Submit an Article
Become a reviewer

Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching

Authors:
Asep B. D. Nandiyanto1
Willy C. Nugraha2
Intan Yustia3
Risti Ragadhita4
Meli Fiandini5
Hanny Meirinawati6
Diana R. Wulan7
About authors
  • 1 — Ph.D., Dr.Sci. Professor Universitas Pendidikan Indonesia ▪ Orcid
  • 2 — Ph.D., Dr.Sci. Researcher Pusat Riset Lingkungan dan Teknologi Bersih, Badan Riset dan Inovasi Nasional ▪ Orcid
  • 3 — Researcher Universitas Pendidikan Indonesia ▪ Orcid
  • 4 — Researcher Universitas Pendidikan Indonesia ▪ Orcid
  • 5 — Researcher Universitas Pendidikan Indonesia ▪ Orcid
  • 6 — Researcher Pusat Riset Lingkungan dan Teknologi Bersih, Badan Riset dan Inovasi Nasional ▪ Orcid
  • 7 — Researcher Pusat Riset Lingkungan dan Teknologi Bersih, Badan Riset dan Inovasi Nasional ▪ Orcid
Date submitted:
2023-07-07
Date accepted:
2023-09-27
Date published:
2023-11-29

Abstract

One of the techniques used in extracting gold in small-scale gold mining is mercury amalgamation. However, the use of mercury presents significant health and environmental hazards, as well as suboptimal efficiency in gold extraction. This study explores the possibility of the use of rice husk as a prototype adsorbent for mercury removal from its leaching in mining environments. To support the analysis, the rice husk adsorbent was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, atomic absorption spectrophotometers and Brunauer − Emmett − Teller analysis. To investigate the removal of Hg from aqueous solutions, batch adsorption experiments were conducted, and the efficiency was optimized under various parameters such as contact time, rice husk dosage, and initial concentration of mercury. Kinetic and isotherm investigations were also carried out to gain a better understanding of the adsorption properties. The kinetic adsorption was analyzed using the pseudo-first-order and pseudo-second-order. Furthermore, the isotherm adsorption was analyzed using ten adsorption isotherm models (i.e., Langmuir, Freundlich, Temkin, Dubinin – Radushkevich, Flory – Huggins, Fowler – Guggenheim, Hill – de Boer, Jovanovic, Harkin – Jura, and Halsey). The amount of mercury absorption increased with increasing contact time, adsorbent mass, and initial concentration of mercury. The pseudo-second-order kinetic model is the best model that can be applied to describe the adsorption process. Analysis of the adsorption results obtained shows that the adsorption pattern is explained through the formation of a monolayer without any lateral interaction between the adsorbate and adsorbent. In addition, the formation of multilayers due to inhomogeneous pore distribution also occurs which causes a pore filling mechanism. We found that the isotherm phenomena are near the Jovanovic models with the maximum adsorption capacity) of rice husk found to be 107.299 mg/g. As a result, rice husk could be a promising option for wastewater treatment due to its fast and efficient removal capacity, as well as its affordability and eco-friendliness. The predicted thermodynamic studies using the Flory – Huggins isotherm model show that the adsorption process is endothermic, spontaneous, and physisorption. The impact shows that the utilization of rice husk can be used and fit for the current issues in the sustainable development goals (SDGs).

Keywords:
gold mining rice husk particle technology mercury leaching adsorption SDGs
Online First

References

  1. Meutia A.A., Lumowa R., Sakakibara M. Indonesian Artisanal and Small-Scale Gold Mining – A Narrative Literature Review // International Journal of Environmental Research and Public Health. 2022. Vol. 19. Iss. 7. № 3955. DOI: 10.3390/ijerph19073955
  2. Teknologi Pengolahan Emas Pada Pertambangan Emas Skala Kecil di Indonesia. Buku 4 / Ed. by B.D.Krisnayanti, A.S.Probiyantono. Jakarta: UNDP Indonesia, 2020. 17 p. URL: www.goldismia.org/sites/default/files/2020-12/View%20Buku%204%20%281%29.pdf (дата обращения 25.10.2023).
  3. Manzila A.N., Moyo T., Petersen J. A Study on the Applicability of Agitated Cyanide Leaching and Thiosulphate Leaching for Gold Extraction in Artisanal and Small-Scale Gold Mining // Minerals. 2022. Vol. 12. Iss. 10. № 1291. DOI: 10.3390/min12101291
  4. Green C.S., Lewis P.J., Wozniak J.R. et al. A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system // The Science of The Total Environment. 2019. Vol. 647. P. 400-410. DOI: 10.1016/j.scitotenv.2018.07.418
  5. Bashir A., Malik L.A., Ahad S. et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods // Environmental Chemistry Letters. 2019. Vol. 17. Iss. 2. P. 729-754. DOI: 10.1007/s10311-018-00828-y
  6. Karwowska B., Sperczyńska E. Organic Matter and Heavy Metal Ions Removal from Surface Water in Processes of Oxidation with Ozone, UV Irradiation, Coagulation and Adsorption // Water. 2022. Vol. 14. Iss. 22. № 3763. DOI: 10.3390/w14223763
  7. Hua Kang, Xu Xueliu, Luo Zhiping et al. Effective Removal of Mercury Ions in Aqueous Solutions: A Review // Current Nanoscience. 2020. Vol. 16. Iss. 3. P. 363-375. DOI: 10.2174/1573413715666190112110659
  8. Ying Li, Yangxian Liu, Wei Yang et al. Adsorption of elemental mercury in flue gas using biomass porous carbons modified by microwave/hydrogen peroxide // Fuel. 2021. Vol. 291. № 120152. DOI: 10.1016/j.fuel.2021.120152
  9. Saleh T.A., Tuzen M., Sarı A. Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis // Journal of Environmental Management. 2018. Vol. 211. № 323-333. DOI: 10.1016/j.jenvman.2018.01.050
  10. Xiaodong Yang, Yongshan Wan, Yulin Zheng et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review // Chemical Engineering Journal. 2019. Vol. 366. P. 608-621. DOI: 10.1016/j.cej.2019.02.119
  11. Sanka P.M. Application of rice and corn husk biochar for removal of heavy metal ions from industrial wastewater: Dissertation. NM-AIST. Aruska, Tanzania, 2020. 51 p. URL: www.dspace.nm-aist.ac.tz/handle/20.500.12479/968 (дата обращения 25.10.2023).
  12. Kwikima M.M., Chebude Y., Meshesha B.T. Kinetics, adsorption isotherms, thermodynamics, and desorption studies of cadmium removal from aqueous solutions using bamboo sawdust/rice husk biochar // Biomass Conversion and Biorefinery. 2023. Vol. 13. Iss. 11. P. 9367-9379. DOI: 10.1007/s13399-022-03472-3
  13. Lala M.A., Ntamu T.E., Adesina O.A. et al. Adsorption of hexavalent chromium from aqueous solution using cationic modified rice husk: Parametric optimization via Taguchi design approach // Scientific African. 2023. Vol. 20. № e01633. DOI: 10.1016/j.sciaf.2023.e01633
  14. Peng Zhao, Zhanbin Huang, Ping Wang, An Wang. Comparative study on high-efficiency Pb(II) removal from aqueous solutions using coal and rice husk based humic acids // Journal of Molecular Liquids. 2023. Vol. 369. № 120875. DOI: 10.1016/j.molliq.2022.120875
  15. Putri S.E., Hasri, Side S. et al. Synthesis of Metasilicate Gel from Rice Husk and Its Application as Medium of Growth Single Crystal Calcium Tartrate Tetrahydrate (CaC4H4O6.4H2O) // Joint Conference on Green Engineering Technology & Applied Computing, 4-5 February 2019, Bangkok, Thailand. IOP Conference Series: Materials Science and Engineering, 2019. Vol. 551. № 012112. DOI: 10.1088/1757-899X/551/1/012112
  16. Raychaudhuri A., Behera M. Ceramic membrane modified with rice husk ash for application in microbial fuel cells // Electrochimica Acta. 2020. Vol. 363. № 137261. DOI: 10.1016/j.electacta.2020.137261
  17. Ababaii M.A., Gilani N., Pasikhani J.V. Modification of Rice Husk with Ultrasound-Assisted Inorganic Treatment and Its Application for Catalytic Hydrogen Production // BioEnergy Research. 2023. 11 p. DOI: 10.1007/s12155-023-10643-1
  18. Nandiyanto A.B.D., Ragadhita R., Girsang G.C.S. et al. Effect of palm fronds and rice husk composition ratio on the mechanical properties of composite-based brake pad // Moroccan Journal of Chemistry. 2022. Vol. 10. № 4. P. 663-677. DOI: 10.48317/IMIST.PRSM/morjchem-v10i4.34291
  19. Shukla N., Sahoo D., Remya N. Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment // Journal of Cleaner Production. 2019. Vol. 235. P. 1073-1079. DOI: 10.1016/j.jclepro.2019.07.042
  20. Yisong Wang, He Jia, Peng Chen et al. Synthesis of La and Ce modified X zeolite from rice husk ash for carbon dioxide capture // Journal of Materials Research and Technology. 2020. Vol. 9. Iss. 3. P. 4368-4378. DOI: 10.1016/j.jmrt.2020.02.061
  21. Lazzari L.K., Zimmermann M.V.G., Perondi D. et al. Production of Carbon Foams from Rice Husk // Materials Research. 2019. Vol. 22. Suppl. 1. № e20190427. DOI: 10.1590/1980-5373-MR-2019-0427
  22. Daulay A., Andriayani, Marpongahtun, Gea S. Synthesis and application of silicon nanoparticles prepared from rice husk for lithium-ion batteries // Case Studies in Chemical and Environmental Engineering. 2022. Vol. 6. № 100256. DOI: 10.1016/j.cscee.2022.100256
  23. Hiroyuki Muramatsu, Yoong Ahm Kim, Kap-Seung Yang et al. Rice Husk-Derived Graphene with Nano-Sized Domains and Clean Edges // Small. 2014. Vol. 10. Iss. 14. P. 2766-2770. DOI: 10.1002/smll.201400017
  24. Adam F., Appaturi J.N., Thankappan R., Nawi M.A.M. Silica–tin nanotubes prepared from rice husk ash by sol–gel method: Characterization and its photocatalytic activity // Applied Surface Science. 2010. Vol. 257. Iss. 3. P. 811-816. DOI: 10.1016/j.apsusc.2010.07.070
  25. Khan K., Ullah M.F., Shahzada K. et al. Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar // Construction and Building Materials. 2020. Vol. 258. № 119589. DOI: 10.1016/j.conbuildmat.2020.119589
  26. Rajanna S.K., Kumar D., Vinjamur M., Mukhopadhyay M. Silica Aerogel Microparticles from Rice Husk Ash for Drug Delivery // Industrial & Engineering Chemistry Research. 2015. Vol. 54. Iss. 3. P. 949-956. DOI: 10.1021/ie503867p
  27. Olugbemide A.D., Likozar B. Assessment of Liquid and Solid Digestates from Anaerobic Digestion of Rice Husk as Potential Biofertilizer and Nutrient Source for Microalgae Cultivation // Processes. 2022. Vol. 10. Iss. 5. № 1007. DOI: 10.3390/pr10051007
  28. Tien-Duc Pham, Thi-Mai-Anh Le, Thi-My-Quynh Pham et al. Synthesis and Characterization of Novel Hybridized CeO2@SiO2 Nanoparticles Based on Rice Husk and Their Application in Antibiotic Removal // Langmuir. 2021. Vol. 37. Iss. 9. P. 2963-2973. DOI: 10.1021/acs.langmuir.0c03632
  29. Khu Le Van, Thuy Luong Thi Thu. Preparation of Pore-Size Controllable Activated Carbon from Rice Husk Using Dual Activating Agent and Its Application in Supercapacitor // Journal of Chemistry. 2019. Vol. 2019. № 4329609. DOI: 10.1155/2019/4329609
  30. Kamari S., Ghorbani F. Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM–41 // Biomass Conversion and Biorefinery. 2021. Vol. 11. Iss. 6. P. 3001-3009. DOI: 10.1007/s13399-020-00637-w
  31. Giraldo S., Robles I., Ramirez A. et al. Mercury removal from wastewater using agroindustrial waste adsorbents // SN Applied Sciences. 2020. Vol. 2. Iss. 6. № 1029. DOI: 10.1007/s42452-020-2736-x
  32. Al-Yaari M., Saleh T.A. Mercury Removal from Water Using a Novel Composite of Polyacrylate-Modified Carbon // ACS omega. 2022. Vol. 7. Iss. 17. P. 14820-14831. DOI: 10.1021/acsomega.2c00274
  33. Nandiyanto A.B.D., Oktiani R., Ragadhita R. How to read and interpret FTIR spectroscope of organic material // Indonesian Journal of Science and Technology. 2019. Vol. 4. № 1. P. 97-118. DOI: 10.17509/ijost.v4i1.15806
  34. Tariq M., Durrani A.I., Farooq U., Tariq M. Efficacy of spent black tea for the removal of nitrobenzene from aqueous media // Journal of Environmental Management. 2018. Vol. 223. P. 771-778. DOI: 10.1016/j.jenvman.2018.06.080
  35. Rengga W.D.P., Sediawan W.B., Imani N.A.C. et al. Adsorption Studies of Rice Husk-Based Silica/Carbon Composite // EKSAKTA: Journal of Sciences and Data Analysis. 2020. Vol. 1. Iss. 2. P. 98-104. DOI: 10.20885/EKSAKTA.vol1.iss2.art1
  36. Xiaoli Guo, Menghong Li, Aijv Liu et al. Adsorption Mechanisms and Characteristics of Hg2+ Removal by Different Fractions of Biochar // Water. 2020. Vol. 12. Iss. 8. № 2105. DOI: 10.3390/w12082105
  37. Tokay B., Akpınar I. A comparative study of heavy metals removal using agricultural waste biosorbents // Bioresource Technology Reports. 2021. Vol. 15. № 100719. DOI: 10.1016/j.biteb.2021.100719
  38. Gutierrez I.R. Evaluación de los cambios en los parámetros fisicoquímicos del suelo procedente de San Joaquín, Querétaro; después del tratamiento electrocinético para la remoción de mercurio: Tesis doctoral. Mexico: Centro de Investigación y Desarrollo Tecnológico en Electroquímica, 2015. URL: www.lareferencia.info/vufind/Record/MX_e7e02b542beacd21972161cd720c5b76 (дата обращения 25.10.2023).
  39. Songnan Li. Combustion synthesis of porous MgO and its adsorption properties // International Journal of Industrial Chemistry. 2019. Vol. 10. Iss. 1. P. 89-96. DOI: 10.1007/s40090-019-0174-7
  40. Jabar J.M., Odusote Y.A., Alabi K.A., Ahmed I.B. Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent // Applied Water Science. 2020. Vol. 10. Iss. 6. № 136. DOI: 10.1007/s13201-020-01221-3
  41. Boulaiche W., Hamdi B., Trari M. Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies // Applied Water Science. 2019. Vol. 9. Iss. 2. № 39. DOI: 10.1007/s13201-019-0926-8
  42. Metz P.C. Total Scattering Analysis of Disordered Nanosheet Materials: A Thesis Submitted To The Faculty Of Alfred University In Partial Fulfillment Of The Requirements For The Degree Of Doctor Of Philosophy In Ceramic Engineering. New York: Alfred University, 2017. 157 p. URL: www.s3-eu-west-1.amazonaws.com/pfigshare-u-files/8231207/42017_Metz_Thesis_Final.pdf (дата обращения 25.10.2023).
  43. Yurdakal S., Garlisi C., Özcan L. et al. Chapter 4 – (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV–Vis, Photoluminescence, and Electrochemical Characterizations // Heterogeneous Photocatalysis. Elsevier, 2019. P. 87-152. DOI: 10.1016/B978-0-444-64015-4.00004-3
  44. Thommes M., Kaneko K., Neimark A.V. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Applied Chemistry. 2015. Vol. 87. № 9-10. P. 1051-1069. DOI: 10.15.15/pac-2014-1117
  45. Kumar K.V., Gadipelli S., Wood B. et al. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials // Journal of Materials Chemistry A. 2019. Vol. 7. Iss. 17. P. 10104-10137. DOI: 10.1039/C9TA00287A
  46. Kolar P., Jin H. Baseline characterization data for raw rice husk // Data in brief. 2019. Vol. 25. № 104219. DOI: 10.1016/j.dib.2019.104219
  47. Ahmaruzzaman M., Gupta V.K. Rice Husk and Its Ash as Low-Cost Adsorbents in Water and Wastewater Treatment // Industrial & Engineering Chemistry Research. 2011. Vol. 50. Iss. 24. P. 13589-13613. DOI: 10.1021/ie201477c
  48. Al-Yaari M., Saleh T.A., Saber O. Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: kinetic, isotherm, and thermodynamic studies // RSC Advances. 2021. Vol. 11. Iss. 1. P. 380-389. DOI: 10.1039/D0RA08882J
  49. Zili Tang, Hui Wu, Qingbo Wen, Liming Hu. Effect of Adsorbent Dosage to Adsorbate Concentration Ratio on the Adsorption of Cd(II) on Coal Gangue // Proceedings of the 8th International Congress on Environmental Geotechnics, 28 October – 1 November 2018, Hangzhou, China. Springer, 2019. Vol. 1. P. 428-435. DOI: 10.1007/978-981-13-2221-1_45
  50. Akpomie K.G., Eluke L.O., Ajiwe V.I.E., Alisa C.O. Attenuation Kinetics and Desorption Performance of artocarpus altilis Seed Husk for Co (II), Pb (II) and Zn (II) Ions // Iranian Journal of Chemistry and Chemical Engineering. 2018. Vol. 37. Iss. 3 (89). P. 171-186. DOI: 10.30492/IJCCE.2018.30205
  51. Syafiuddin A., Fulazzaky M.A. Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi // Biotechnology Reports. 2021. Vol. 29. № e00573. DOI: 10.1016/j.btre.2020.e00573
  52. Jain N., Dwivedi M.K., Waskle A. Adsorption of Methylene Blue Dye from Industrial Effluents Using Coal Fly Ash // International Journal of Advanced Engineering Research and Science. 2016. Vol. 3. Iss. 4. P. 9-16.
  53. Dada A.O., Adekola F.A., Odebunmi E.O. et al. Two–three parameters isotherm modeling, kinetics with statistical validity, desorption and thermodynamic studies of adsorption of C(II) ions onto zerovalent iron nanoparticles // Scientific Reports. 2021. Vol. 11. № 1. № 16454. DOI: 10.1038/s41598-021-95090-8
  54. Ragadhita R., Nandiyanto A.B.D. How to Calculate Adsorption Isotherms of Particles Using Two-Parameter Monolayer Adsorption Models and Equations // Indonesian Journal of Science and Technology. 2021. Vol. 6. № 1. P. 205-234. DOI: 10.17509/ijost.v6i1.32354
  55. Alabbad E.A. Effect of Direct yellow 50 removal from an aqueous solution using nano bentonite; adsorption isotherm, kinetic analysis and thermodynamic behaviour // Arabian Journal of Chemistry. 2023. Vol. 16. Iss. 2. № 104517. DOI: 10.1016/j.arabjc.2022.104517
  56. Nandiyanto A.B.D. Isotherm Adsorption of Carbon Microparticles Prepared from Pumpkin (Cucurbita maxima) Seeds Using Two-Parameter Monolayer Adsorption Models and Equations // Moroccan Journal of Chemistry. 2020. Vol. 8. № 3. P. 745-761. DOI: 10.48317/IMIST.PRSM/morjchem-v8i3.21636
  57. Shikuku V.O., Mishra T. Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms // Applied Water Science. 2021. Vol. 11. Iss. 6. № 103. DOI: 10.1007/s13201-021-01440-2
  58. Dada A.O., Ojedira J.O., Okunola A.A. et al. Modeling of Biosorption of Pb(II) and Zn(II) Ions onto PAMRH: Langmuir, Freundlich, Temkin, Dubinin – Raduskevich, Jovanovic, Flory – Huggins, Fowler – Guggenheim and Kiselev Comparative Isotherm Studies // International Journal of Mechanical Engineering and Technology. 2019. Vol. 10. Iss. 2. P. 1048-1058.
  59. Yousef N.S., Farouq R., Hazzaa R. Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameter isotherm models // Desalination and Water Treatment. 2016. Vol. 57. Iss. 46. P. 21925-21938.
  60. Yao Huang, Siyu Xia, Jingjing Lyu, Jingchun Tang. Highly efficient removal of aqueous Hg2+ and CH3Hg+ by selective modification of biochar with 3-mercaptopropyltrimethoxysilane // Chemical Engineering Journal. 2019. Vol. 360. P. 1646-1655. DOI: 10.1016/j.cej.2018.10.231
  61. Irwansyah F.S., Amal A.I., Diyanthi E.W. et al. How to Read and Determine the Specific Surface area of Inorganic Materials Using the Brunauer – Emmett – Teller (BET) Method // ASEAN Journal of Science and Engineering. 10 p. URL: www.ejournal.upi.edu/index.php/AJSE/article/view/60748 (Online First) (дата обращения 25.10.2023).
  62. Sukamto S., Rahmat A. Evaluation of FTIR, Macro and Micronutrients of Compost from Black Soldier Fly Residual: in Context of Its Use as Fertilizer // ASEAN Journal of Science and Engineering. 2023. Vol. 3. № 1. P. 21-30. DOI: 10.17509/ajse.v3i1.42798
  63. Fatimah S., Ragadhita R., Husaeni D.F.A, Nandiyanto A.B.D. How to Calculate Crystallite Size From X-Ray Diffraction (XRD) Using Scherrer Method // ASEAN Journal of Science and Engineering. 2022. Vol. 2. № 1. P. 65-76. DOI: 10.17509/ajse.v2i1.37647

Similar articles

Study of the properties and action of polyelectrolytes in the treatment of the dressing plant’s discharges
2023 Galina V. Mitrofanova, Elena V. Chernousenko, Aleksandr V. Artemiev, Yulia P. Pospelova, Natalia A. Smirnova, Igor S. Barmin
Directions in the technological development of aluminium pots
2023 Еvgenii S. Gorlanov, Leopold I. Leontev
Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site)
2024 Dastan Zh. Akmatov, Aleksandr I. Manevich, Viktor N. Tatarinov, Roman V. Shevchuk, Sergei M. Zabrodin
Predictive assessment of ore dilution in mining thin steeply dipping deposits by a system of sublevel drifts
2024 Askar Zh. Imashev, Aigerim M. Suimbaeva, Aibek A. Musin
Assessment of the ecological state of aquatic ecosystems by studying lake bottom sediments
2024 Mariya A. Chukaeva, Tatyana V. Sapelko
Improvement of concentrate quality in flotation of low-rank coal
2023 Sergey A. Kondratev, Tatyana A. Khamzina