-
Date submitted2023-10-28
-
Date accepted2024-11-07
-
Date published2025-02-25
Radiation characteristics of coals at different stages of metamorphism
The formation of deposits and subsequent metamorphic processes that affect concentrations of radioactive elements in coal can indicate ongoing geological activities, therefore, analyzing trends in the radiation characteristics of coal throughout the metamorphic series is highly relevant. The aim of this work is to experimentally evaluate the radiation characteristics of different coal ranks (metamorphic stages) using thermoluminescent (TL) dosimetry and beta activity measurements, and to identify correlations between these radiation characteristics and data obtained from technical, elemental, and thermogravimetric analyses, as well as mass spectrometric and electron paramagnetic resonance spectroscopy (EPR) measurements. For dosimetric measurements that indirectly characterize the content of radionuclides in coal, a modified dosimetric complex and original soil-equivalent thermoluminescent detectors based on SiO2 were used. The analysis of the obtained results supports the use of TL studies to determine the ash content of coals at low and medium stages of metamorphism (coal rank B→G), while indicating that this method is not feasible for coals at higher stages of metamorphism. The correlation dependencies in the metamorphism series suggest abrupt change in the conditions of coal formation during the time range corresponding to transformation from high to low volatile bituminous coals (coal rank G→Zh→K). These abrupt changes in regional metamorphism conditions (time, temperature, pressure, oxidation-reduction conditions) are confined to the boundary of the Permian and Triassic periods (~250 million years ago), during which both the transformation of existing coal deposits and the formation of new deposits occurred.
-
Date submitted2023-07-31
-
Date accepted2024-11-07
-
Date published2025-02-25
Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses
- Authors:
- Tatiana V. Minnikova
- Sergey I. Kolesnikov
Remediation is an important area of oil-contaminated soil restoration in Russia, since oil refining industry is the major one for Russia and neighbouring countries, and the issues of environmentally effective and economically profitable remediation of oil contamination have not yet been solved. Soils under various economic uses have different surface areas and degrees of soil particles envelopment with oil due to the presence or absence of cultivation, the amount of precipitation and plant litter. The introduction of various substances for remediation into oil-contaminated soils of steppes (arable land), forests, and semi-deserts, considering their differences, gives different results. Biochar is coal obtained by pyrolysis at high temperatures and in the absence of oxygen. The uniqueness of this coal lies in the combination of biostimulating and adsorbing properties. The purpose of the study is to conduct an environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses. The article compares the environmental assessments of biochar application in oil-contaminated soils with different particle size fraction. The following indicators of soil bioactivity were determined: enzymes, indicators of initial growth and development intensity of radish, microbiological indicators. We found that the most informative bioindicator correlating with residual oil content is the total bacteria count, and the most sensitive ones are the roots length (ordinary chernozem and brown forest soil) and the shoots length (brown semi-desert soil). The use of biochar on arable land and in forest soil (ordinary chernozem and brown forest soil) is less environmentally efficient than in semi-desert soil (brown semi-desert soil). The study results can serve to develop measures and managerial and technical solutions for remediation of oil-contaminated soils under various economic uses.
-
Date submitted2024-06-17
-
Date accepted2024-07-17
-
Date published2024-10-03
Justification on the safe exploitation of closed coal warehouse by gas factor
The annual increase of coal production and its demand lead to the necessity in temporary storage places (warehouses) organization to accommodate raw coal materials before the shipment. It is noted that at the open method of coal storing the dust emission from loading/unloading operations and from the pile surface effects negatively the health of the warehouse workers and adjacent territories. An alternative solution is closed-type warehouses . One of the main hazards of such coal storage can be the release of residual methane from coal segregates into the air after degassing processes during mining and extraction to the surface, as well as transportation to the place of temporary storage. The study carries the analysis of methane content change in coal during the processes of extraction, transportation and storage. Physical and chemical bases of mass transfer during the interaction between gas-saturated coal mass and air are studied. It is determined that the intensity of methane emission depends on: the coal seam natural gas content, parameters of mass transfer between coal, and air and the ambient temperature. The dynamics of coal mass gas exchange with atmospheric air is evaluated by approximate approach, which is based on two interrelated iterations. The first one considers the formation of methane concentration fields in the air space of the bulk volume and the second accounts the methane emission from the pile surface to the outside air. It is determined that safety of closed coal warehouses exploitation by gas factor can be ensured by means of artificial ventilation providing volumetric methane concentration in the air less than 1 %. The flow rate sufficient to achieve this methane concentration was obtained as a result of computer modeling of methane concentration fields formation in the air medium at theoretically calculated methane emission from the pile surface.
-
Date submitted2024-05-06
-
Date accepted2024-06-14
-
Date published2024-07-04
Natural carbon matrices based on brown coal, humic acids and humine extracted from it for purification of aqueous solutions from low molecular weight organic impurities
Heterogeneous systems including natural carbon matrices in the solid phase and aqueous solutions of low molecular weight organic compounds with positive and negative variations from ideality in the liquid phase are considered. The technical characterization of the considered supramolecular ensembles on the basis of brown coal of the Kara-Keche deposit (Kyrgyzstan), humic acids and humine extracted from it is given. Functional analysis of the samples was carried out using FTIR spectroscopy. The morphology of the surface of the considered carbon matrices has been investigated, in different points of which the local microelement composition has been established. An X-ray phase analysis of Kara-Keche brown coal and humic acids and humine extracted from it was carried out. The isothermal adsorption of bipolar molecules of glycine and urea, neutral D-glucose from aqueous solutions on solid carbon sorbents has been studied. An assumption has been made about the adsorption of low molecular weight organic compounds from aqueous solutions on humine and Kara-Keche coal in irregularities and pores of the carbon matrix of sorbents, for humic acids – on surface reaction centers. Due to its developed pore structure and resistance to acids and alkalis, humine from Kara-Keche coal is recommended for the purification of industrial wastewater from low molecular weight organic ecotoxicants.
-
Date submitted2023-01-16
-
Date accepted2023-06-20
-
Date published2024-04-25
Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan
Coal is one of the world's most important energy substances. China is rich in coal resources, accounting for more than 90 % of all ascertained fossil energy reserves. The consumption share of coal energy reaches 56.5 % in 2021. Due to the high moisture content of low-rank coal, it is easy to cause equipment blockage in the dry sorting process. This paper considers low-rank coal coming from Inner Mongolia (NM samples) and Yunnan (YN samples). The weight loss performance of the samples was analyzed using thermogravimetric experiments to determine the appropriate temperature for drying experiments. Thin-layer drying experiments were carried out at different temperature conditions. The drying characteristics of low-rank coal were that the higher the drying temperature, the shorter the drying completion time; the smaller the particle size, the shorter the drying completion time. The effective moisture diffusion coefficient was fitted using the Arrhenius equation. The effective water diffusion coefficient of NM samples was 5.07·10–11 - 9.58·10–11 m2/s. The effective water diffusion coefficients of the three different particle sizes of YN samples were 1.89·10–11 - 4.92·10–11 (–1 mm), 1.38·10–10 - 4.13·10–10 (1-3 mm), 5.26·10–10 - 1.49·10–9 (3-6 mm). The activation energy of Inner Mongolia lignite was 10.97 kJ/mol (–1 mm). The activation energies of Yunnan lignite with different particle sizes were 17.97 kJ/mol (–1 mm), 33.52 kJ/mol (1-3 mm), and 38.64 kJ/mol (3-6 mm). The drying process was simulated using empirical and semi-empirical formulas. The optimal model for Inner Mongolia samples was the Two-term diffusion model, and Yunnan samples were the Hii equation was used.
-
Date submitted2022-05-17
-
Date accepted2023-04-03
-
Date published2024-02-29
Improvement of concentrate quality in flotation of low-rank coal
- Authors:
- Sergei A. Kondratev
- Tatyana A. Khamzina
Percentage of high-rank coal with low content of ash, moisture, and sulfur in total coal production output is low. Most of the produced coal has a low quality (lignite, bituminous coal: long-flame and fiery). Under increasing requirements for ecological cleanness of coal, the efficient use of coal products is only possible after improvement of their processing properties. The authors discuss the enhancement of flotation efficiency of low-rank coal using the mechanism of physisorption of a collecting agent in particle – bubble attachment. It is explained why the yield of concentrate with low ash content increases as a result of combination of collectors having different physical properties. It is shown that the surface activity of a heteropolar agent relative to the gas – liquid interface and the adsorption density of the agent govern its collecting properties. Based on the recovery – surface activity relationship, the correlation is found between the collecting activity of a chemical compound and the structure of its molecules. The combination of the collectors with different surface activity enables adjusting collectability and selectivity of the blend. The physisorption mechanism of collectors can be a framework for developing recommendations on modification of concentrate yield and ash content, and on selection of optimized ratios of surface activities of miscible collectors relative to the gas – liquid interface.
-
Date submitted2023-04-02
-
Date accepted2023-06-20
-
Date published2023-07-19
Integration of renewable energy at coal mining enterprises: problems and prospects
This article addresses the issue of developing renewable energy in coal mining enterprises in the Russian Federation. The study presents a methodology for assessing the technical and economic efficiency of introducing renewable energy sources based on simulation modeling. An analysis of the potential of solar and wind energy for coal mining regions in Russia is conducted. The authors use a custom software developed by them to simulate the power supply system for various scenarios of renewable energy integration, including solar generation, wind generation, solar generation with energy storage, wind generation together with solar generation. Based on the example of the Rostov region, a feasibility study of the considered options is presented. Additionally, the research includes a sensitivity analysis of the investment project in the conditions of uncertainty in the development of Russian renewable energy. The research findings indicate that even in market conditions with CO2 emission quotas and prices at the level of the Sakhalin experiment, renewable energy in coal mining enterprises in Russia remains unattractive and requires additional support.
-
Date submitted2021-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps
On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.
-
Date submitted2022-11-04
-
Date accepted2023-03-03
-
Date published2023-04-25
Efficiency of acid sulphate soils reclamation in coal mining areas
During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.
-
Date submitted2022-08-05
-
Date accepted2022-11-17
-
Date published2023-02-27
Feasibility study of using cogeneration plants at Kuzbass coal mines
The paper considers the problem of reducing greenhouse gas emissions in the process of coal mining during the coal mine methane utilization in power supply systems. An algorithm to form recommendations for the implementation of CMM generation is presented. A simulation model for one of the Kuzbass coal mines was developed in the PowerFactory software application. The simulation model considers the uneven nature of the power consumption of mining equipment. As a result of modeling, daily power consumption profiles and voltage levels in the coal mine power supply system were determined before and after the implementation of the proposed measures. Based on the results, the technical and economic effects was estimated, which consisted in reducing the direct and indirect carbon footprint, electricity and capacity fees. It has been established that the cost of carbon dioxide emission quotas significantly affects the investment attractiveness of cogeneration projects. Based on the results, recommendations are given to stimulate the development of small generation in coal mines.
-
Date submitted2021-07-05
-
Date accepted2022-11-17
-
Date published2022-12-29
Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation
A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.
-
Date submitted2022-04-05
-
Date accepted2022-07-21
-
Date published2022-11-10
Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines)
- Authors:
- Vladimir P. Zubov
- Le Quang Phuc
It is shown that the creation of the variants of resource-saving systems for the development of long-column mining is one of the main directions for improving the technological schemes for mining operations in the mines of the Kuang Nin coal basin. They provide a reduction in coal losses in the inter-column pillars and the cost of maintaining preliminary workings fixed with anchorage. The implementation of these directions is difficult (and in some cases practically impossible) when tight rocks are lying over the coal seam, prone to significant hovering in the developed space. In the Quang Ninh basin, 9-10 % of the workings are anchored, the operational losses of coal reach 30 % or more; up to 50 % of the workings are re-anchored annually. It is concluded that the real conditions for reducing coal losses and the effective use of anchor support as the main support of reusable preliminary workings are created when implementing the idea put forward at the St. Petersburg Mining University: leaving the coal pillar of increased width between the reused mine working and the developed space and its subsequent development on the same line with the stoping face simultaneously with the reclamation of the reused mine working.
-
Date submitted2022-03-17
-
Date accepted2022-06-20
-
Date published2022-11-03
Assessment of collecting activity of physically sorbed reagents on the example of easily floatable coking coal sludge
- Authors:
- Sergey A. Kondratev
- Tatyana A. Khamzina
The article presents one of the new approaches to theoretical assessment of collecting ability of reagents. The efficiency of reagents-collectors with different chemical composition used for flotation of coking coals was studied. A comparative assessment of the flotation activity of kerosene, mineral oil, thermal gas oil, KETGOL and FLOTEK is given. The criteria of collecting activity of the above reagents-collectors for coal sludge flotation were specified. A correlation was established between the indicators of coal sludge flotation by the above reagents and their physical parameters. It is shown that the rate of spreading over water surface can characterize the flotation activity of reagents. Based on dependence of the collecting activity of a reagent on its rate of spreading along the “gas – liquid” interface and surface pressure, the main approaches to determining the structure and composition of molecules of an effective flotation collector can be determined. A new concept of the function performed by a physically sorbed collector in the elementary act of flotation and a criterion for the flotation activity of reagents used in coal sludge beneficiation are proposed. It is shown that the collector used in coal flotation, in addition to hydrophobizing the surface of the extracted particles, should reduce the induction time and remove the kinetic constraint on formation of a flotation aggregate.
-
Date submitted2021-12-19
-
Date accepted2022-07-21
-
Date published2022-11-10
Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts
The main volume of coal is mined underground using shearers. In modern shearers, auger actuators are mainly used, which are distinguished by the simplicity of design, manufacturability and reliability. However, in the process of separating coal from mass by cutting, the yield of fine grades is 40-50 % of the total production volume. Therefore, the search and development of technical solutions that provide an increase in the yield of large fractions in the process of coal mining with auger shearers is an urgent task. Traditionally, this problem is solved by increasing the thickness of the slices, which is achieved by installing cutters with a larger radial reach and increasing the shearer feed rate. An unconventional way to increase the cross section of slices by forming energy-efficient paired and group slices with mutual superposition of stress fields in the mass from the action of neighboring cutters is considered. The results of modeling the process of cutting coal confirm that an increase in the efficiency of destruction of the rock mass by the cutters of the auger executive bodies of the shearer can be achieved by a complex technical solution, including the formation of paired cuts and combined stress zones in the rock mass. As a result, the output of large fragments when cutting with paired cutters increases by 1.3-1.8 times compared with cutting with a single cutter.
-
Date submitted2021-10-14
-
Date accepted2022-04-07
-
Date published2022-04-29
The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow
The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.
-
Date submitted2021-07-05
-
Date accepted2022-01-24
-
Date published2022-04-29
Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings
- Authors:
- Oleg I. Kazanin
- Andrei A. Ilinets
On the basis of analysis of mining plans and field studies at mines of JSC SUEK-Kuzbass, it is shown that in conditions of increasing the size of excavation columns during the development of flat-lying coal seams the stress-strain state of the rock mass along the workings length changes significantly. The necessity of predicting the stress-strain state at the design stage of the workings timbering standards, as well as subsequent monitoring of the workings roof state and its changes in the mining operations using video endoscopes, is noted. The results of numerical studies of the stress-strain state of the rock mass during the development of excavation sites by three workings for various combinations of width of the pillars between the workings for mining-geological and mining-technical conditions of the “Taldinskaya-Zapadnaya-2” mine are provided. The stresses in the vicinity of the three workings are compared with the values obtained during the development of the excavation sites by double drift. A set of recommendations on the choice of the location of the workings, the width of pillars, timbering standards that ensure the stable condition of the workings throughout the entire service life at the minimal losses of coal in the pillars is presented.
-
Date submitted2021-09-02
-
Date accepted2022-01-24
-
Date published2022-04-29
Complex processing of high-carbon ash and slag waste
The paper considers a current issue of ash and slag processing for the Polyus Aldan JSC, that has accumulated over 1 million tons of this waste. Following the results of the review of Russian and foreign literature, four promising areas of their use were selected: road construction, building materials, reclamation of disturbed lands, and inert aggregates. To assess the possibility of implementing the selected disposal directions, the samples of ash and slag waste of the enterprise were sampled and analyzed. Fuel characteristics, chemical and mineral composition, as well as physico-chemical and mechanical properties of waste were determined. Taking into account the results of complex laboratory studies and the requirements of regulatory documents, each of the selected areas of using ash and slag waste was evaluated. It was found that their disposal by traditional methods has limitations, mainly related to the high content of unburned fuel residues. The high content of combustible substances and the high specific heat of combustion with a relatively low ash content suggested the possibility of thermal disposal of the studied waste. Based on the literature data, the characteristics of the preparation of organic coal-water suspensions based on the studied ash and slag waste were selected. As a result of a series of experiments on their flaring, the expediency of using the obtained fuel at the enterprise under consideration has been proved. The authors note the possibility of using ash obtained after thermal waste disposal in the road construction industry. The prospects for further research of technologies for the preparation and combustion modes of suspension fuel based on ash and slag waste are determined.
-
Date submitted2021-11-30
-
Date accepted2021-11-30
-
Date published2021-12-27
Innovative ways to control dust and explosion safety of mine workings
Ensuring dust and explosion safety during underground coal mining is one of the most important tasks of industrial safety and labor protection departments. The main method of preventing explosions of coal dust settled in mine workings is to process them with stone dust (rock dusting). The traditional methods of quality control of rock dusting include radioisotope, optical and chemical methods. To implement them, the devices are equipped with environmentally harmful radioactive elements, expensive optical sensors, desiccants and replaceable flasks with chemical reagents, which increases the cost of analysis and its duration. The measurement error of these devices is 10 % or more. The main purpose of the study is to develop and substantiate a new method for monitoring the dust and explosion safety of mine workings, which will be devoid of the disadvantages of the methods mentioned above. It is proposed to evaluate the quality of rock-dust distribution by a fundamentally new way – thermogravimetric. The method was tested on the dust of coal mines in Kuzbass and the Vorkuta basin, including dust samples taken in mines with actual explosions. The article presents the results of experimental studies of the processes of thermal destruction of coal and stone dust mixtures. The non-overlapping intervals of the thermogravimetric reaction are identified: moisture yield (35-132 °С); volatile matter yield from coal (380-580 °С); thermal degradation of limestone with carbon dioxide yield (650-850 °С). Methods and mathematical dependencies for processing significant and qualitative identification characteristics of thermogravimetric curves in determining the content of non-combustible components in a sample of mine dust are considered.
-
Date submitted2021-06-15
-
Date accepted2021-08-27
-
Date published2021-10-21
Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion
- Authors:
- Vladimir P. Zubov
- Dmitrii D. Golubev
Spontaneous combustion of coal remains an important problem for coal mines, which can lead to an explosion of methane and coal dust. Accidents associated with spontaneous combustion of coal can cause significant economic losses to coal mining companies, as well as entail social damage – injuries and loss of life. Accidents are known at the Kuzbass mines, which occurred as a result of negligent attitude to the danger of spontaneous combustion of coal, the victims of which were dozens of people. The analysis of emergency situations associated with spontaneous combustion of coal shows that the existing wide range of means of preventing endogenous fires does not provide complete safety when working out coal seams prone to spontaneous combustion, therefore, spontaneous combustion places continue to occur in mines. The consequences that may arise as a result of a methane explosion initiated by a self-ignition place indicate the need to improve the used technologies. The purpose of the work is to determine the impact of modern technological solutions used in functioning mines during underground mining of flat-lying coal seams prone to spontaneous combustion, and to develop new solutions that reduce endogenous fire hazard. Conclusions on the influence of leaving coal pillars in the developed space, isolated air removal from the stoping face through the developed space, the length of the stoping face and the excavation pillar, and other factors on the danger of the formation of spontaneous combustion places are presented. Conclusions about the possibility of using modern technological solutions in future are also drawn.
-
Date submitted2020-10-26
-
Date accepted2021-07-28
-
Date published2021-10-21
Investigation of the influence of the geodynamic position of coal-bearing dumps on their endogenous fire hazard
The paper investigates the hypothesis according to which one of the factors influencing the spontaneous combustion of coal-bearing dumps is its geodynamic position, i.e. its location in the geodynamically dangerous zone (GDZ) at the boundary of the Earth crust blocks. This hypothesis is put forward on the basis of scientific ideas about the block structure of the Earth crust and the available statistical data on the location of burning dumps and is studied using computer modeling. A dump located in the area of Eastern Donbass was chosen as the object of research. The simulation results show that the penetration of air into the dump body from the mine through the GDZ, which crosses the mining zone, is possible at an excess pressure of 1000 Pa created by the main ventilation fans. The fire source appearance in the dump body causes an increase in the temperature of the dump mass and becomes a kind of trigger that "turns on" the aerodynamic connection between the dump and the environment, carried out through the GDZ. It is concluded that the establishment of an aerodynamic connection between the mine workings and the dump through the GDZ can be an important factor contributing to the endogenous fire hazard of coal-bearing dumps. The simulation results can be used in the development of projects for monitoring coal-bearing dumps and measures to combat their spontaneous combustion.
-
Date submitted2021-01-18
-
Date accepted2021-05-21
-
Date published2021-09-20
Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines
The reasons for the lag of the indicators of the leading Russian coal mines engaged in the longwall mining of the flat-lying coal seams from similar foreign mines are considered. The analysis of the efficiency of the longwall face move operations at the JSC SUEK-Kuzbass mines was carried out. A significant excess of the planned deadlines for the longwall face move during the thick flat-lying seams mining, the reasons for the low efficiency of disassembling operations and the main directions for improving the technology of disassembling operations are revealed. The directions of ensuring the operational condition of the recovery room formed by the longwall face are considered. The recommended scheme of converged coal seams mining and a three-dimensional model of a rock mass to justify its parameters are presented. Numerical studies using the finite element method are performed. The results of modeling the stress-strain state of a rock mass in the vicinity of a recovery room formed under conditions of increased stresses from the boundary part of a previously mined overlying seam are shown. The main factors determining the possibility of ensuring the operational condition of the recovery rooms are established. It is shown that it is necessary to take into account the influence of the increased stresses zone when choosing timbering standards and organizing disassembling operations at a interbed thickness of 60 m or less. A sufficient distance from the gob of above- or undermined seams was determined to ensure the operational condition of the recovery room of 50 m, for the set-up room – 30 m. Recommendations are given for improving technology and organization of the longwall face move operations at the mines applied longwall mining of flat-lying coal seams with the formation of a recovery room by the longwall face.
-
Date submitted2021-01-21
-
Date accepted2021-04-19
-
Date published2021-04-26
Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives
Equipment with diesel engines is used in all mining enterprises. Monorail diesel transport is of great importance in coal mines, as it facilitates the heavy labor of workers when transporting materials and people, fixing mining workings, refueling and repairing equipment, which leads to an increase in the speed of tunneling operations. Reducing the concentration of harmful gases from diesel-hydraulic locomotives at the workplaces of coal mine locomotive drivers can be ensured by the use of additives to diesel fuel that reduce the volume of harmful gas emissions during the operation of diesel-hydraulic locomotives. Additive ester-based on vegetal oil in the amount of 5 mass % in a mixture with hydrotreated diesel fuel reduces the concentration of carbon monoxide by 19-60 %, nitrogen oxides by 17-98 %, depending on the operating mode of the engine, the smoke content of the exhaust gases is reduced to 71 %. There is an improvement in working conditions at the workplace of the driver of a diesel-hydraulic locomotive by the chemical factor due to the reduction of the class of working conditions from 3.1. to 2.
-
Date submitted2020-05-16
-
Date accepted2020-07-30
-
Date published2020-12-29
Results of the study of kinetic parameters of spontaneous combustion of coal dust
The article is devoted to the study of the problem of spontaneous combustion of energy grades of coal not only during storage, but also during transportation. As the main samples for the study, the energy grades of SS and Zh coals were selected. The main task of the scientific research was to study the rate of cooling and heating of coal depending on their thermophysical parameters and environmental parameters. To solve this problem, the authors used both the author's installations designed to study the thermophysical parameters of the spontaneous combustion process (the Ya.S.Kiselev method), and the NETZSCH STA 449 F3 Jupiter synchronous thermal analysis device, the NETZSCH Proteus Termal Analysis software package. On the basis of a complex study of the spontaneous combustion process, the authors of the article obtained the kinetic characteristics of the spontaneous heating process (activation energy and pre-exponential multiplier). Nomograms of the permissible size of coal density of different types and shapes of accumulation depending on the ambient temperature are presented, practical recommendations for the prevention (avoidance) of spontaneous combustion of coal fuel are given.
-
Date submitted2020-05-12
-
Date accepted2020-09-22
-
Date published2020-11-24
Design features of coal mines ventilation using a room-and-pillar development system
- Authors:
- Sergey S. Kobylkin
- Alexander R. Kharisov
The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).
-
Date submitted2020-06-12
-
Date accepted2020-10-28
-
Date published2020-11-24
Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining
- Authors:
- Ada K. Dzhioeva
- Vladimir S. Brigida
The paper is devoted to the problem of increasing energy efficiency of coalmine methane utilization to provide sustainable development of geotechnologies in the context of transition to a clean resource-saving energy production. Its relevance results from the fact that the anthropogenic effect of coalmine methane emissions on the global climate change processes is 21 times higher than the impact of carbon dioxide. Suites of gassy coal seams and surrounding rocks should be classified as technogenic coal-gas deposits, while gas extracted from them should be treated as an alternative energy source. Existing practices and methods of controlling coalmine methane need to be improved, as the current “mine – longwall” concept does not fully take into account spatial and temporal specifics of production face advancement. Therefore, related issues are relevant for many areas of expertise, and especially so for green coal mining. The goal of this paper is to identify patterns that describe non-linear nature of methane release dynamics in the underground boreholes to provide sustainable development of geotechnologies due to quality improvement of the withdrawn methane-air mixture. For the first time in spatial-temporal studies (in the plane of CH 4 - S ) of methane concentration dynamics, according to the designed approach, the parameter of distance from the longwall ( L ) is introduced, which allows to create function space for the analyzed process (CH 4 of S-L ). Results of coalmine measurements are interpreted using the method of local polynomial regression (LOESS). The study is based on using non-linear variations of methane concentration in the underground boreholes and specific features of their implementation to perform vacuum pumping in the most productive areas of the undermined rock mass in order to maintain safe aerogas conditions of the extraction block during intensive mining of deep-lying gassy seams. Identification of patterns in the influence of situational geomechanical conditions of coal mining on the initiation of metastable gas-coal solution transformation and genesis of wave processes in the coal-rock mass allows to improve reliability of predicting methane release dynamics, as well as workflow manageability of mining operations. Presented results demonstrate that development of high-methane Donbass seams is associated with insufficient reliability of gas drainage system operation at distances over 40 m behind the longwall face. Obtained results confirm a working hypothesis about the presence of spatial migration of methane concentration waves in the underground gas drainage boreholes. It is necessary to continue research in the area of estimating deviation angles of “advance fracturing” zone boundaries from the face line direction. Practical significance of research results lies in the possibility to use them in the development of scientific foundation for 3D gas drainage of a man-made coal-methane reservoir, taking into account spatial and temporal advancement of the production face.