Submit an Article
Become a reviewer
Nguyen Van Xuan
Nguyen Van Xuan
Ph.D.
Institute of Energy and Mining Mechanical Engineering
, Ph.D.
Institute of Energy and Mining Mechanical Engineering
27
Total cited
3
Hirsch index

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-19
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts

Article preview

The main volume of coal is mined underground using shearers. In modern shearers, auger actuators are mainly used, which are distinguished by the simplicity of design, manufacturability and reliability. However, in the process of separating coal from mass by cutting, the yield of fine grades is 40-50 % of the total production volume. Therefore, the search and development of technical solutions that provide an increase in the yield of large fractions in the process of coal mining with auger shearers is an urgent task. Traditionally, this problem is solved by increasing the thickness of the slices, which is achieved by installing cutters with a larger radial reach and increasing the shearer feed rate. An unconventional way to increase the cross section of slices by forming energy-efficient paired and group slices with mutual superposition of stress fields in the mass from the action of neighboring cutters is considered. The results of modeling the process of cutting coal confirm that an increase in the efficiency of destruction of the rock mass by the cutters of the auger executive bodies of the shearer can be achieved by a complex technical solution, including the formation of paired cuts and combined stress zones in the rock mass. As a result, the output of large fragments when cutting with paired cutters increases by 1.3-1.8 times compared with cutting with a single cutter.

How to cite: Gabov V.V., Xuan N.V., Zadkov D.A., Tho T.D. Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts // Journal of Mining Institute. 2022. Vol. 257. p. 764-770. DOI: 10.31897/PMI.2022.66