the Pacific ore belt have been studied. Correlation of intrusive series in the Novosibirsk-Chukotka, Yana-Kolyma and Sikhote-Alin granitoid provinces of the studied region allowed to establish the unity of composition, evolution, and ore content of the Late Mesozoic granitoid magmatism. On this basis, a model of the type potentially ore-bearing intrusive series of the Far East belt of lithium-fluoric granites has been developed: complexes of diorite-granodiorite and granite formations → complexes of monzonite-syenite and granite-granosyenite formations → complexes of leucogranite and alaskite formations → complexes of rare-metal lithium-fluoric granite formation. The main petrological trend in granitoid evolution is increasing silicic acidity, alkalinity, and rare-metal-tin specialization along with decreasing size and number of intrusions. At the end of the intrusive series, small complexes of rare-metal lithium-fluoric granites form. The main metallogenic trend in granitoid evolution is an increasing ore-generating potential of intrusive complexes with their growing differentiation. Ore-bearing rare-metal-granite magmatism of the Russian Far East developed in the Late Cretaceous and determined the formation of large tungsten-tin deposits with associated rare metals: Ta, Nb, Li, Cs, Rb, In in areas with completed intrusive series. Incompleteness of granitoid series of the Pacific ore belt should be considered as a potential sign of blind rare-metal-tin mineralization. The Far East belt of lithium-fluoric granites extends to the Chinese and Alaskan sectors of the Pacific belt, which allows the model of the type ore-bearing intrusive series to be used in the territories adjacent to Russia.

How to cite: Alekseev V.I. Type intrusive series of the Far East belt of lithium-fluoric granites and its ore content // Journal of Mining Institute. 2022. Vol. 255. p. 377-392. DOI: 10.31897/PMI.2022.21
Geology
  • Date submitted
    2022-02-24
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies

Article preview

Mineralogical, petrophysical and geochemical studies have been carried out to determine the sequence and formation conditions of uranium mineralization within the Litsa ore occurrence (Kola Region). Mineralogical studies show the following formation sequence of ore minerals: uraninite – sulfides – uranophane, coffinite, pitchblende. Two stages of uranium mineralization are distinguished: Th-U (1.85-1.75 Ga) and U (400-300 Ma). The distribution of physical properties of rocks in the area is consistent with the presence of two temporal stages in the formation of mineralization with different distribution and form of uranium occurrence in rocks. The factors that reduce rock anisotropy are the processes of migmatization and hydrothermal ore mineralization, which heal pores and cracks. Fluid inclusions in quartz studied by microthermometry and Raman spectroscopy contain gas, gas-liquid and aqueous inclusions of different salinity (1.7-18.4 wt.% NaCl-eq.). According to homogenization temperatures of inclusions in liquid phase, the temperature of the Paleoproterozoic and Paleozoic stages of uranium mineralization at the Litsa ore occurrence is ~ 300 and 200 °С, respectively. Correlations of the spatial distribution of elastic anisotropy index with an elevated radioactive background allow using this petrophysical feature as one of the prognostic criteria for uranium and complex uranium mineralization when carrying out uranium predictive work.

How to cite: Il’chenko V.L., Afanasieva E.N., Kaulina T.V., Lyalina L.M., Nitkina E.A., Mokrushina O.D. Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies // Journal of Mining Institute. 2022. Vol. 255. p. 393-404. DOI: 10.31897/PMI.2022.44
Geology
  • Date submitted
    2022-04-11
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Magma feeding paleochannel in the Monchegorsk ore region: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia)

Article preview

A comprehensive study of a 340 m thick lenticular-sheet body of ultramafic composition penetrated by structural well M-1 at a depth of about 2.2 km was accomplished. Its main volume is composed of plagioharzburgite; fine-grained rocks of norite and orthopyroxenite chilling zones are preserved on endocontacts. The rocks of the body are similar in composition to the rocks near the underlying ore-bearing layered intrusion – the Monchepluton. The age of intrusion of the ultramafic body is 2510 ± 9 Ma (U-Pb, ID-TIMS, zircon) and, taking into account analytical errors, is comparable with the formation period of the Monchepluton (2507-2498 Ma). According to the study of the Sm-Nd system in rocks and minerals, a positive value of the e Nd (+1.1) parameter was established, similar to that in dunites and chromitites of the Monchepluton. Based on these results, the ultramafic body penetrated at depth was assigned to the magma feeding paleochannel through which the ultramafic, weakly contaminated magma entered the overlying magma chamber. This body is a unique example of a magma-feeding system for the ore-bearing layered intrusion of Precambrian age.

How to cite: Smolkin V.F., Mokrushin A.V., Bayanova T.B., Serov P.A., Ariskin A.A. Magma feeding paleochannel in the Monchegorsk ore region: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia) // Journal of Mining Institute. 2022. Vol. 255. p. 405-418. DOI: 10.31897/PMI.2022.48
Geology
  • Date submitted
    2022-03-20
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Ophiolite association of Cape Fiolent (western part of the Mountainous Crimea) – the upper age constraint according to the U-Pb isotope dating of plagiorhyolites (Monakh Cliff)

Article preview

The article presents the results of U-Pb isotope dating (SHRIMP-II, VSEGEI, Saint Petersburg) of zircon crystals extracted from plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent in the western part of the Mountainous Crimea (southern suburb of Sevastopol). a concordant age estimate of 168.3±1.3 Ma was obtained from 20 zircon crystals. It exactly corresponds to the Bajocian/Bathonian boundary of the Middle Jurassic according to the International Chronostratigraphic Chart (February 2022 version). The available results of isotope dating of igneous rocks from the Mountainous Crimea, as well as their geochemical typification are synthesised. The plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent are spatially, and most likely paragenetically, associated with the wallrock (Cape Vinogradny) and ore (Heraclea Plateau on the cognominal peninsula) massive sulphide formations, as well as pillow basalts, gabbroids, and serpentinized hyperbasites, combined into the ophiolite association of Cape Fiolent. The obtained dating is the upper age limit for the entire ophiolite association of Cape Fiolent.

How to cite: Kuznetsov N.B., Romanyuk T.V., Strashko A.V., Novikova A.S. Ophiolite association of Cape Fiolent (western part of the Mountainous Crimea) – the upper age constraint according to the U-Pb isotope dating of plagiorhyolites (Monakh Cliff) // Journal of Mining Institute. 2022. Vol. 255. p. 435-447. DOI: 10.31897/PMI.2022.37
Geology
  • Date submitted
    2022-04-18
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

U-Pb (SHRIMP-RG) age of zircon from rare-metal (Li, Cs) pegmatites of the Okhmylk deposit of the Kolmozero-Voron’ya greenstone belt (northeast of the Fennoscandian shield)

Article preview

The results of isotopic and geochronological study of zircon from rare-metal pegmatites of the Okhmylk deposit are presented. There were no reliable data on the age of lepidolite-spodumene-pollucite pegmatites of this and the other deposits spatially located within the Archean Kolmozero-Voron’ya greenstone belt. The earlier estimates of the pegmatite age indicate a broad time range from 2.7 to 1.8 Ga. Zircon in the studied pegmatites is characterized by inner heterogeneity, where core and rim zones are distinguished. Minor changes are observed in the core zones, they have a spotted structure and contain numerous uranium oxide inclusions. According to X-ray diffraction analysis, zircon crystallinity is preserved completely in these areas. Complete recrystallization with modification of the original U-Pb isotopic system occurred in the zircon rims. New U-Pb (zircon) isotopic and geochronological data of 2607±9 Ma reflect the time of crystallization of pegmatite veins in the Okhmylk deposit. Isotopic data with ages of ~1.7-1.6 Ga indicate later hydrothermal alteration. The obtained results testify to the Neo-Archean age of the formation of the Okhmylk deposit 2.65-2.60 Ga, reflecting the global age of pegmatite formation and associated the world's largest rare-metal pegmatite deposits.

How to cite: Kudryashov N.M., Udoratina O.V., Kalinin A.A., Lyalina L.M., Selivanova E.A., Grove M.J. U-Pb (SHRIMP-RG) age of zircon from rare-metal (Li, Cs) pegmatites of the Okhmylk deposit of the Kolmozero-Voron’ya greenstone belt (northeast of the Fennoscandian shield) // Journal of Mining Institute. 2022. Vol. 255. p. 448-454. DOI: 10.31897/PMI.2022.41
Geology
  • Date submitted
    2022-04-17
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE)

Article preview

A study of the trace element composition of beryl varieties (469 SIMS analyses) was carried out. Red beryls are distinguished by a higher content of Ni, Sc, Mn, Fe, Ti, Cs, Rb, K, and B and lower content of Na and water. Pink beryls are characterized by a higher content of Cs, Rb, Na, Li, Cl, and water with lower content of Mg and Fe. Green beryls are defined by the increased content of Cr, V, Mg, Na, and water with reduced Cs. A feature of yellow beryls is the reduced content of Mg, Cs, Rb, K, Na, Li, and Cl. Beryls of various shades of blue and dark blue (aquamarines) are characterized by higher Fe content and lower Cs and Rb content. For white beryls, increased content of Na and Li has been established. Principal Component Analysis (PCA) for the CLR-transformed dataset showed that the first component separates green beryls from other varieties. The second component divides pink and red beryls. The stochastic neighborhood embedding method with t-distribution (t-SNE) with CLR-transformed data demonstrated the contrasting compositions of green beryls relative to other varieties. Red and pink beryls form the most compact clusters.

How to cite: Skublov S.G., Gavrilchik A.K., Berezin A.V. Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) // Journal of Mining Institute. 2022. Vol. 255. p. 455-469. DOI: 10.31897/PMI.2022.40
Geology
  • Date submitted
    2022-03-22
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Gold in biogenic apatites of the Baltic-Ladoga phosphorite basin

Article preview

The distribution of gold in biogenic apatites from the Ordovician deposits in the northwest of the East European Platform shows that the maximum concentration of gold in apatites is found within the Ladoga-Baltic suture zone. Gold mineralization has a superimposed character, which is confirmed by the dependence of the gold content on the size of apatite particles and a number of isotope geochemical systematics in biogenic apatites. Gold is present in the form of high fineness particles to 20 µm in size on the surface of biogenic apatite fragments (phosphate brachiopod shells and conodont elements) and is easily extracted. In 10 % of samples of biogenic apatites, the total content of rare earth elements is more than 1 wt.%.

How to cite: Felitsyn S.B., Alfimova N.A. Gold in biogenic apatites of the Baltic-Ladoga phosphorite basin // Journal of Mining Institute. 2022. Vol. 255. p. 470-475. DOI: 10.31897/PMI.2022.47
Geology
  • Date submitted
    2022-03-21
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Ti-Fe-Cr spinels in layered (stratified) complexes of the western slope of the Southern Urals: species diversity and formation conditions

Article preview

Materials on geochemistry and ore Fe-Ti-Cr mineralization of rocks composing layered (stratified) bodies of the western slope of the Southern Urals are presented. A detailed analysis showed similarity in the redistribution of REE, noble metals, and Fe-Ti-Cr mineralization of practically all parameters in rocks of the Misaelga and Kusin-Kopan complexes. It has been established that the parameters of metamorphism, which influenced components redistribution in Fe-Ti-Cr minerals of the layered complexes, correspond to Misaelga – T = <550-750 °С, P = 0.1-2.8 kbar, Kusin-Kopan – T = <550-630 °С, P = 0.3-0.7 kbar, and Shuidinsky complexes – T = <550-760 °С, P = 0.5-2.5 kbar. The result of modelling the melt crystallization process showed that the Kusin-Kopan complex is an intrusive body with an ultramafic horizon in the idealized cross-section. Due to collisional processes, the lower part of the intrusion has been detached from the upper part. The proposed structure of the Kusin-Kopan complex sharply increases its prospects for such types of minerals as platinum group minerals + sulphide copper-nickel mine-ralization and/or chromites.

How to cite: Kovalev S.G., Kovalev S.S. Ti-Fe-Cr spinels in layered (stratified) complexes of the western slope of the Southern Urals: species diversity and formation conditions // Journal of Mining Institute. 2022. Vol. 255. p. 476-492. DOI: 10.31897/PMI.2022.54
Geology
  • Date submitted
    2022-04-12
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Rare minerals of noble metals in the collection of the Mining Museum: new data

Article preview

Modern analytical methods (optical and electron microscopy, X-ray microanalysis) were used to study the unique samples of sulfide ores from the Norilsk ore field from the Mining Museum collections of Saint Petersburg Mining University. Samples containing rare minerals of silver and platinum-group metals (sobolevskite, urvantsevite, sperrylite, argentopentlandite, froodite, kotulskite, and others) were studied. The chemical composition, grain sizes, aggregates, and mineral associations of more than ten noble metal minerals have been refined. The efficiency of combining various methods of electron microscopy and X-ray microanalysis for studying samples of this type is shown. The results of the work made it possible to obtain high-quality images of rare minerals, to detail information on museum objects, and to compile their scientific description. The conducted research showed the relevance of studying museum objects from known deposits of complex genesis and mineral composition in order to find and describe the samples with rare minerals.

How to cite: Petrov D.A., Ryzhkova S.O., Gembitskaya I.M. Rare minerals of noble metals in the collection of the Mining Museum: new data // Journal of Mining Institute. 2022. Vol. 255. p. 493-500. DOI: 10.31897/PMI.2022.42
Geology
  • Date submitted
    2021-04-04
  • Date accepted
    2022-04-26
  • Date published
    2022-07-26

Vendian age of igneous rocks of the Chamberlain valley area (Northern part of the Wedel Jarlsberg Land, Svalbard Archipelago)

Article preview

The geological structure, structural relations with the underlying complexes, mineral composition, age and origin of sedimentary-volcanogenic and intrusive formations of the Chamberlain valley area (northern part of the Wedel Jarlsberg Land, Svalbard Archipelago) are considered. As a result of the studies, two stages of the Late Precambrian endogenous activity in this area have been identified. For the first time the Vendian ages (593-559 Ma) of intrusive (dolerites) and effusive (basalts, andesites, tuffs) rocks were determined by U-Pb-method (SHRIMP-II) for Svalbard Archipelago. At the same time, the Grenville ages for large bodies of gabbro-diorites, metadolerites bodies (1152-967 Ma), and metagranites (936 Ma) were determined for the first time for this area, which correlates well with the ages of magmatic formations obtained earlier in the southern part of Wedel Jarlsberg Land. A detailed petrographic and petrochemical characterization of all the described objects were compiled and the paleotectonic conditions of their formation were reconstructed. Based on these data, the Chemberlendalen series, which is dated to the Late Vendian, and the Rechurchbreen series, which the authors attribute to the Middle Riphean and correlate with the lower part of the Nordbucht series are distinguished. The data obtained indicate a two-stage Precambrian magmatism in this area of the Svalbard archipelago and, most importantly, provide evidence for the first time ever of endogenous activity on Svalbard in the Vendian time. This fact makes it possible to reconsider in the future the history of the formation of folded basement of the Svalbard archipelago and the nature of the geodynamic conditions in which it was formed.

How to cite: Sirotkin A.N., Evdokimov A.N. Vendian age of igneous rocks of the Chamberlain valley area (Northern part of the Wedel Jarlsberg Land, Svalbard Archipelago) // Journal of Mining Institute. 2022. Vol. 255. p. 419-434. DOI: 10.31897/PMI.2022.20