Renewable energy sources are gradually becoming useful in mining industry. They are actively used in remote, sparsely populated areas to power shift settlements, geological and meteorological stations, pipeline equipment, mobile cell towers, helicopter pads lighting, etc. In comparison with diesel generators, systems with renewable sources do not require fuel transportation, have short payback periods and flexible configuration for different categories of electrical loads. The main obstacles to their spread are instability of generation and high cost of produced electricity. One of the possible ways to solve these problems is to develop new technologies, increase power density of generators and energy storage systems. The other way represents energy saving and rational use of affordable resources. The new solutions for implementation of the second method are proposed in this work. The object of the study is autonomous DC electrical complex with photovoltaic and wind power sources. In such systems the generated power from renewable sources is transferred to consumers via intermediate DC bus, the voltage level of which affects the power losses in the process of power transmission. The vast majority of complexes have a problem that their DC bus voltage is constant, while the optimum voltage level with lowest losses varies depending on the generated and consumed power. Therefore, electrical complexes potentially lose a part of the transmitted energy. To avoid this, a special algorithm was added to automatically adjust DC bus voltage to optimum level according to changes in working conditions. An additional contribution to efficiency improvement can be made by dynamic change of operating frequency in power converters depending on their load. The evaluation based on results of computer simulation showed that in a complex with rated power 10 kW active power losses during its lifetime can be reduced by 2-5 %.
The article discusses the experience of operating a wind power complex with a low-power wind power installa- tion (5 kW), the use of which is promising for powering remote oil production facilities, exploration and other types of mining operations. The structure of the studied complex and its characteristics, technical problems that have arisen during operation for 6 years are given. The elements of the wind energy complex – the battery charge regulator and the inverter-converter are considered. The consequences of the mechanical regulator failure of battery charge are con- sidered and recommendations for its replacement are presented. The issues of diagnostics and repair of one of the main elements of the complex – the inverter-converter, its component – DC link are highlighted in detail. Oscil- lograms of the output voltage of the inverter-converter are presented for different capacities of the DC link and the images of the repaired inverter-converter are given. Recommendations are given on choosing an inverter-converter and setting up the operating modes of the wind energycomplex .
The paper is dedicated to analyzing the use of wind and diesel power plants for the power supply of mining facilities located remotely from centralized power supply networks. Regions which are promising in terms of using their wind potential are determined. An example of the network for using a wind and diesel power plant to supply submersible motors of centrifugal pumps in an oil well cluster is presented.