Submit an Article
Become a reviewer
Vol 267
Pages:
488-500
Download volume:

Anomaly detection in wastewater treatment process for cyber resilience risks evaluation

Authors:
Evgeniya S. Novikova1
Elena V. Fedorchenko2
Marat A. Bukhtiyarov3
Igor B. Saenko4
About authors
  • 1 — Ph.D. Senior Researcher Saint Petersburg Federal Research Center of the RAS ▪ Orcid
  • 2 — Ph.D. Senior Researcher Saint Petersburg Federal Research Center of the RAS ▪ Orcid ▪ ResearcherID
  • 3 — Full-stack Developer OOO Webim ▪ Orcid
  • 4 — Ph.D., Dr.Sci. Chief Researcher Saint Petersburg Federal Research Center of the RAS ▪ Orcid ▪ Scopus
Date submitted:
2024-03-07
Date accepted:
2024-06-14
Date published:
2024-07-04

Abstract

Timely detection and prevention of violations in the technological process of wastewater treatment caused by threats of different nature is a highly relevant research problem. Modern systems are equipped with a large number of technological sensors. Data from these sensors can be used to detect anomalies in the technological process. Their timely detection, prediction and processing ensures the continuity and fault tolerance of the technological process. The aim of the research is to improve the accuracy of detection of such anomalies. We propose a methodology for the identification and subsequent assessment of cyber resilience risks of the wastewater treatment process, which includes the distinctive procedure of training dataset generation and the anomaly detection based on deep learning methods. The availability of training datasets is a necessary condition for the efficient application of the proposed technology. A distinctive feature of the anomaly detection approach is a new method of processing input sensor data, which allows the use of computationally efficient analytical models with high accuracy of anomaly detection, and outperforms the efficiency of previously published methods.

Keywords:
water treatment systems industrial cyber-physical systems cyber resilience risks anomaly detection training datasets test bed
Go to volume 267

References

  1. Balaram V., Copia L., Saravana Kumar U. et al. Pollution of water resources and application of ICP-MS techniques for monitoring and management – A comprehensive review // Geosystems and Geoenvironment. 2023. Vol. 2. Iss. 4. № 100210. DOI: 10.1016/j.geogeo.2023.100210
  2. Chukaeva M., Petrov D. Assessment and analysis of metal bioaccumulation in freshwater gastropods of urban river habitats, Saint Petersburg (Russia) // Environmental Science and Pollution Research. 2023. Vol. 30. Iss. 3. P. 7162-7172. DOI: 10.1007/s11356-022-21955-8
  3. Сафиуллин Р.Н., Афанасьев А.С., Резниченко В.В. Концепция развития систем мониторинга и управления интеллектуальных технических комплексов // Записки Горного института. 2019. Т. 237. С. 322-330. DOI: 10.31897/PMI.2019.3.322
  4. Patokin D., Danilov A., Isakov A. Environmental monitoring of natural waters in the zone of impact of an enterprise producing explosives // IOP Conference Series: Earth and Environmental Science. 2020. Vol. 578. № 012038. DOI: 10.1088/1755-1315/578/1/012038
  5. Смирнов Ю.Д., Матвеева В.А., Яковлев Н.М., Сахабутдинова Э.Р. Анализ и оценка современных технологий очистки сточных вод на гальваническом производстве // Горный журнал. 2023. № 9. С. 55-60. DOI: 10.17580/gzh.2023.09.08
  6. Ромашева Н.В., Бабенко М. А., Николайчук Л.А. Устойчивое развитие Арктического региона России: экологические проблемы и пути их решения // Горный информационно-аналитический бюллетень. 2022. № 10-2. С. 78-87 (in English). DOI: 10.25018/0236_1493_2022_102_0_78
  7. Чукаева М.А., Матвеева В.А., Сверчков И.П. Комплексная переработка высокоуглеродистых золошлаковых отходов // Записки Горного института. 2022. Т. 253. С. 97-104. DOI: 10.31897/PMI.2022.5
  8. Русскевич Е.А. Нарушение правил централизованного управления техническими средствами противодействия угрозам информационной безопасности // Journal of Digital Technologies and Law. 2023. Т. 1. № 3. С. 650-672. DOI: 10.21202/jdtl.2023.28
  9. Landauer M., Onder S., Skopik F., Wurzenberger M. Deep learning for anomaly detection in log data: A survey // Machine Learning with Applications. 2023. Vol. 12. № 100470. DOI: 10.1016/j.mlwa.2023.100470
  10. Yuan Luo, Ya Xiao, Long Cheng et al. Deep Learning-based Anomaly Detection in Cyber-physical Systems: Progress and Opportunities // ACM Computing Surveys. 2022. Vol. 54. Iss. 5. № 106. DOI: 10.1145/3453155
  11. Haili Sun, Yan Huang, Lansheng Han et al. MTS-DVGAN: Anomaly detection in cyber-physical systems using a dual variational generative adversarial network // Computers & Security. 2024. Vol. 139. № 103570. DOI: 10.1016/j.cose.2023.103570
  12. Feng Xia, Xin Chen, Shuo Yu. et al. Coupled Attention Networks for Multivariate Time Series Anomaly Detection // IEEE Transactions on Emerging Topics in Computing. Vol. 12. Iss. 1. P. 240-253. DOI: 10.1109/TETC.2023.3280577
  13. Zhukovskiy Y., Buldysko A., Revin I. Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current // Energies. 2023. Vol. 16. Iss. 8. № 3303. DOI: 10.3390/en16083303
  14. Meleshko A., Shulepov A., Desnitsky V. et al. Visualization Assisted Approach to Anomaly and Attack Detection in Water Treatment Systems // Water. 2022. Vol. 14. Iss. 15. № 2342. DOI: 10.3390/w14152342
  15. Pliatsios D., Sarigiannidis P., Lagkas T., Sarigiannidis A. A Survey on SCADA Systems: Secure Protocols, Incidents, Threats and Tactics // IEEE Communications Surveys & Tutorials. 2020. Vol. 22. Iss. 3. P. 1942-1976. DOI: 10.1109/COMST.2020.2987688
  16. Cherdantseva Y., Burnap P., Blyth A. et al. A review of cyber security risk assessment methods for SCADA systems // Computers & Security. 2016. Vol. 56. P. 1-27. DOI: 10.1016/j.cose.2015.09.009
  17. Mehmood A., Epiphaniou G., Maple C. et al. A Hybrid Methodology to Assess Cyber Resilience of IoT in Energy Management and Connected Sites // Sensors. 2023. Vol. 23. Iss. 21. № 8720. DOI: 10.3390/s23218720
  18. Xirong Ning, Jin Jiang. Design, Analysis and Implementation of a Security Assessment/Enhancement Platform for Cyber-Physical Systems // IEEE Transactions on Industrial Informatics. 2022. Vol. 18. Iss. 2. P. 1154-1164. DOI: 10.1109/TII.2021.3085543
  19. Teixeira A., Kin Cheong Sou, Sandberg H., Johansson K.H. Secure Control Systems: A Quantitative Risk Management Approach // IEEE Control Systems Magazine. 2015. Vol. 35. Iss. 1. P. 24-45. DOI: 10.1109/MCS.2014.2364709
  20. Федорченко Е.В., Новикова Е.С., Котенко И.В. и др. Система измерения защищенности информации и персональных данных для устройств интернета вещей // Вопросы кибербезопасности. 2022. № 5 (51). С. 28-46. DOI: 10.681/2311-3456-2022-5-28-46
  21. Дойникова Е.В., Котенко И.В. Оценивание защищенности и выбор контрмер для управления кибербезопасностью. М.: Российская академия наук, 2021. 184 c.
  22. Jbair M., Ahmad B., Maple C., Harrison R. Threat modelling for industrial cyber physical systems in the era of smart manufacturing // Computers in Industry. 2022. Vol. 137. № 103611. DOI: 10.1016/j.compind.2022.103611
  23. Palleti V.R., Adepu S., Mishra V.K., Mathur A. Cascading effects of cyber-attacks on interconnected critical infrastructure // Cybersecurity. 2021. Vol. 4. № 8. DOI: 10.1186/s42400-021-00071-z
  24. Khalil S.M., Bahsi H., Korõtko T. Threat modeling of industrial control systems: A systematic literature review // Computers & Security. 2024. Vol. 136. № 103543. DOI: 10.1016/j.cose.2023.103543
  25. Kaixing Huang, Chunjie Zhou, Yu-Chu Tian et al. Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems // IEEE Transactions on Industrial Electronics. 2018. Vol. 65. Iss. 10. P. 8153-8162. DOI: 10.1109/TIE.2018.2798605
  26. Tushkanova O., Levshun D., Branitskiy A. et al. Detection of Cyberattacks and Anomalies in Cyber-Physical Systems: Approaches, Data Sources, Evaluation // Algorithms. 2023. Vol. 16. Iss. 2. № 85. DOI: 10.3390/a16020085
  27. Conti M., Donadel D., Turrin F. A Survey on Industrial Control System Testbeds and Datasets for Security Research // IEEE Communications Surveys & Tutorials. 2021. Vol. 23. Iss. 4. P. 2248-2294. DOI: 10.1109/COMST.2021.3094360
  28. Renjie Wu, Keogh E.J. Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress // IEEE Transactions on Knowledge and Data Engineering. 2023. Vol. 35. Iss. 3. P. 2421-2429. DOI: 10.1109/TKDE.2021.3112126
  29. Котенко И.В., Федорченко Е.В., Новикова Е.С. и др. Методология сбора данных для анализа безопасности промышленных киберфизических систем // Вопросы кибербезопасности. 2023. № 5 (57). С. 69-79. DOI: 10.21681/2311-3456-2023-5-69-79
  30. Антонова Е.С. Моделирование процесса очистки сточных вод во флотационной установке с эжекционной системой аэрации с диспергатором // Безопасность в техносфере. 2017. Т. 6. № 1. С. 43-50. DOI: 10.12737/article_590199b9952dc2.23575176
  31. Ivanov A., Strizhenok A., Borowski G. Treatment of methanol-containing wastewater at gas condensate production // Journal of Water and Land Development. 2022. Vol. 54. P. 84-93. DOI: 10.24425/jwld.2022.141558
  32. Bazgir O., Zhang R., Dhruba S.R. et al. Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks // Nature Communications. 2020. Vol. 11. № 4391. DOI: 10.1038/s41467-020-18197-y
  33. Sharma A., Vans E., Shigemizu D. et al. DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture // Scientific Reports. 2019. Vol. 9. № 11399. DOI: 10.1038/s41598-019-47765-6
  34. Zhu Y., Brettin T., Fangfang Xia et al. Converting tabular data into images for deep learning with convolutional neural networks // Scientific Reports. 2021. Vol. 11. № 11325. DOI: 10.1038/s41598-021-90923-y
  35. Jong-Ik Park, Sihoon Seong, JunKyu Lee, Cheol-Ho Hong. Vortex Feature Positioning: Bridging Tabular IIoT Data and Image-Based Deep Learning: ArXiv. 2024. 23 p. (препринт)
  36. Yuansheng Zhou, Sharpee T.O. Using Global t-SNE to Preserve Intercluster Data Structure // Neural Computation. 2022. Vol. 34. Iss. 8. P. 1637-1651. DOI: 10.1162/neco_a_01504
  37. Goh J., Adepu S., Junejo K.N., Mathur A. A Dataset to Support Research in the Design of Secure Water Treatment Systems. Critical Information Infrastructures Security. Cham: Springer, 2017. P. 88-99. DOI: 10.1007/978-3-319-71368-7_8

Similar articles

Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems
2024 Ivan P. Sverchkov, Vladimir G. Povarov
Organotin pollutants in emerging coastal-marine sediments of the Kaliningrad shelf, Baltic Sea
2024 Zoya A. Zhakovskaya, Galina I. Kukhareva, Polina V. Bash, Daria V. Ryabchuk, Alexander Yu. Sergeev
Lithification of leachate from municipal solid waste landfills with blast furnace slag
2024 Mariya A. Pashkevich, Yuliya A. Kulikova
Natural carbon matrices based on brown coal, humic acids and humine extracted from it for purification of aqueous solutions from low molecular weight organic impurities
2024 Sultan O. Karabaev, Aleksandr V. Kharchenko, Irina P. Gainullina, Valentina A. Kudryavtseva, Tatyana D. Shigaeva
Comprehensive utilization of urban wastewater sludge with production of technogenic soil
2024 Marina V. Bykova, Dmitrii M. Malyukhin, Dmitrii O. Nagornov, Arina A. Duka
Assessing the effectiveness of sewage sludge in the reclamation of disturbed areas in the Kola subarctic zone (a case study of a sand quarry)
2024 Lyubov A. Ivanova, Marina V. Slukovskaya, Evgeniya A. Krasavtseva