Submit an Article
Become a reviewer

Search articles for by keywords:
renewable energy sources

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-16
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources

Article preview

The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.

How to cite: Kontorovich A.E., Burshtein L.M., Gubin I.A., Parfenova T.M., Safronov P.I. Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources // Journal of Mining Institute. 2024. Vol. 269 . p. 721-737. EDN WDBEOS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-25
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography

Article preview

Pyrolysis of organic matter with subsequent analysis of hydrocarbon composition of the resulting products allows obtaining multicomponent distribution spectra of the generation potential by the activation energies of reactions of kerogen transformation into hydrocarbons. Configuration of the spectra depends on the structure of kerogen and is individual for each type of organic matter. Studies of kerogen kinetics showed that the distribution of activation energies is unique for each oil source rocks. The kinetic model of thermal decomposition of kerogen of the same type, for example, marine planktonic (type II), can differ significantly in different sedimentary basins due to the multivariate relationship of chemical bonds and their reaction energy threshold. The developed method for calculating multicomponent kinetic spectra (four-component models are used) based on results of pyrolysis gas chromatography allows obtaining one of the most important elements of modelling the history of oil and gas generation in geological basins. Kinetic parameters of organic matter of oil and gas source rocks influence the onset time of generation and directly reflect differences in the composition and structure of different types of kerogens. The results of determining the kinetic parameters of two high-carbon source rocks occurring across the territory of three oil and gas basins are shown. Generation and updating of the data of kinetic models of certain oil and gas source rocks will increase the reliability of forecasting oil and gas potential using the basin modelling method.

How to cite: Mozhegova S.V., Gerasimov R.S., Paizanskaya I.L., Alferova A.A., Kravchenko E.M. Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography // Journal of Mining Institute. 2024. Vol. 269 . p. 765-776. EDN FIMBWV
Editorial
  • Date submitted
    2024-10-29
  • Date accepted
    2024-10-29
  • Date published
    2024-11-12

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths

Article preview

In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.

How to cite: Prishchepa O.M., Aleksandrova T.N. Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths // Journal of Mining Institute. 2024. Vol. 269 . p. 685-686.
Energy industry
  • Date submitted
    2024-02-01
  • Date accepted
    2024-05-02
  • Date published
    2024-06-18

Methodology for managing energy development of production facilities in the gas industry

Article preview

The current stage of Russia's development is characterized by dynamic changes in the operating conditions of gas industry enterprises, which leads, among other things, to significant adjustments in approaches to the development of energy production facilities. The article examines on the system level the ways to improve energy supply, taking into account the goals and objectives of the development of production facilities from the conditions of solving a single technological problem of the gas industry – high-quality gas supply to consumers. The optimal functioning of energy supply systems, taking into account the peculiarities of technological processes at production facilities, presupposes the development models coordination of production facilities energy complexes with the gas industry enterprises parameters based on an integrated unified information space at all stages of their life cycle. The structure of production facility energy complex and the connections of its elements with related systems are justified taking into account the purposes of their creation and the requirements for production facilities. Problem solving for each system element as well as the exchange of information between equivalent systems is done on the basis of a developed hierarchy of optimization problems adjusted depending on the type of tasks of energy supply improvement of a production facility. Determining the values of parameters and indicators of energy complexes, as well as optimizing the lists and content of work to improve the energy supply of production facilities, is planned to be carried out in accordance with the methodology under consideration using a set of mathematical models.

How to cite: Shapovalo A.A. Methodology for managing energy development of production facilities in the gas industry // Journal of Mining Institute. 2024. p. EDN XWKKKQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-11-27
  • Date accepted
    2023-12-27
  • Date published
    2024-02-29

Physico-chemical aspects and carbon footprint of hydrogen production from water and hydrocarbons

Article preview

Physico-chemical aspects determine the efficiency and competitiveness of hydrogen production technologies. The indicator of water consumption is especially relevant, since water is one of the main sources of hydrogen in almost all methods of its production. The article analyzes comparative water consumption indicators for various technologies based on published research and actual data from production plants. The volume of water consumption depends on the quality of the source water, which should be taken into account when implementing hydrogen projects in order to minimize the negative impact on the environment. Based on the operating industrial plant, the material balance of hydrogen production by steam reforming was demonstrated, which made it possible to determine the proportion of hydrogen (48.88 %) obtained from water. Currently, the carbon footprint indicator is becoming more important, reflecting greenhouse gas emissions throughout the production chain. According to the results of the total greenhouse gas emissions assessment for hydrogen production by steam reforming (about 10.03 kg CO2-eq/kg H2), the carbon footprint of hydrogen from water (4.2-4.5 kg CO2-eq/kg H2) and hydrogen from methane (15.4-15.7 kg CO2-eq/kg H2) has been determined. Consequently, almost half of the hydrogen produced by steam reforming is produced from water, corresponds to the indicators of “low-carbon” hydrogen and can be considered as “renewable” hydrogen. To make management decisions, an objective assessment in terms of energy and water costs is necessary based on a system analysis by the development of hydrogen energy and the growth of global hydrogen production. The impact of these indicators on the water cycle and global water resources will increase.

How to cite: Maksimov A.L., Ishkov A.G., Pimenov A.A., Romanov K.V., Mikhailov A.M., Koloshkin E.A. Physico-chemical aspects and carbon footprint of hydrogen production from water and hydrocarbons // Journal of Mining Institute. 2024. Vol. 265 . p. 87-94. EDN HWCPDC
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-12-27
  • Date published
    2024-04-25

Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure

Article preview

The selection of efficient drilling and blasting technology to achieve the required particle size distribution of blasted rock mass and reduce ore dilution is directly related to the accurate definition of rock mass properties. The zoning of the rock massif by its hardness, drillability and blastability does not consider the variability of the geological structure of the block for blasting, resulting in an overestimated specific consumption of explosives. The decision of this task is particularly urgent for enterprises developing deposits with a high degree of variability of geological structure, for example, at alluvial deposits. Explosives overconsumption causes non-optimal granulometric composition of the blasted rock mass for the given conditions and mining technology. It is required to define physical and mechanical properties of rocks at deposits with complex geological structure at each block prepared for blasting. The correlation between the physical and mechanical properties of these rocks and drilling parameters should be used for calculation. The relation determined by the developed method was verified in industrial conditions, and the granulometric composition of the blasted rock mass was measured by an indirect method based on excavator productivity. The results demonstrated an increase in excavation productivity, thus indicating the accuracy of given approach to the task of identifying the rocks of the blasted block.

How to cite: Vinogradov Y.I., Khokhlov S.V., Zigangirov R.R., Miftakhov A.A., Suvorov Y.I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure // Journal of Mining Institute. 2024. Vol. 266 . p. 231-245. EDN RUUFNM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-20
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Directions in the technological development of aluminium pots

Article preview

Directions for the technical and technological development of aluminium industry, existing and promising projects to reduce the energy consumption and the environmental impact are analyzed. The active participation of the state in the organization of financial instruments for the ecological reconstruction of obsolete production facilities is discussed. In spite of the fact that the technology of aluminium pots is developed towards the increase of a single capacity, but with limited potential of reducing energy consumption and greenhouse gases emission, the possibilities for the increase of specific output are practically non-existent. Therefore, such projects like pots, equipped with inert anodes and drained cathodes arise and are under development, the successful completion of which is unlikely after multi-year researches and pilot tests. To continue the works related to inert anodes the decisive answer about the industrial safety of local sources of the massive oxygen emissions to atmosphere is required from competent entities. The drained cathode project, after discussing the existing problems, seems unfeasible. As opposed to the existing technology the development of the pots with vertical electrodes offers great opportunities to the designs of inert anodes and drained cathodes. Positive results of using shaped electrodes, homogenizing their surface and developing the methods for the synthesis of composite cathodes directly during the electrolytic process were obtained in laboratory conditions. It is expected that the combination of these trends and the successive dimensional scaling shall allow using the vertical electrodes at the next level for the fold increase of specific pot capacity and for the decrease of energy consumption and greenhouse gas emissions.

How to cite: Gorlanov Е.S., Leontev L.I. Directions in the technological development of aluminium pots // Journal of Mining Institute. 2024. Vol. 266 . p. 246-259. EDN PYSEVM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-08
  • Date accepted
    2022-07-21
  • Date published
    2023-12-25

Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement

Article preview

The results of the analysis of practical experience in the development of potash seams using longwall mining systems at the mines of OAO “Belaruskali” are presented. Positive changes in the technical and economic indicators of mines and an increase in the safety of mining operations were noted with the introduction of resource-saving technologies without leaving the pillars between the excavation columns or with leaving the pillars between the columns with dimensions at which they are destroyed by mining pressure in the goaf. It is noted that the use of mechanized stoping complexes characterized by high energy capacity, combined with large depths of development, is the main reason for the temperature increase in longwalls to values exceeding the maximum permissible air temperature regulated by sanitary standards. Based on production studies, it was concluded that the temperature regime along the length of the longwall face is determined by the temperature of rocks in the developed longwall space, heat emissions from the equipment of the power train, and the temperature of the rock mass ahead of the longwall. The conclusion has been drawn about the feasibility of using developed technological schemes in deep mining conditions, which provide a reduction in longwall temperature by 6-9 °C or more through isolated ventilation of longwall and power trains, as well as heat exchange between the airflow entering the longwall and the rocks in the developed space.

How to cite: Zubov V.P., Sokol D.G. Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement // Journal of Mining Institute. 2023. Vol. 264 . p. 874-885. EDN YYMIQY
Editorial
  • Date submitted
    2023-07-19
  • Date accepted
    2023-07-19
  • Date published
    2023-07-19

Energy efficiency in the mineral resources and raw materials complex

Article preview

Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.

How to cite: Shklyarskiy Y.E., Skamyin A.N., Jiménez Carrizosa M. Energy efficiency in the mineral resources and raw materials complex // Journal of Mining Institute. 2023. Vol. 261 . p. 323-324.
Energy industry
  • Date submitted
    2023-03-10
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Enhancement of energy efficiency of the vacuum oil distillation unit using pinch analysis

Article preview

The actual task of the state is to increase the energy efficiency of the oil refinery. The object of research is a vacuum distillation unit, including a preheating unit for raw materials and a furnace for heating fuel oil before the column. Pinch analysis allows to analyze and optimize a large number of heat flows. In this study the analysis and enhancement of efficiency of the research object is carried out by enthalpy pinch analysis. In order to reduce the heat load of the furnaces, the additional flows were introduced into the heat exchange system of the oil heating unit. Parametric optimization of the new heat exchange system was carried out. The minimum needs of the heat exchange system in external energy carriers are determined. An enthalpy cascade of the heat exchange system has been constructed, which clearly shows the distribution of heat between each heat flow of the system. In the analysis of the energy efficiency of a furnace, an important point is the determination of the optimal heat capacity of the combustion products. In this work, we have determined the optimal flow heat capacity, at which the heat loss with the exhaust gases is minimal. As a result of the studies carried out, the efficiency of the fuel oil preheating unit has been increased by maximizing heat recovery, and the cost of external energy carriers has been minimized. By reducing heat loss with flue gases, it was possible to increase the efficiency of the furnace.

How to cite: Yushkova Е.А., Lebedev V.A. Enhancement of energy efficiency of the vacuum oil distillation unit using pinch analysis // Journal of Mining Institute. 2023. Vol. 261 . p. 415-427. EDN LXDVDP
Energy industry
  • Date submitted
    2023-01-12
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials

Article preview

The issues of energy saving in pyrometallurgical production during processing of mineral raw materials in ore-thermal furnaces are particularly important for the development of new energy-efficient technologies. The reduction of the specific power consumption during melting at different stages of heating and melting of charge materials when modeling is related to obtaining kinetic curves in the process of kyanite concentrate regeneration in polythermal conditions. Based on practical data of carbo-thermal reduction the mathematical modeling of reduction processes from alumosilicic raw materials – kyanite was carried out. In this work, the nonisothermal method based on a constant rate of charge heating (i.e. a linear dependence between time and temperature) was used for the reduction of kyanite charge, which saves electrical energy. The experiments were carried out on a high-temperature unit with a heater placed in a carbon-graphite crucible. Based on the obtained kinetic dependences of nonisothermal heating of enriched kyanite concentrates in plasma heating conditions we obtained a number of kinetic anamorphoses of the linear form which point to the possibility of describing the reaction rate using the modified Kolmogorov – Erofeev equation for given heating conditions and within a narrow temperature range. The complex of mathematical modeling makes it possible to create a control algorithm of technological process of reduction of kyanite concentrate to a metallized state within the specified temperature range for the full flow of reaction exchange and to reduce the specific power consumption by 15-20 %. With the help of the received kinetic dependences, taking into account the thermodynamics of processes and current state of the art it is possible to create a universal thermal unit for the optimal carbothermal reduction of charge to a metallized state (alloy) with minimum power inputs compared to existing technologies.

How to cite: Bazhin V.Y., Ustinova Y.V., Fedorov S.N., Shalabi M.E.K. Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials // Journal of Mining Institute. 2023. Vol. 261 . p. 384-391. EDN RTQXSE
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions

Article preview

The necessity of improving the drives of the sucker-rod hydraulic pump units (SRHP), operated in conditions of marginal and complicated wells, is substantiated. For complicated oil production conditions, it is promising to use the SRHP drive, which makes it possible to select and set rational operating modes for downhole equipment. The results of comparative tests of conventional mechanical and hydraulic actuators SRHP with pneumatic and electrodynamic balancing types are presented. A generalized indicator for evaluating the effectiveness of the advanced SRHP drives functioning, the energy efficiency coefficient, is proposed. It has been experimentally proven that the use of the SRHP drive with pneumatic balancing is characterized by low energy efficiency of the well fluid production process. The use of the tested SRHP hydraulic drive made it possible to successfully eliminate asphalt, resin, and paraffin deposits and minimize the well downtime. The results of the tests of the traditional SRHP mechanical drive and the hydraulic drive with electrodynamic balancing showed a satisfactory energy efficiency of the latter. The advantage of the SRHP drive with electrodynamic balancing is the simplicity of the design of the hydraulic part. The process of energy regeneration during the drive control system operation causes an increase in the reactive power component in the oil field network and the appearance of harmonic interference that adversely affects the consumers operation. Technical solutions aimed at improving the operation energy efficiency and increasing the operating time of SRHP drives in the conditions of marginal and complicated wells are proposed. The methodological bases for assessing the economic efficiency of the introduction of the advanced SRHP drives are given.

How to cite: Shishlyannikov D.I., Zverev V.Y., Zvonareva A.G., Frolov S.A., Ivanchenko A.A. Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions // Journal of Mining Institute. 2023. Vol. 261 . p. 349-362. EDN XLRCWN
Energy industry
  • Date submitted
    2023-03-02
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Improving the efficiency of autonomous electrical complex with renewable energy sources by means of adaptive regulation of its operating modes

Article preview

Renewable energy sources are gradually becoming useful in mining industry. They are actively used in remote, sparsely populated areas to power shift settlements, geological and meteorological stations, pipeline equipment, mobile cell towers, helicopter pads lighting, etc. In comparison with diesel generators, systems with renewable sources do not require fuel transportation, have short payback periods and flexible configuration for different categories of electrical loads. The main obstacles to their spread are instability of generation and high cost of produced electricity. One of the possible ways to solve these problems is to develop new technologies, increase power density of generators and energy storage systems. The other way represents energy saving and rational use of affordable resources. The new solutions for implementation of the second method are proposed in this work. The object of the study is autonomous DC electrical complex with photovoltaic and wind power sources. In such systems the generated power from renewable sources is transferred to consumers via intermediate DC bus, the voltage level of which affects the power losses in the process of power transmission. The vast majority of complexes have a problem that their DC bus voltage is constant, while the optimum voltage level with lowest losses varies depending on the generated and consumed power. Therefore, electrical complexes potentially lose a part of the transmitted energy. To avoid this, a special algorithm was added to automatically adjust DC bus voltage to optimum level according to changes in working conditions. An additional contribution to efficiency improvement can be made by dynamic change of operating frequency in power converters depending on their load. The evaluation based on results of computer simulation showed that in a complex with rated power 10 kW active power losses during its lifetime can be reduced by 2-5 %.

How to cite: Shpenst V.A., Belsky A.A., Orel E.A. Improving the efficiency of autonomous electrical complex with renewable energy sources by means of adaptive regulation of its operating modes // Journal of Mining Institute. 2023. Vol. 261 . p. 479-492. EDN SNUKNA
Energy industry
  • Date submitted
    2023-03-12
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Increasing the energy efficiency of an autonomous power supply system of a drilling rig in case of voltage dips

Article preview

The article discusses the emergency modes of operation of an autonomous electrical complex of a drilling rig. The concept of voltage failure and its influence on the technological process of industrial enterprises is revealed. A description of the methods used in the power supply of industrial enterprises to overcome voltage dips and load surges in autonomous power systems is presented, from which it is possible to single out the accelerated lifting of critical equipment to prevent emergency conditions, as well as the use of backup storage, usually batteries. An algorithm has been developed for the interaction of the battery and the diesel generator set as backup power sources during various modes of operation of the electric motor, taking into account load surges, which allows successfully overcoming voltage dips in the system both in transient and in steady state. It is proposed to use a combined method to eliminate the voltage dip, a feature of which is the use of a combined structure of backup power sources as part of a diesel generator set and a battery, acting on the base of the proposed interaction algorithm in autonomous electrical complexes. The method makes it possible to overcome sudden load surges and voltage dips caused by a shortage of reserve power in the electrical system. The use of a rechargeable battery as a transitional element makes it possible to switch between the main and backup power sources without stopping the technological one and to expand the overload threshold of an autonomous electrical complex up to 60 %. The use of the combined method increases the energy efficiency of the autonomous complex due to a reduction in the number of emergency shutdowns of equipment, process interruptions and additional power consumption.

How to cite: Chervonchenko S.S., Frolov V.Y. Increasing the energy efficiency of an autonomous power supply system of a drilling rig in case of voltage dips // Journal of Mining Institute. 2023. Vol. 261 . p. 470-478. EDN MGAPVA
Energy industry
  • Date submitted
    2023-03-16
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Energy efficiency of the linear rack drive for sucker rod pumping units

Article preview

At present, in order to increase oil production and reduce economic costs in the development of marginal fields, the development of a cluster method using compact mobile drives of sucker rod pumping units (SRPU) is relevant. The aim of the work is to analyze the ways to improve the energy efficiency of the SRPU by reducing the loss of mechanical and electrical energy, to select the most energy-efficient compact drive for the development of marginal fields in the cluster method, to carry out the kinematic and strength calculations of the drive of the selected size, to develop an adaptive control system for a group of drives in the cluster development of drillings. According to the results of the performed calculations, the linear rack-and-gear drive has the highest efficiency of the drive mechanism. The kinematic and strength calculations of a linear rack-and-gear drive with a stroke length of 1120 mm and a load of up to 8 tons are presented. It was shown that the usage of a direct torque control system and a kinetic energy storage system for the SRPU drive elements and a rod string is an effective means of reducing energy costs in oil production from marginal fields. The use of the developed system for storing and redistributing the potential energy of the rods between the SRPUs that lift oil made it possible to eliminate fluctuations in the power consumption, reduce the power peak value by three times, the peak value of the current consumed from the electric network by two times, and reduce losses in the input converter and cables by three times.

How to cite: Ganzulenko O.Y., Petkova A.P. Energy efficiency of the linear rack drive for sucker rod pumping units // Journal of Mining Institute. 2023. Vol. 261 . p. 325-338. EDN HIGAOE
Energy industry
  • Date submitted
    2023-04-02
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Integration of renewable energy at coal mining enterprises: problems and prospects

Article preview

This article addresses the issue of developing renewable energy in coal mining enterprises in the Russian Federation. The study presents a methodology for assessing the technical and economic efficiency of introducing renewable energy sources based on simulation modeling. An analysis of the potential of solar and wind energy for coal mining regions in Russia is conducted. The authors use a custom software developed by them to simulate the power supply system for various scenarios of renewable energy integration, including solar generation, wind generation, solar generation with energy storage, wind generation together with solar generation. Based on the example of the Rostov region, a feasibility study of the considered options is presented. Additionally, the research includes a sensitivity analysis of the investment project in the conditions of uncertainty in the development of Russian renewable energy. The research findings indicate that even in market conditions with CO2 emission quotas and prices at the level of the Sakhalin experiment, renewable energy in coal mining enterprises in Russia remains unattractive and requires additional support.

How to cite: Nepsha F.S., Varnavskiy K.A., Voronin V.A., Zaslavskiy I.S., Liven A.S. Integration of renewable energy at coal mining enterprises: problems and prospects // Journal of Mining Institute. 2023. Vol. 261 . p. 455-469. EDN LNSCEY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-31
  • Date accepted
    2023-03-02
  • Date published
    2023-12-25

Lightweight ash-based concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste)

Article preview

The study is devoted to the development of a method for the technogenic raw materials utilization. Special attention is paid to the prospect of involving products based on them in the production of new building materials. The results of Russian and foreign studies on the reuse of wastes, such as phosphogypsum, metallurgical slag, waste from municipal and industrial wastewater treatment, etc., in the building materials industry are considered. It has been established that the use of incinerated sewage sludge ash in construction is a promising direction in terms of environmental and economic efficiency. The research confirmed the compliance of the lightweight ash-based concrete components to the regulatory documentation requirements for a number of indicators. As a result of the research, the composition of the raw mixture for the lightweight concrete production with incinerated sewage sludge ash as a replacement for a part of the cement has been developed. In terms of parameters, the developed concrete corresponds to standard lightweight concrete, marked in accordance with the regulatory documents of the Russian Federation as D1300 (density not less than 1.3 g/cm3), Btb2 (flexural strength not less than 2 MPa), M200/B15 (compressive strength not less than 15 MPa). Lightweight ash-based concrete is suitable for use in construction, repair of roads and improvement of urban areas.

How to cite: Litvinova T.E., Suchkov D.V. Lightweight ash-based concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste) // Journal of Mining Institute. 2023. Vol. 264 . p. 906-918. EDN LMZCWZ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-23
  • Date accepted
    2023-02-13
  • Date published
    2023-12-25

Sorption purification of acid storage facility water from iron and titanium on organic polymeric materials

Article preview

Obtaining and production of metals from natural raw materials causes a large amount of liquid, solid, and gaseous wastes of various hazard classes that have a negative impact on the environment. In the production of titanium dioxide from ilmenite concentrate, hydrolytic sulphuric acid is formed, which includes various metal cations, their main part is iron (III) and titanium (IV) cations. Hydrolytic acid waste is sent to acid storage facilities, which have a high environmental load. The article describes the technology of ion exchange wastewater treatment of acid storage facility from iron (III) and titanium (IV) cations, which form compounds with sulphate ions and components of organic waste in acidic environments. These compounds are subjected to dispersion and dust loss during the evaporation of a water technogenic facility, especially in summer season. Sorption of complex iron (III) cations [FeSO4]+ and titanyl cations TiO2+ from sulphuric acid solutions on cation exchange resins KU-2-8, Puromet MTS9580, and Puromet MTS9560 was studied. Sorption isotherms were obtained both for individual [FeSO4]+ and TiO2+ cations and in the joint presence. The values of the equilibrium constants at a temperature of 298 K and the changes in the Gibbs energy are estimated. The capacitive characteristics of the sorbent were determined for individual cations and in the joint presence.

How to cite: Cheremisina O.V., Ponomareva M.A., Molotilova A.Y., Mashukova Y.A., Soloviev M.A. Sorption purification of acid storage facility water from iron and titanium on organic polymeric materials // Journal of Mining Institute. 2023. Vol. 264 . p. 971-980. DOI: 10.31897/PMI.2023.28
Energy industry
  • Date submitted
    2022-10-13
  • Date accepted
    2022-12-13
  • Date published
    2023-07-19

A complex model of a drilling rig rotor with adjustable electric drive

Article preview

A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.

How to cite: Ershov M.S., Komkov А.N., Feoktistov E.A. A complex model of a drilling rig rotor with adjustable electric drive // Journal of Mining Institute. 2023. Vol. 261 . p. 339-348. DOI: 10.31897/PMI.2023.20
Economic Geology
  • Date submitted
    2022-11-08
  • Date accepted
    2022-11-21
  • Date published
    2023-02-27

Assessment of the role of the state in the management of mineral resources

Article preview

Mineral resources as natural capital can be transformed into human, social and physical capital that guarantees the sustainable development of a country, exclusively through professional public management. Public management of a country's mineral resource potential is seen as an element of transnational governance which provides for the use of laws, rules and regulations within the jurisdictional and sectoral capabilities of the state, minimising its involvement as a producer of minerals. The features of the ideology of economic liberalism, which polarises the societies of mineral-producing countries and denies the role of the state as a market participant, have been studied. The analysis of the influence of the radical new order of neoliberal world ideology on the development of the extractive sector and state regulation has been presented.

How to cite: Litvinenko V.S., Petrov E.I., Vasilevskaya D.V., Yakovenko A.V., Naumov I.A., Ratnikov M.A. Assessment of the role of the state in the management of mineral resources // Journal of Mining Institute. 2023. Vol. 259 . p. 95-111. DOI: 10.31897/PMI.2022.100
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-11-06
  • Date accepted
    2022-11-29
  • Date published
    2022-12-29

Technological sovereignty of the Russian Federation fuel and energy complex

Article preview

The review to achieve technological sovereignty of the Russian fuel and energy complex (FEC) in the ongoing geopolitical situation is presented in the article. The main scope has been to identify the key technology development priorities, restrictions and internal resources to overcome these utilizing the developed by the author the innovative methodology that consists of novel approaches to calculate level of local content, digitalization, business continuity andinteractions with military-industrial complex. Some organizational changes have been proposed to intensify the development of hi-tech products for the FEC and related industries, including establishment of the state committee for science and technology and the project office of lead engineers for the critical missing technologies. Two successful examples to utilize the described in the paper methodology is presented: the first domestic hydraulic fracturing fleet and polycrystalline diamond compact cutter bit inserts.

How to cite: Zhdaneev O.V. Technological sovereignty of the Russian Federation fuel and energy complex // Journal of Mining Institute. 2022. Vol. 258 . p. 1061-1078. DOI: 10.31897/PMI.2022.107
Metallurgy and concentration
  • Date submitted
    2022-02-22
  • Date accepted
    2022-05-11
  • Date published
    2022-11-03

Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate

Article preview

Based on a package of modern analysis methods, the influence of various acids and energy effects on the morphology, elemental composition, structural and chemical transformations of the mineral surface, and the efficiency of eudialyte concentrate leaching was studied. The mechanism and the optimal conditions and specific features of the destruction of eudialyte and rock minerals and the extraction of zirconium and REE under the influence of various acids, powerful nanosecond pulses, dielectric barrier discharge, electrochemical processing, mechanochemical activation and ultrasound were revealed. The mechanism of formation and the optimal conditions for the dispersion of silica gel, depending on the methods and parameters of energy effects, was theoretically and experimentally substantiated. A combined three-stage circuit of nitric acid leaching of eudialyte concentrate with ultrasonic treatment of the suspension, providing 97.1 % extraction of zirconium and 94.5 % REE, were scientifically substantiated and tested. The conditions for the selective deposition of zirconium and REE were theoretically and experimentally substantiated.

How to cite: Chanturiya V.A. Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate // Journal of Mining Institute. 2022. Vol. 256 . p. 505-516. DOI: 10.31897/PMI.2022.31
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-10
  • Date published
    2022-11-03

Monitoring of grinding condition in drum mills based on resulting shaft torque

Article preview

Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.

How to cite: Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque // Journal of Mining Institute. 2022. Vol. 256 . p. 686-700. DOI: 10.31897/PMI.2022.91
Geology
  • Date submitted
    2022-03-14
  • Date accepted
    2022-05-13
  • Date published
    2022-07-26

Unique titanium Deposits of Timan: genesis and age issues

Article preview

The article critically analysesthe hypotheses about the formation, age, and sources of material of large Timan titanium deposits, which were previously considered ancient buried placers formed along the weathering crusts of the Riphean shales. We discuss an alternative hydrothermal-metamorphic hypothesis about the formation of these deposits and the source of ore material. It is established that the incoming zircon of different ages (570-3200 Ma), as well as two other geochronometers, rutile and monazite, underwent a thermal effect common for all varieties as a result of a hydrothermal process about 600 Ma ago. According to modern concepts, the closing temperature of the U-Pb system in rutile exceeds 500 °С, which suggests high-temperature conditions for the hydrothermal processing of rutile during the formation of the considered deposits in the Riphean.

How to cite: Makeyev A.B., Bryanchaninova N.I., Krasotkina A.O. Unique titanium Deposits of Timan: genesis and age issues // Journal of Mining Institute. 2022. Vol. 255 . p. 275-289. DOI: 10.31897/PMI.2022.32
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-14
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Monitoring of compressed air losses in branched air flow networks of mining enterprises

Article preview

Compressed air as a type of safe technological energy carrier is widely used in many industries. In economically developed countries energy costs for the production and distribution of compressed air reach 10 % of the total energy costs. The analysis of compressed air production and distribution systems in the industrial sector shows that the efficiency of the systems is at a relatively low level. This is due to the fact that insufficient attention is paid to these systems since the compressed air systems energy monitoring has certain difficulties – the presence of complex and branched air pipeline networks with unique characteristics; low sensitivity of the equipment which consumes compressed air; the complexity of auditing pneumatic equipment that is in constant operation. The article analyzes the options for reducing the cost of production and compressed air distribution. One of the promising ways to reduce the compressed air distribution cost is timely detection and elimination of leaks that occur in the external air supply network of the enterprise. The task is solved by hardware-software monitoring of compressed air pressure at key points in the network. The proposed method allows real-time detecting of emerging air leaks in the air duct network and sending commands to maintenance personnel for their timely localization. This technique was tested in the industrial conditions of ALROSA enterprises on the air pipeline network of the Mir mine of the Mirninsky Mining and Processing Plant and showed satisfactory convergence of the calculated leakage values ​​with the actual ones. The practical significance of the obtained results is that the developed method for monitoring air leaks in the air duct network is simple, it requires an uncomplicated software implementation and allows to localize leaks in a timely manner, thereby reducing unproductive energy costs at the enterprises.

How to cite: Gendler S.G., Kopachev V.F., Kovshov S.V. Monitoring of compressed air losses in branched air flow networks of mining enterprises // Journal of Mining Institute. 2022. Vol. 253 . p. 3-11. DOI: 10.31897/PMI.2022.8