-
Date submitted2024-09-06
-
Date accepted2025-01-28
-
Date published2025-03-27
Results of aeromagnetic survey using unmanned aerial system at the Bunger Hills and Highjump Archipelago, Wilkes Land, East Antarctica
The paper focuses on the technique and results of an aeromagnetic survey conducted using a fixed-wing unmanned aerial system (UAS) in East Antarctica at the Bunger Hills and Highjump Archipelago (Wilkes Land) during the 69th Russian Antarctic Expedition. The above survey was carried out at a 250-meter distance between flight lines (scale 1:25,000) over the area of 600 km2 to increase the geological knowledge of the area. The magnetic anomaly map obtained after data processing is more detailed than any of known published geological maps of the area. The size of anomalies detected varies from dozens of meters up to large, kilometer-scale structures traced within the entire area under survey. The data analysis shows that the surveyed region is characterized by morphological heterogeneity and amplitude variability of anomalous magnetic field. Along with relatively calm zones one can observe strong gradient ones. Even the fluent analysis of aeromagnetic survey results proves their high information content. The UAS-based survey results demonstrate that the technique implemented is an important tool of applied geophysics and can effectively solve tasks of geological mapping in harsh weather conditions of Antarctica. It can adequately replace conventional aeromagnetic surveys that are now done using manned aircraft.
-
Date submitted2024-04-11
-
Date accepted2024-11-07
-
Date published2025-04-25
Thyristor booster device for voltage fluctuation reduction in power supply systems of ore mining enterprises
The article is devoted to solving the problem of voltage fluctuations in the power supply systems of ore mining enterprises. The connection of high-power consumers with abruptly variable operating mode (for example, high-voltage mining excavators) causes voltage fluctuations and sags, disabling electrical equipment, communication, and automation devices in the 6-10 kV distribution network, which disrupts technological processes, etc. The use of existing solutions and methods to reduce voltage variations caused by dynamic loads is not effective. To solve the problem, booster transformers with high-speed thyristor switches can be used to work out switching the control steps towards increasing or decreasing the voltage. The authors offer a new circuitry solution for a thyristor booster device (TBD) with a pulse-phase control method. The purpose of the research is to determine the control laws of TBD, which enable to effectively reduce voltage fluctuations from dynamic load in the power supply systems of mining enterprises. The article provides a schematic diagram of the TBD and describes the principle of operation of the device. Some modes of increasing and decreasing the output voltage of the TBD, as well as the basic mode (without voltage addition) are provided. Mathematical modeling of TBD control processes was carried out and adjustment characteristics were set taking into account the load power factor. On a simulation computer model of a 6 kV electric network with a dynamic load, the verification of the adjustment characteristics of TBD obtained during mathematical modeling was carried out. Based on the research results, the laws for regulating the output voltage of TBD were established. The TBD effective control range with normal permissible limits of odd harmonics have been determined. The conducted research will make it possible to implement the device control system.
-
Date submitted2024-04-16
-
Date accepted2024-09-24
-
Date published2024-11-12
Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources
The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.
-
Date submitted2024-05-03
-
Date accepted2024-10-14
-
Date published2024-11-12
Genetic geological model of diamond-bearing fluid magmatic system
The article proposes a genetic geological model of diamond deposit formation associated with kimberlites and lamproites. It is based on the synthesis of published data on diamond-bearing kimberlite systems and an original study of the ontogenetic features of diamond crystals. Deep diamond crystallization, its upward transportation and subsequent concentration in near-surface kimberlite-lamproite bodies and other rocks, including those brought to the surface by high-amplitude uplifts of crystalline basement rocks, are combined in a single system. An assumption is made about the primary sources of the Anabar placer diamonds. The possibility of hydrocarbon generation at mantle levels corresponding to diamond formation areas and their transportation to the upper crustal zones by a mechanism similar to the mantle-crust migration of diamond-bearing fluidized magmas is shown. The high rate of their upward movement allows transportation to the surface without significant loss as a result of dissolution in melts and sorption on the surface of mineral phases. The significant role of fluid dynamics at all stages of this system is noted.
-
Date submitted2023-07-07
-
Date accepted2023-12-27
-
Date published2024-08-26
Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method
Landslides are one of the most frequent natural disasters that cause significant damage to property in Vietnam, which is characterized by mountainous terrain covering three-quarters of the territory. In 17 northern mountainous provinces of the country, over 500 communes are at a high to very high landslide hazard. The main goal of this study was to establish landslide hazard maps and conduct a comparative evaluation of the efficiency of the methods employed in Tinh Tuc town, Cao Bang province. The landslide hazard assessment was carried out in this study using the combined Fractal-frequency ratio (FFR) and the Frequency ratio (FR) methods. The FR method is based on the actualist principle, which assumes that future landslides may be caused by the same factors that contributed to slope failure in the past and present. The FFR method is based on the determination of the fractal dimension, which serves as a measure of the landslide filling density in the study area. Eight landslide-related factors were considered and presented in cartographic format: elevation, distance to roads, slope, geology, distance to faults, land use, slope aspect, and distance to drainage. Determining the area under the receiver operating characteristic curve (ROC-AUC) and verification index (LRclass) was performed to assess the performance of prediction models and the accuracy of the obtained maps. As a result, five zones were identified for the study area, characterized by very low, low, moderate, high, and very high landslide hazards. The analysis of the reliability of the obtained landslide hazard maps using the AUC and LRclass indices revealed that the FFR model has a higher degree of reliability (AUC = 86 %, LRclass = 86 %) compared to the FR model (AUC = 72 %, LRclass = 73 %); therefore, its use is more effective.
-
Date submitted2024-06-12
-
Date accepted2024-07-18
-
Date published2025-04-25
Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities
- Authors:
- Ivan S. Tokarev
The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.
-
Date submitted2024-03-07
-
Date accepted2024-06-14
-
Date published2024-07-04
Anomaly detection in wastewater treatment process for cyber resilience risks evaluation
Timely detection and prevention of violations in the technological process of wastewater treatment caused by threats of different nature is a highly relevant research problem. Modern systems are equipped with a large number of technological sensors. Data from these sensors can be used to detect anomalies in the technological process. Their timely detection, prediction and processing ensures the continuity and fault tolerance of the technological process. The aim of the research is to improve the accuracy of detection of such anomalies. We propose a methodology for the identification and subsequent assessment of cyber resilience risks of the wastewater treatment process, which includes the distinctive procedure of training dataset generation and the anomaly detection based on deep learning methods. The availability of training datasets is a necessary condition for the efficient application of the proposed technology. A distinctive feature of the anomaly detection approach is a new method of processing input sensor data, which allows the use of computationally efficient analytical models with high accuracy of anomaly detection, and outperforms the efficiency of previously published methods.
-
Date submitted2024-02-01
-
Date accepted2024-05-02
-
Date published2025-04-25
Methodology for managing energy development of production facilities in the gas industry
- Authors:
- Anatolii A. Shapovalo
The current stage of Russia's development is characterized by dynamic changes in the operating conditions of gas industry enterprises, which leads, among other things, to significant adjustments in approaches to the development of energy production facilities. The article examines on the system level the ways to improve energy supply, taking into account the goals and objectives of the development of production facilities from the conditions of solving a single technological problem of the gas industry – high-quality gas supply to consumers. The optimal functioning of energy supply systems, taking into account the peculiarities of technological processes at production facilities, presupposes the development models coordination of production facilities energy complexes with the gas industry enterprises parameters based on an integrated unified information space at all stages of their life cycle. The structure of production facility energy complex and the connections of its elements with related systems are justified taking into account the purposes of their creation and the requirements for production facilities. Problem solving for each system element as well as the exchange of information between equivalent systems is done on the basis of a developed hierarchy of optimization problems adjusted depending on the type of tasks of energy supply improvement of a production facility. Determining the values of parameters and indicators of energy complexes, as well as optimizing the lists and content of work to improve the energy supply of production facilities, is planned to be carried out in accordance with the methodology under consideration using a set of mathematical models.
-
Date submitted2023-07-07
-
Date accepted2023-09-20
-
Date published2024-02-29
Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching
One of the techniques used in extracting gold in small-scale gold mining is mercury amalgamation. However, the use of mercury presents significant health and environmental hazards, as well as suboptimal efficiency in gold extraction. This study explores the possibility of the use of rice husk as a prototype adsorbent for mercury removal from its leaching in mining environments. To support the analysis, the rice husk adsorbent was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, atomic absorption spectrophotometers and Brunauer − Emmett − Teller analysis. To investigate the removal of Hg from aqueous solutions, batch adsorption experiments were conducted, and the efficiency was optimized under various parameters such as contact time, rice husk dosage, and initial concentration of mercury. Kinetic and isotherm investigations were also carried out to gain a better understanding of the adsorption properties. The kinetic adsorption was analyzed using the pseudo-first-order and pseudo-second-order. Furthermore, the isotherm adsorption was analyzed using ten adsorption isotherm models (i.e., Langmuir, Freundlich, Temkin, Dubinin – Radushkevich, Flory – Huggins, Fowler – Guggenheim, Hill – de Boer, Jovanovic, Harkin – Jura, and Halsey). The amount of mercury absorption increased with increasing contact time, adsorbent mass, and initial concentration of mercury. The pseudo-second-order kinetic model is the best model that can be applied to describe the adsorption process. Analysis of the adsorption results obtained shows that the adsorption pattern is explained through the formation of a monolayer without any lateral interaction between the adsorbate and adsorbent. In addition, the formation of multilayers due to inhomogeneous pore distribution also occurs which causes a pore filling mechanism. We found that the isotherm phenomena are near the Jovanovic models with the maximum adsorption capacity) of rice husk found to be 107.299 mg/g. As a result, rice husk could be a promising option for wastewater treatment due to its fast and efficient removal capacity, as well as its affordability and eco-friendliness. The predicted thermodynamic studies using the Flory – Huggins isotherm model show that the adsorption process is endothermic, spontaneous, and physisorption. The impact shows that the utilization of rice husk can be used and fit for the current issues in the sustainable development goals (SDGs).
-
Date submitted2023-04-14
-
Date accepted2023-08-02
-
Date published2023-08-28
A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey
The methodology of building a digital elevation model based on the results of aerial photogrammetric survey from an unmanned aircraft is proposed, which is based on the division of the initial point cloud into equal segments. This allows, having made an assumption of the linear character of change of height of points in a separate segment, to approximate them by separate planes. RMS errors of the models from the survey data were calculated according to the scattering of the points in relation to the approximating surfaces, which made it possible to reveal the dependence of the model construction error relative to the sizes of their constituent segments, as well as to propose a method for filtering the cells containing outliers with respect to the expected model error. The proposed method was tested on the models of three mining objects – limestone quarry, phosphogypsum dump, and peat cut. The experimental results showed a multiple reduction in model error compared to standard DEM models providing the required accuracy for mining documentation.
-
Date submitted2022-01-20
-
Date accepted2022-07-21
-
Date published2023-12-25
Tribodynamic aspects of the resource of electric submersible vane pumps for oil production
The operation of electric submersible vane pumps for oil production is accompanied by the presence of solid particles, corrosive substances, asphalt-resin-paraffin deposits in the reservoir fluid, leading to changes in performance characteristics and equipment failures. The reduction of the resource as a result of this is accompanied by an increase in the costs of repair and replacement of equipment. The main processes that negatively affect the failure are the wear of the seals of the working stages, the pump plain bearings and vibration, the level of which can significantly exceed the initial level. A test bench and methodology for testing pump sections for wear in water with an abrasive and simultaneous registration of vibration characteristics have been developed. Two main forms of wear of radial seals have been identified – one-sided and equal-dimensional. The one-sided form of sleeve wear is caused by synchronous shaft precession, whereas the equal-dimensional one is an asynchronous precession, and the vibration level increases with increasing wear. The wear distribution of radial seals along the length of the pump correlates with the shape of the elastic shaft line. The wear of the axial seals does not significantly increase the vibration level. During wear the frequency spectrum of vibrations changes; there occurs a frequency that can serve as a diagnostic sign of ultimate wear of the pump. The calculated dependence of the vibration velocity on the wear of the radial seals of the working stages is obtained, which makes it possible to predict the onset of a failure of functioning.
-
Date submitted2021-05-12
-
Date accepted2022-05-11
-
Date published2023-07-19
Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption
The article considers a cybernetic model for the price-dependent demand response (DR) consumed by an underground mining enterprise (UGME), in particular, the main fan unit (MFU). A scheme of the model for managing the energy consumption of a MFU in the DR mode and the implementation of the cybernetic approach to the DR based on the IoT platform are proposed. The main functional requirements and the algorithm of the platform operation are described, the interaction of the platform with the UGME digital model simulator, on which the processes associated with the implementation of the technological process of ventilation and electricity demand response will be simulated in advance, is shown. The results of modeling the reduction in the load on the MFU of a mining enterprise for the day ahead are given. The presented solution makes it possible to determine in advance the necessary power consumption for the operation of the main power supply unit, manage its operation in an energy-saving mode and take into account the predicted changes in the planned one (e.g., when men hoisting along an air shaft) and unscheduled (e.g., when changing outdoor air parameters) modes. The results of the study can be used to reduce the cost of UGME without compromising the safety of technological processes, both through the implementation of energy-saving technical, technological or other measures, and with the participation of enterprises in the DR market. The proposed model ensures a guaranteed receipt of financial compensation for the UGME due to a reasonable change in the power consumption profile of the MFU during the hours of high demand for electricity, set by the system operator of the Unified Energy System.
-
Date submitted2023-07-19
-
Date accepted2023-07-19
-
Date published2023-07-19
Energy efficiency in the mineral resources and raw materials complex
Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator
In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.
-
Date submitted2022-08-10
-
Date accepted2023-02-28
-
Date published2024-02-29
Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors
The task of sludge removal to the surface during construction of directional and horizontal wells and strongly curved radial channels is relevant. For stable operation of technical system “Perfobore”, it is proposed to use a circulating sub that ensures efficient cleaning of channel wellbore from the drilled rock. Two schemes of technical system “Perfobore” are considered, consisting of two seven-meter coiled tubing, a positive displacement motor, a bit and one circulating sub in the first scheme and two subs in the second scheme. For each of the schemes CFD modeling was implemented to determine values of pressure and speed. It was found out that the use of two circulating subs in the assembly is more efficient. In order to confirm the numerical experiment, bench tests were carried out. It was determined that the designed circulating sub can eject up to 25 % of pumped drilling fluid. The bench tests of full-size technical system “Perfobore” for drilling 14-meter channels with two circulating subs showed that the axial load on positive displacement motor produced by hydraulic loader was 3000 N and pressure drop depending on flow rate was 1.5-2.0 MPa. This allows the motor to operate at maximum power.
-
Date submitted2022-01-21
-
Date accepted2022-11-14
-
Date published2023-08-28
Strategy of mine ventilation control in optimal mode using fuzzy logic controllers
- Authors:
- Aleksei V. Kashnikov
- Yuri V. Kruglov
The issues related to improving the efficiency of automatic ventilation control systems of mines that regulate the air supply to the mine in accordance with the need are considered. During the tests of such a system in the 3RU mine of OAO Belaruskali, the shortcomings of its existing, implementation, associated with the incorrect choice of the most difficult-to-ventilate direction, were revealed. The possibilities of implementing a control strategy, in which the system automatically determines the optimal configuration of the operating modes of fans and regulators, are demonstrated. As an alternative to the implemented algorithms, it is proposed to use a fuzzy control device to account for the nonlinearity of the dependence of the input and output parameters of ventilation equipment and to set the conditions for the optimal operating mode of the system in a declarative form. To assess the effectiveness of the proposed approach, the data of simulation modeling of the current ventilation mode and the transition from one ventilation mode to another are analyzed with comparison with the actual data of the system operation. The simulation results show that the use of an upgraded control scheme for the main ventilation fan based on fuzzy logic in the implementation of automatic ventilation control systems makes it possible to eliminate the possibility of a shortage of fresh air in the regulated directions of its movement, as well as excessive power consumption of the main ventilation fan.
-
Date submitted2022-10-17
-
Date accepted2023-02-13
-
Date published2023-04-25
Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste
Due to the constantly deteriorating environmental situation in the regions with mining enterprises, the article considers the topical issue of disposing the maximum possible volume of waste from the mining and processing of low-grade ferrous ores through the creation of an effective underground environmental geotechnology. Traditional procedure with descending mining of reserves with a caving system does not allow waste to be disposed of in a gob. The idea is to use geotechnology based on the ascending order of mining the ore body, room excavation, leaving truncated pillars, and staggered arrangement of adjacent rooms in height, which makes it possible to form containers for waste disposal in the form of a cementless backfill. The main characteristics of the proposed procedure are investigated and compared with the traditional procedure of low-grade iron ores mining. It was established that from the point of view of the complete extraction of reserves and the unit costs for the preparatory-development operations, the processes are comparable, while in terms of the mining quality, the proposed option is much more efficient. Evaluation of environmental geotechnology by the criterion of waste disposal, performed according to the proposed methodology, showed that the combination of these technical solutions ensures the placement in the formed gob from 80 to 140% of all waste generated during the mining and beneficiation of low-grade iron ores.
-
Date submitted2022-06-28
-
Date accepted2023-01-19
-
Date published2023-02-27
Influence of mining rent on the efficiency of using natural potential: the paradox of plenty and its Russian specifics
- Authors:
- Arunas A. Lapinskas
The most powerful potential of Russia's natural resources is only partially realized, and determining the reasons for the insufficient efficiency of its use is a current research topic. The exploitation of mineral resources that bring mining rent (primarily oil and gas) gives rise to the so-called “paradox of plenty” (PP), which in some cases manifests itself as a significant slowdown in economic development. The purpose of the article is to clarify the signs, degree and forms of PP manifestation and related problems (“resource curse”, “oil curse”, etc.) in the Russian economy. Since the causes of these phenomena are usually associated with rent extraction and peculiarities of the institutional structure of the economy, the works of leading economists who support the theories of “rent-oriented behavior” and the role of public institutions in the process of the PP emergence were critically analyzed. To determine the signs and degree of PP manifestation and related problems, an analysis of determining the shares of oil and gas in the structure of exports, revenues from their sale in the federal budget, and oil and gas products in the structure of GDP, was made. It is concluded that there are no sufficient grounds for ascertaining clear signs of a “rent-oriented” Russian economy and a “resource curse”; important counteracting factors that refute the unambiguous conclusions about the high degree of PP impact on the Russian economy were identified. The author's interpretation of the role of public institutions, the factors of formation and forms of PP manifestation, the specifics of differential mining rent and its role in the formation of PP are proposed; options for solving problems generated by PP – directions for improving the tax system in the field of oil and gas, etc.; substantiation of the need to develop a strategic state program for diversifying the sectoral structure of the Russian economy; directions for adjusting economic policy in the field of oil and gas industry development, etc.
-
Date submitted2022-04-12
-
Date accepted2022-11-17
-
Date published2022-12-29
Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)
Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.
-
Date submitted2022-09-30
-
Date accepted2022-11-28
-
Date published2022-12-29
Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies
The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.
-
Date submitted2022-09-15
-
Date accepted2022-11-17
-
Date published2022-12-29
Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production
The oil and gas industry has been an integral and fundamental sector of the Russian economy for the past few years. The main problems of this industry have traditionally been the deteriorating structure of oil reserves; depreciation of main assets; slowdown and decline in oil production. Recently these have been complicated by a number of new negative trends related to underinvestment, limited financial resources, deteriorating access to new equipment and technologies. The task of the research is to make a comprehensive assessment of hydraulic fracturing technology during well construction and to increase the recovery and intensification of hydrocarbons production. In this research, modeling techniques were used to assess the productivity of each fracture. Geophysical methods (seismic survey) were used to determine the geomechanical properties of the formation. Comprehensive assessment of hydraulic fracturing technology during well construction was carried out, which allowed to increase vertical permeability and unite disparate parts of the reservoir in practice, and to determine the development efficiency of the hydrocarbon field.
-
Date submitted2022-11-06
-
Date accepted2022-11-29
-
Date published2022-12-29
Technological sovereignty of the Russian Federation fuel and energy complex
- Authors:
- Oleg V. Zhdaneev
The review to achieve technological sovereignty of the Russian fuel and energy complex (FEC) in the ongoing geopolitical situation is presented in the article. The main scope has been to identify the key technology development priorities, restrictions and internal resources to overcome these utilizing the developed by the author the innovative methodology that consists of novel approaches to calculate level of local content, digitalization, business continuity andinteractions with military-industrial complex. Some organizational changes have been proposed to intensify the development of hi-tech products for the FEC and related industries, including establishment of the state committee for science and technology and the project office of lead engineers for the critical missing technologies. Two successful examples to utilize the described in the paper methodology is presented: the first domestic hydraulic fracturing fleet and polycrystalline diamond compact cutter bit inserts.
-
Date submitted2022-04-05
-
Date accepted2022-07-21
-
Date published2022-11-10
Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines)
- Authors:
- Vladimir P. Zubov
- Le Quang Phuc
It is shown that the creation of the variants of resource-saving systems for the development of long-column mining is one of the main directions for improving the technological schemes for mining operations in the mines of the Kuang Nin coal basin. They provide a reduction in coal losses in the inter-column pillars and the cost of maintaining preliminary workings fixed with anchorage. The implementation of these directions is difficult (and in some cases practically impossible) when tight rocks are lying over the coal seam, prone to significant hovering in the developed space. In the Quang Ninh basin, 9-10 % of the workings are anchored, the operational losses of coal reach 30 % or more; up to 50 % of the workings are re-anchored annually. It is concluded that the real conditions for reducing coal losses and the effective use of anchor support as the main support of reusable preliminary workings are created when implementing the idea put forward at the St. Petersburg Mining University: leaving the coal pillar of increased width between the reused mine working and the developed space and its subsequent development on the same line with the stoping face simultaneously with the reclamation of the reused mine working.
-
Date submitted2022-04-20
-
Date accepted2022-07-21
-
Date published2022-11-03
Iron ore beneficiation technologies in Russia and ways to improve their efficiency
- Authors:
- Aleksei E. Pelevin
Increasing the efficiency of crushing circuits is associated with a decrease in the particle size of finely crushed ore and the use of dry magnetic separation of crushed ore. Reducing grinding costs is achieved by using drum mills jointly with mills of other designs. The use of automation systems, slurry demagnetization, technologies with staged concentrate separation, and beneficiation and fine screening in a closed grinding cycle lead to a reduction in grinding costs. The main industrial technology for improving the quality of concentrate is its additional beneficiation using regrinding, fine screening, flotation, and magnetic-gravity separators. Increasing the integrated use of iron ore raw materials is associated with an increase in the yield of iron concentrate and the production of hematite concentrate during the beneficiation of hematite-magnetite ores and ilmenite concentrate during the beneficiation of titanomagnetite ores. Incremented concentrate yield is possible by using magnetic separators with an increased magnetic induction up to 0.25-0.5 T in the first stages of beneficiation. To obtain hematite and ilmenite concentrates, combined technologies can be used, including fine screening, high-gradient magnetic, gravity, flotation, and electrical separation.
-
Date submitted2022-06-27
-
Date accepted2022-09-09
-
Date published2022-11-03
Study of the composition and properties of the beneficiation tailings of currently produced loparite ores
The increase in demand for rare earth metals and the depletion of natural resources inevitably causes the need to search for alternative unconventional sources of rare metal raw materials. The article presents the results of a study of the composition and properties of the beneficiation tailings of currently produced loparite ores. Sieve, mineralogical, chemical, and radionuclide analyses were carried out. The average content of loparite in tailings was determined. Using scanning electron microscopy, minerals-concentrators of rare earth elements in the loparite ore beneficiation tailings were diagnosed. The distribution of valuable components and thorium in the tailings was determined depending on the particle size class. The radium-thorium nature of radioactivity was established, the values of the effective specific activity of the samples were calculated. We concluded that it is necessary to develop an integrated technology for processing the beneficiation tailings of loparite ore, due to the complex and heterogeneous mineral and chemical composition of the tailings material.