Submit an Article
Become a reviewer
Andrei A. Pimenov
Andrei A. Pimenov
Director, Ph.D., Dr.Sci.
Tatar Oil Research and Design Institute (TatNIPIneft) of PAO TATNEFT
Director, Ph.D., Dr.Sci.
Tatar Oil Research and Design Institute (TatNIPIneft) of PAO TATNEFT
Kazan
Russia

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-30
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Carbon dioxide corrosion inhibitors: current state of research and development

Article preview

Among the methods of corrosion control in the oil and gas production industry the leading place belongs to inhibitor protection, since there is no need for technological and technical changes in the existing equipment. The combination of high variability of inhibitor composition with changing conditions of its application and low capital investments makes it an indispensable reagent at oil and gas fields. The main classes of compounds used as active bases of carbonic acid corrosion inhibitors for the protection of oil and gas equipment are described. Classical organic active bases containing heteroatoms (oxygen, sulfur, nitrogen) are examined. Special attention was paid to alkylimidazolines and other nitrogen-containing compounds as the most frequently used as active bases of carbonic acid corrosion inhibitors in Russia and abroad. A wide range of possibilities to achieve the desired properties of corrosion inhibitors by varying the substitutes has been demonstrated. Nowadays, in addition to the traditional requirements for corrosion inhibitors, their safety for the environment is equally important. The information on prospective research and development aimed at improving the environmental characteristics of the reagents used is given. Plant extracts, synthetic and biological polymers involved in traditional corrosion inhibitors or used as new independent compounds are considered. It is shown that the effectiveness of corrosion inhibitors significantly depends on the pH of the medium, temperature, partial pressure of СО2, flow rate, and other factors.

How to cite: Chudakova M.V., Ovchinnikov K.A., Ulyanov D.N., Kunakova A.M., Saifutdinova L.R., Pimenov A.A., Maximov A.L. Carbon dioxide corrosion inhibitors: current state of research and development // Journal of Mining Institute. 2025. Vol. 271 . p. 3-21. EDN RSOAKK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-11-27
  • Date accepted
    2023-12-27
  • Date published
    2024-02-29

Physico-chemical aspects and carbon footprint of hydrogen production from water and hydrocarbons

Article preview

Physico-chemical aspects determine the efficiency and competitiveness of hydrogen production technologies. The indicator of water consumption is especially relevant, since water is one of the main sources of hydrogen in almost all methods of its production. The article analyzes comparative water consumption indicators for various technologies based on published research and actual data from production plants. The volume of water consumption depends on the quality of the source water, which should be taken into account when implementing hydrogen projects in order to minimize the negative impact on the environment. Based on the operating industrial plant, the material balance of hydrogen production by steam reforming was demonstrated, which made it possible to determine the proportion of hydrogen (48.88 %) obtained from water. Currently, the carbon footprint indicator is becoming more important, reflecting greenhouse gas emissions throughout the production chain. According to the results of the total greenhouse gas emissions assessment for hydrogen production by steam reforming (about 10.03 kg CO2-eq/kg H2), the carbon footprint of hydrogen from water (4.2-4.5 kg CO2-eq/kg H2) and hydrogen from methane (15.4-15.7 kg CO2-eq/kg H2) has been determined. Consequently, almost half of the hydrogen produced by steam reforming is produced from water, corresponds to the indicators of “low-carbon” hydrogen and can be considered as “renewable” hydrogen. To make management decisions, an objective assessment in terms of energy and water costs is necessary based on a system analysis by the development of hydrogen energy and the growth of global hydrogen production. The impact of these indicators on the water cycle and global water resources will increase.

How to cite: Maksimov A.L., Ishkov A.G., Pimenov A.A., Romanov K.V., Mikhailov A.M., Koloshkin E.A. Physico-chemical aspects and carbon footprint of hydrogen production from water and hydrocarbons // Journal of Mining Institute. 2024. Vol. 265 . p. 87-94. EDN HWCPDC