Submit an Article
Become a reviewer
Oleg M. Prishchepa
Oleg M. Prishchepa
Head of Department, Ph.D., Dr.Sci.
Empress Catherine II Saint Petersburg Mining University
Head of Department, Ph.D., Dr.Sci.
Empress Catherine II Saint Petersburg Mining University
Saint Petersburg
Russia

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-30
  • Date accepted
    2024-10-14
  • Date published
    2024-11-12

Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths

Article preview

The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.

How to cite: Prishchepa O.M., Lutskii D.S., Kireev S.B., Sinitsa N.V. Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths // Journal of Mining Institute. 2024. Vol. 269. p. 815-832. EDN CWLSTC
Editorial
  • Date submitted
    2024-10-29
  • Date accepted
    2024-10-29
  • Date published
    2024-11-12

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths

Article preview

In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.

How to cite: Prishchepa O.M., Aleksandrova T.N. Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths // Journal of Mining Institute. 2024. Vol. 269. p. 685-686.
Geology
  • Date submitted
    2023-05-21
  • Date accepted
    2024-05-02
  • Online publication date
    2024-06-20
  • Date published
    2024-08-26

Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province

Article preview

The study of high-carbon formations was instigated both by the decreasing raw material base of oil as a result of its extraction, and by the progress in development of low-permeability shale strata, primarily in the USA, Australia, and China. The most valuable formations occur in traditional hydrocarbon production areas – the West Siberian, Volga-Ural and Timan-Pechora, North Pre-Caucasian and Lena-Tunguska oil and gas provinces. Specific features of the Late Devonian-Early Carboniferous high-carbon formation occurring in the eastern marginal part of the East European Platform are: heterogeneous section due to intense progradation of the carbonate platform from west to east; succession of lithofacies environments that determined the unevenness of the primary accumulation and secondary distribution of organic matter (OM); possible migration or preservation in the source strata during the subsidence stages of the moving parts of bitumides, which determined the prospects for oil and gas potential. The distribution pattern of the present OM content was investigated depending on lithofacies conditions and lithological composition of rocks in the “Domanik type” Upper Devonian-Tournaisian deposits in the Timan-Pechora Province (TPP), its transformation degree to bring it to the initial content of organic carbon and further estimation of the share of stored “mobile oil” in oil and gas source formation. The study was based on the analysis of the data set on organic carbon content in core samples and natural exposures in the Ukhta Region in the Domanik-Tournaisian part of the section including more than 5,000 determinations presented in reports and publications of VNIGRI and VNIGNI and supplemented by pyrolytic and bituminological analyses associated with the results of microtomographic, macro- and lithological studies and descriptions of thin sections made at the Saint Petersburg Mining University. For each tectonic zone of the TPP within the investigated high-carbon intervals, the content of total volumes of organic carbon was determined. The data obtained allow estimating the residual mass of mobile bitumoids in a low-permeability matrix of the high-carbon formation.

How to cite: Prishchepa O.M., Sinitsa N.V., Ibatullin A.K. Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province // Journal of Mining Institute. 2024. Vol. 268. p. 535-551. EDN JPUKCM
Oil and gas
  • Date submitted
    2020-11-11
  • Date accepted
    2021-03-02
  • Date published
    2021-04-21

Oil and gas content of the understudied part in the northwest of the Timan-Pechora oil and gas province according to the results of basin modeling

Article preview

Comprehensive interpretation of the results for regional seismic operations and reinterpretation of archived seismic data, their correlation with the drilling data of more than 30 deep wells, including Severo-Novoborsk parametric well, made it possible to clarify the structural maps and thickness maps of all seismic facies structures developed in the territory and water area in the junction of the north of Izhma-Pechora depression and Malozemelsko-Kolguevsk monocline of Timan-Pechora oil and gas province. Data obtained were used at basin modeling in TemisFlow software in order to reconstruct the conditions of submersion and transformation of organic substance in potential oil and gas bearing formations. Modeling made it possible to get an idea of ​​the time and conditions for the formation of large zones of possible hydrocarbons accumulation, to establish space-time connections with possible sources of generation, to identify the directions of migration and on the basis of comparison with periods of intense generation, both from directly located within the operation area and outside them (taking into account possible migration), to identify zones of paleoaccumulation of oil and gas. Work performed made it possible to outline promising oil and gas accumulation zones and identify target objects for further exploration within the site with an ambiguous forecast and lack of industrial oil and gas potential.

How to cite: Prishchepa O.M., Borovikov I.S., Grokhotov E.I. Oil and gas content of the understudied part in the northwest of the Timan-Pechora oil and gas province according to the results of basin modeling // Journal of Mining Institute. 2021. Vol. 247. p. 66-81. DOI: 10.31897/PMI.2021.1.8