Submit an Article
Become a reviewer

Search articles for by keywords:
нормальный режим работы

Economic Geology
  • Date submitted
    2024-04-08
  • Date accepted
    2024-06-13
  • Date published
    2024-12-25

Analysing the problems of reproducing the mineral resource base of scarce strategic minerals

Article preview

The results of studying the scarcity of strategic minerals in the Russian Federation are presented, domestic consumption of which is largely provided by forced imports and/or stored reserves. Relevance of the work is due to aggravation of the geopolitical situation and a growing necessity to meet the demand of national economy for raw materials from own sources. Analysis of the state of mineral resource base of scarce minerals in the Russian Federation was accomplished, problems were identified and prospects for its development were outlined taking into account the domestic demand for scarce minerals, their application areas and the main consumers. Reducing the deficit through the import of foreign raw materials and the development of foreign deposits does not ensure the reproduction of the domestic mineral resource base, independence of the country from imported raw materials as well as additional competitive advantages, economic stability and security. It was ascertained that a major factor holding back the development of the mineral resource base is insufficient implementation of new technological solutions for the use of low-quality ore. Improving the technologies in the industry is relevant for all types of scarce minerals to solve the problem of reproducing their resource base. Taking into account the prospects for the development of the resource base for the minerals under consideration (manganese, uranium, chromium, fluorspar, zirconium, titanium, graphite) requires a set of legal and economic measures aimed at increasing the investment attractiveness of geological exploration for subsoil users at their own expense without attracting public funding. The proposed measures, taking into account the analysis of positive experience of foreign countries, include the development of junior businesses with expansion of the “declarative” principle, the venture capital market, various tax incentives, preferential loans as well as conditions for the development of infrastructure in remote regions. The proposed solution to the problem of scarcity of strategic minerals will make it possible in future to present measures to eliminate the scarcity of certain types of strategic minerals taking into account their specificity.

How to cite: Pashkevich N.V., Khloponina V.S., Pozdnyakov N.A., Avericheva A.A. Analysing the problems of reproducing the mineral resource base of scarce strategic minerals // Journal of Mining Institute. 2024. Vol. 270. p. 1004-1023. EDN HNTQBF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-25
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

Finite element analysis of slope failure in Ouenza open-pit iron mine, NE Algeria: causes ‎and lessons for stability control

Article preview

Slope failures in mining engineering pose significant risks to slope stability control, necessitating a thorough investigation into their root causes. This paper focuses on a back analysis of a slope failure in the Zerga section of the Ouenza – Algeria open-pit iron mine. The primary objectives are to identify the causes of slope failure, propose preventive measures, and suggest techniques to enhance stability, thereby providing crucial insights for monitoring slope stability during mining operations. The study commenced with a reconstruction of the slopes in the affected zones, followed by a numerical analysis utilizing the Shear strength reduction method within the Finite element method (SSR-FE). This approach enables the examination of slope stability under both static and dynamic loads. The dynamic load assessment incorporated an evaluation of the vibrations induced by the blasting process during excavation, introducing seismic loading into the finite element analysis. The findings reveal that the primary triggering factor for the landslide was the vibration generated by the blasting process. Furthermore, the slope stability was found to be critically compromised under static loads, highlighting a failure to adhere to exploitation operation norms. The challenging geology, particularly the presence of marl layers where maximum shear strain occurs, contributed to the formation of the landslide surface. The study not only identifies the causes of slope failure but also provides valuable lessons for effective slope stability management in mining operations.

How to cite: Belgueliel F., Fredj M., Saadoun A., Boukarm R. Finite element analysis of slope failure in Ouenza open-pit iron mine, NE Algeria: causes ‎and lessons for stability control // Journal of Mining Institute. 2024. Vol. 268. p. 576-587. EDN XIQXNW
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-12-27
  • Date published
    2024-04-25

Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure

Article preview

The selection of efficient drilling and blasting technology to achieve the required particle size distribution of blasted rock mass and reduce ore dilution is directly related to the accurate definition of rock mass properties. The zoning of the rock massif by its hardness, drillability and blastability does not consider the variability of the geological structure of the block for blasting, resulting in an overestimated specific consumption of explosives. The decision of this task is particularly urgent for enterprises developing deposits with a high degree of variability of geological structure, for example, at alluvial deposits. Explosives overconsumption causes non-optimal granulometric composition of the blasted rock mass for the given conditions and mining technology. It is required to define physical and mechanical properties of rocks at deposits with complex geological structure at each block prepared for blasting. The correlation between the physical and mechanical properties of these rocks and drilling parameters should be used for calculation. The relation determined by the developed method was verified in industrial conditions, and the granulometric composition of the blasted rock mass was measured by an indirect method based on excavator productivity. The results demonstrated an increase in excavation productivity, thus indicating the accuracy of given approach to the task of identifying the rocks of the blasted block.

How to cite: Vinogradov Y.I., Khokhlov S.V., Zigangirov R.R., Miftakhov A.A., Suvorov Y.I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure // Journal of Mining Institute. 2024. Vol. 266. p. 231-245. EDN RUUFNM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-16
  • Date accepted
    2023-10-24
  • Date published
    2023-10-27

Results of complex experimental studies at Vostok station in Antarctica

Article preview

Scientific research in the area close to the Russian Antarctic station Vostok has been carried out since its founding on December 16, 1957. The relevance of work to study the region is steadily increasing, which is confirmed by the Strategy for the Development of Activities of the Russian Federation in the Antarctica until 2030. As part of the Strategy implementation, Saint Petersburg Mining University solves the comprehensive study issues of the Vostok station area, including the subglacial Lake Vostok, related to the development of modern technologies and technical means for drilling glaciers and underlying rocks, opening subglacial reservoirs, sampling water and bottom sediments, as well as carrying out comprehensive geological and geophysical research. For the successful implementation of the Strategy, at each stage of the work it is necessary to identify and develop interdisciplinary connections while complying with the requirements for minimizing the impact on the environment. During the season of the 68th Russian Antarctic Expedition, the staff of the Mining University, along with the current research works , began research of the dynamic interactions between the forces of the Earth, from the deepest depths to the surface glacier. Drilling and research programs have been completed. The drilling program was implemented jointly with colleagues from the Arctic and Antarctic Research Institute at the drilling complex of the 5G well. The research program included: shallow seismic studies, core drilling of snow-firn strata, study of the snow-firn strata petrostructural features, studies of cuttings collection filters effectiveness when drilling snow-firn strata and the process of ice destruction in a reciprocating rotational method, bench testing of an acoustic scanner. As a result of drilling in 5G well at the depth range of 3453.37-3534.43 m, an ice core more than 1 million years old was obtained.

How to cite: Bolshunov A.V., Vasilev D.A., Dmitriev A.N., Ignatev S.A., Kadochnikov V.G., Krikun N.S., Serbin D.V., Shadrin V.S. Results of complex experimental studies at Vostok station in Antarctica // Journal of Mining Institute. 2023. Vol. 263. p. 724-741. EDN WQNJET
Energy industry
  • Date submitted
    2022-10-13
  • Date accepted
    2022-12-13
  • Date published
    2023-07-19

A complex model of a drilling rig rotor with adjustable electric drive

Article preview

A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.

How to cite: Ershov M.S., Komkov А.N., Feoktistov E.A. A complex model of a drilling rig rotor with adjustable electric drive // Journal of Mining Institute. 2023. Vol. 261. p. 339-348. DOI: 10.31897/PMI.2023.20
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-10
  • Date published
    2022-11-03

Monitoring of grinding condition in drum mills based on resulting shaft torque

Article preview

Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.

How to cite: Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque // Journal of Mining Institute. 2022. Vol. 256. p. 686-700. DOI: 10.31897/PMI.2022.91
Metallurgy and concentration
  • Date submitted
    2022-05-03
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Determination of rational steam consumption in steam-air mixture flotation of apatite-nepheline ores

Article preview

Relevance of the study is determined by the decisions taken to increase the production volume of certain commercial products from mineral raw materials. The scale, impact and consequences of the projects on developing the resource-saving technologies for beneficiation of mineral raw materials are socially significant, and the economic growth of mining production complies with the sustainable development goals. The aim of the study is to develop the flotation circuit and mode that improve the technological performance of beneficiation of apatite-nepheline ores of the Khibiny Massif in the Kola Peninsula. The scientific idea of ​​the work is to develop the flotation circuit, the movement of beneficiation products in which ensures a major increase in the content of the recovered component in the rougher flotation procedure with a simultaneous increase in dressability of the material. The above condition is met when mixing the feedstock with rough concentrate. Recovery of the valuable component from the resulting mixture is accomplished in a mode differing from the known ones in that the heat of steam condensation is used to increase water temperature in the interphase film between the particle and the bubble. For pulp aeration during flotation, a mixture of air and hot steam is used as the gas phase. A high recovery of the valuable component in ore flotation according to the developed circuit and mode is facilitated by increasing water temperature in wetting films due to the steam condensation heat. A high selectivity of flotation with a steam-air mixture can be explained using the concepts of a phonon component of disjoining pressure, the value and sign of which are associated with a difference in the dynamic structure of liquid in the wetting film and bulk liquid.

How to cite: Evdokimov S.I., Gerasimenko T.E. Determination of rational steam consumption in steam-air mixture flotation of apatite-nepheline ores // Journal of Mining Institute. 2022. Vol. 256. p. 567-578. DOI: 10.31897/PMI.2022.62
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-07-05
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study

Article preview

The rock fragmentation reflects the degree of control of blasting. Despite the accuracy of screening analysis to determine the size distribution of blasted rocks, this technique remains complex and long because of the large volume of blasted rocks. The digital image processing method can overcome these constraints of accuracy and speed. Our method uses the empirical model of KuzRam and numerical method (Digital image processing) through two image processing software’s (WipFrag and Split-Desktop) to analyze the particle size distribution of rocks fragmented by explosives in Jebel Medjounes limestone quarry. The digital image processing is based on the photography of the pile of blasted rock analyzed using image processing techniques. The objective of this work is to evaluate and compare the results obtained for each blast from the two methods and to discuss the similarities and differences among them. Three different blasts with the same design were analyzed through the two methods. The result of the KuzRam model gave idealistic results due to the heterogeneity of the structure of the rocks; although, this model can be used for an initial evaluation of blast design. For better efficiency of the explosion, we proposed a new fragmentation indicator factor in order to compare the fragment produced to the estimated ideal size obtained from the KuzRam model by incorporating the blast design parameters and the rock factor. Both image processing gives close results with more accuracy for the Split-Desktop software. Our method can improve the efficiency and reduce crushing costs of the studied career.

How to cite: Saadoun A., Fredj M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study // Journal of Mining Institute. 2022. Vol. 257. p. 822-832. DOI: 10.31897/PMI.2022.84
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-07-19
  • Date accepted
    2022-05-31
  • Date published
    2022-07-13

Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter

Article preview

The factors influencing the qualitative and quantitative components of the result of surveying in open-pit mining using a quadcopter were identified and systematized, and the mathematical dependence of the influence of factors on the final error of surveying was determined. After a large number of field observations – numerous flights of a geodesic quadcopter over mining facilities – the subsequent mathematical justification of the results of the aerial photogrammetric surveying was made, which allowed to analyze the degree of participation in the final accuracy of the survey of each of the considered factors. The results of this study demonstrate the source of errors, which provide the surveyor with the opportunity to efficiently and competently carry out pre-flight preparation and planning of fieldwork. The study and subsequent consideration of the factors affecting the accuracy of surveying with the use of an unmanned aerial vehicle are the basis for the subsequent development and formation of a methodology for using a geodesic quadcopter in the conditions of open-pit mining.

How to cite: Gusev V.N., Blishchenko A.A., Sannikova A.P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter // Journal of Mining Institute. 2022. Vol. 254. p. 173-179. DOI: 10.31897/PMI.2022.35
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-27
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing

Article preview

The technogenic impact of mining on the environment is analyzed and the transition to geotechnology with stowing to reduce the impact of mining operations is proposed. The results of the research work devoted to the justification of parameters of the development of salt deposits with stowing and the definition of the influence of stowing on the dynamics of deformation of the underworked rock massif are presented. The relevance of research aimed at creating a safe and efficient technology for the transition from systems with natural maintenance of stoping space to systems with stowing has been substantiated. The results of studies on qualitative and quantitative assessment of the state of the rock massif (by the finite element method using FLAC3D software), worked out by combines, are given and the dynamics of the impact of mining operations on the rock mass and the change in the maximum stresses during the hardening of the stowing in the chambers are revealed. The numerical modeling method is used to analyze the conditions of change in the state of the underworked rock mass, to establish the mechanisms of its deformation at various stages of development. It is recommended to use this approach for geotechnical assessment of the rock mass state in conditions of using development systems of different classes.

How to cite: Rybak J., Khayrutdinov M.M., Kuziev D.A., Kongar-Syuryun C.B., Babyr N.V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing // Journal of Mining Institute. 2022. Vol. 253. p. 61-70. DOI: 10.31897/PMI.2022.2
Energy industry
  • Date submitted
    2021-03-11
  • Date accepted
    2021-04-12
  • Date published
    2022-04-29

Operation mode selection algorithm development of a wind-diesel power plant supply complex

Article preview

The power supply system is affected by external disturbances, so it should be stable and operate normally in compliance with power quality standards. The power supply system goes into abnormal modes operation when, after a short-term failure or disturbance, it does not restore normal mode. The electrical complex, which includes a wind power plant, as well as a battery and a diesel generator connected in parallel, is able to provide reliable power supply to consumers which meets the power quality indicators. The article develops an algorithm that is implemented by an automatic control system to select the operating mode depending on climatic factors (wind) and the forecast of energy consumption for the day ahead. Forecast data is selected based on the choice of the methods, which will have the smallest forecast error. It is concluded that if the energy consumption forecast data is added to the automatic control system, then it will be possible to increase the efficiency of the power supply complex. In the developed algorithm the verification of normal and abnormal modes of operation is considered based on the stability theory. The criteria for assessing the normal mode of operation are identified, as well as the indicators of the object’s load schedules for assessing the load of power supply sources and the quality standards for power supply to consumers for ranking the load by priority under critical operating conditions and restoring normal operation are considered.

How to cite: Shklyarskiy Y.E., Batueva D.E. Operation mode selection algorithm development of a wind-diesel power plant supply complex // Journal of Mining Institute. 2022. Vol. 253. p. 115-126. DOI: 10.31897/PMI.2022.7
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-13
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Increasing the efficiency of technological preparation for the production of the manufacture components equipment for the mineral resource complex

Article preview

An increase of components production for the equipment intended for oil and gas production is a key factor for analyzing existing technological processes and searching for new technological solutions to improve the efficiency of the production process and the quality of components. The article presents a simulation model designed to determine the rational technological processing parameters for the production of the “Centralizer shell” part. The basis for optimizing the working cycle of a production line is synchronization based on the principle of proportionality, which involves equalizing the duration of all technological operations with the rhythm of the production line. Synchronization of technological operations on the production line is carried out by choosing rational cutting parameters for each technological transition (cutting speed, feedrate, number of working passes). The “Centralizer shell” part is made of titanium alloy VT16, which has high strength, corrosion resistance and ductility. For the part under consideration, the permissible values ​​of the cutting parameters were determined based on the calculation of the total processing error, as well as the frequency of replacement of the worn cutting tool. The simulation model described in the article made it possible to increase the efficiency of the production process due to the synchronization of technological operations and the search for rational technological parameters, as well as to improve the manufacturing quality of the “Centralizer shell” part by analyzing the processing error at various parameters of the technological process.

How to cite: Khrustaleva I.N., Lyubomudrov S.A., Larionova T.A., Brovkina Y.Y. Increasing the efficiency of technological preparation for the production of the manufacture components equipment for the mineral resource complex // Journal of Mining Institute. 2021. Vol. 249. p. 417-426. DOI: 10.31897/PMI.2021.3.11
Electromechanics and mechanical engineering
  • Date submitted
    2021-03-30
  • Date accepted
    2021-05-26
  • Date published
    2021-09-20

Improving the efficiency of autonomous electrical complexes of oil and gas enterprises

Article preview

In accordance with the Energy Strategy until 2035, the possibility of increasing the efficiency of energy use of secondary energy resources in the form of associated oil and waste gases has been substantiated by increasing the energy efficiency of the primary energy carrier to 90-95 % by means of cogeneration plants with a binary cycle of electricity generation and trigeneration systems with using the energy of the waste gas to cool the air flow at the inlet of gas turbine plants. The conditions for maintaining the rated power of the main generator with variations in the ambient temperature are shown. An effective topology of electrical complexes in a multi-connected power supply system of oil and gas enterprises according to the reliability condition is presented, which allows increasing the availability factor by 0.6 %, mean time between failures by 33 %, the probability of failure-free operation by 15 % and reducing the mean time of system recovery by 40 %. The article considers the use of parallel active filters to improve the quality of electricity and reduce voltage drops to 0.1 s when used in autonomous electrical complexes of oil and gas enterprises. The possibility of providing uninterrupted power supply when using thyristor systems for automatic reserve input has been proven. A comparative analysis was carried out to assess the effect of parallel active filters and thyristor systems of automatic transfer of reserve on the main indicators of the reliability of power supply systems of oil and gas enterprises.

How to cite: Abramovich B.N., Bogdanov I.A. Improving the efficiency of autonomous electrical complexes of oil and gas enterprises // Journal of Mining Institute. 2021. Vol. 249. p. 408-416. DOI: 10.31897/PMI.2021.3.10
Mining
  • Date submitted
    2020-07-04
  • Date accepted
    2021-03-29
  • Date published
    2021-09-20

Transition between relieved and unrelieved modes when cutting rocks with conical picks

Article preview

In the modern theory of rock cutting in production conditions, it is customary to distinguish two large classes of achievable cutting modes – relieved and unrelieved. The kinematics of rock-breaking machines in most cases determines the operation of the cutting tool in both modes in one cycle of the cutting tool. The currently available calculation methods have been developed for a stable, usually unrelieved cutting mode. In this article, the task is set to determine the conditions for the transition between cutting modes and the modernization of the calculation method for determining the forces on the cutting tool. The problem is solved by applying methods of algebraic analysis based on the search for the extremum of the force function on the cutter, depending on the ratio of the real cut spacing to the optimal spacing for the current chip thickness. As a result of solving the problem, an expression is obtained for determining the chip thickness, for which, at the specified parameters, the transition between the relieved and unrelieved cutting modes is provided. The obtained result made it possible to improve the method of calculating the forces on the cutting tool in the areas of the cutter movement with relieved cutting.

How to cite: Averin E.A., Zhabin A.B., Polyakov A.V., Linnik Y.N., Linnik V.Y. Transition between relieved and unrelieved modes when cutting rocks with conical picks // Journal of Mining Institute. 2021. Vol. 249. p. 329-333. DOI: 10.31897/PMI.2021.3.1
Electromechanics and mechanical engineering
  • Date submitted
    2021-03-04
  • Date accepted
    2021-04-05
  • Date published
    2021-06-24

Justification and selection of design parameters of the eccentric gear mechanism of the piston lubrication and filling unit for the mining machines maintenance

Article preview

Piston pumps are widely used in the lubrication systems of mining machines. When carrying out technical maintenance (MOT), including lubrication and filling works, at the site of operation of mining machines due to the remoteness from repair shops and warehouses of fuels and lubricants (FAL), mobile repair shops ( MRS), maintenance units (MU) and mechanized filling units (MFU) are used. The specificity of carrying out maintenance is to create conditions for the supply of oils, working fluids and lubricants to the corresponding systems of mining machines for their refueling. Existing piston pumps and pumping units, as a rule, are single-flow, and the piston is driven by a crank mechanism driven from the engine through a worm gear. The emergence of unique, hydraulic, low-mobility mining machines in open pit mining required a significant increase in the power of the MU and MFU oil pumping units, primarily for greases. However, the traditional design of the drive design of a crank-type piston pump unit at a power of over 80 kW does not allow achieving the specified operating time, it is accompanied by intensive wear of the drive elements and increased dynamics during operation. In addition, it is necessary to apply various designs of pumping units for the supply of liquid and grease lubricants. Thus, it is necessary to develop new circuit solutions for pumping units of the crank type, to improve mobile refueling facilities with a modernized design of the pump unit drive of the mobile lubrication and filling station MRS.

How to cite: Ivanov S.L., Safronchuk K.A., Olt Y. Justification and selection of design parameters of the eccentric gear mechanism of the piston lubrication and filling unit for the mining machines maintenance // Journal of Mining Institute. 2021. Vol. 248. p. 290-299. DOI: 10.31897/PMI.2021.2.13
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-15
  • Date accepted
    2020-06-12
  • Date published
    2021-06-24

One of the ways to increase the durability of the sectional pump balancing ring

Article preview

The article presents the results of scientific research aimed at struggling the adhesive wear of parts of sectional pumps balancing ring, where the drainage units pumping equipment of the Russian Federation underground kimberlite mines was used as an object of research. It has been theoretically proven and experimentally confirmed that if there is data on the total operating time of a sectional pump in transient modes per day, using the constructed regression model, it is possible to calculate with high accuracy the average operating time of its balancing ring unit to failure. The constructed regression model is applicable only to sectional pumps of drainage units of underground kimberlite mines in the Russian Federation. It is possible to increase the durability of the balancing ring by reducing the acceleration and deceleration time of the sectional pump; for safe operation, it should be at least 10 s. Pilot tests carried out indicate the effectiveness of the proposed method for prompt identification of the critical axial displacement of the sectional pump rotor through the vibration of the discharge tube. The introduction of this method will reduce the cost of repair work to restore the performance of parts of the hydraulic foot to a minimum.

How to cite: Ovchinnikov N.P. One of the ways to increase the durability of the sectional pump balancing ring // Journal of Mining Institute. 2021. Vol. 248. p. 312-318. DOI: 10.31897/PMI.2021.2.15
Electromechanics and mechanical engineering
  • Date submitted
    2020-06-02
  • Date accepted
    2020-12-15
  • Date published
    2020-12-29

Method for calculating dynamic loads and energy consumption of a sucker rod installation with an automatic balancing system

Article preview

The efficiency of sucker rod pump installations, which have become widespread in mechanized lift practice, is largely determined by the balance of the drive. During the operation of sucker rod installations, the balance of loads acting on the rod string and the drive can change significantly due to changes in the dynamic fluid level, which leads to a decrease in balance and an increase in loads on the pumping equipment units. The increase and decrease in the dynamic level in accordance with the pumping and accumulation cycle occurs in wells operating in the periodic pumping mode. It is shown that during the operation of equipment in a periodic mode, fluctuations in the dynamic level and, accordingly, in the loads acting on the nodes occur. This leads to the need for dynamic adjustment of the balancing weights to ensure the balance of the pumping unit. A system for automatic balancing of the rod drive has been developed, including a balancing counterweight, an electric motor that moves the load along the balance beam, a propeller and a computing unit. To study the effectiveness of the proposed device, a complex mathematical model of the joint operation of the reservoir - well - sucker rod pump - rod string – pumping unit has been developed. It is shown that due to the dynamic adjustment of the balance counterweight position, the automatic balancing system makes it possible to significantly reduce the amplitude value of the torque on the crank shaft (in comparison with the traditional rod installation) and provide a more uniform load of the electric motor. Equalization of torque and motor load reduces the power consumption of the unit.

How to cite: Urazakov K.R., Molchanova V.A., Tugunov P.M. Method for calculating dynamic loads and energy consumption of a sucker rod installation with an automatic balancing system // Journal of Mining Institute. 2020. Vol. 246. p. 640-649. DOI: 10.31897/PMI.2020.6.6
Mining
  • Date submitted
    2020-06-09
  • Date accepted
    2020-11-02
  • Date published
    2020-11-24

Method of drilling process control and experimental studies of resistance forces during bits drilling with PDC cutters

Article preview

A rational, theoretically proved and empirically verified control system is a condition for optimal management of the drilling process in compliance with the criteria for minimizing the cost of time and material resources. A new generation of rock-cutting tools using PDC cutters (polycrystalline diamante cutters), which are extremely ef fective when drilling wells for various purposes in medium-hard rocks, dictates the need to develop methods and criteria for optimal control of the drilling process using this tool. The paper presents an analysis of the force interaction between rock-cutting elements, face rock, and drilling mud sa turated with slam, highlights the influencing factors and provides dependencies for determining the parameters of rock failure. Empirical verification of the theoretical propositions was carried out based on the data analysis from experimental bit drilling of marble with PDC cutters with a diameter of 76.2 mm, processed using the method of full factor experiment to obtain mathematical models of factors and their graphical interpretation. The method of controlling the drilling process based on the optimal ratio of the tool rotation frequency, axial weight and deepening per one turnover is considered, which allows determining the rock failure mode at the well bottom by indirect signs and choose the optimal values of the drilling mode parameters that correspond to the most optimal conditions in terms of achieving the maximum mechanical drilling speed in conjunction with the rational mode of rock-cutting tool operation. A scheme is presented that contains possible variants of the bit run mode and ways to recognize them by the ratio of the deepening per turnover and the rotation frequency of the rock-cutting tool.

How to cite: Neskromnykh V.V., Popova M.S., Golovchenko A.E., PETENEV P.G., Baochang L. Method of drilling process control and experimental studies of resistance forces during bits drilling with PDC cutters // Journal of Mining Institute. 2020. Vol. 245. p. 539-546. DOI: 10.31897/PMI.2020.5.5
Electromechanics and mechanical engineering
  • Date submitted
    2019-07-22
  • Date accepted
    2020-01-04
  • Date published
    2020-04-24

“Ural-20R” combines loading drives evaluation in two-stage development of the face

Article preview

The technological features of the use of high-performance Ural-20R combines in the conditions of potash mines in Russia are described. It is shown that when the capacity of the worked potash seams is over 4 m, a two-layer ore extraction is used. The formation of cutting process, implemented by the second course of the combine in the treatment chamber, is carried out by an incomplete section of the executive bodies. The standard control system, display and protection of the Ural-20R combine does not allow monitoring and reliable estimation of the magnitude of dynamic components on the drives of the mining machine loads, as well as tracking the feed rate of the combine to the face. The regulation of the operating parameters and the assessment of the degree of loading of the drives of the excavating machine in real time are assigned to the operator. The fundamentals of the experimental research methodology for assessing the loading of drives of Ural-20R combines with the destruction of the potash mass by an incomplete section of the executive bodies are described. The device and the operating procedure of the “Vatur” software-recording complex, which measures, records and records the electrical parameters of the drive motors of a mining machine, is described. The process studies results of forming loads on drive elements of Ural-20R combines when mining a face with an incomplete section of executive bodies are presented. It is proved that the work of combine harvesters on the undercut of the formation with a high feed rate is accompanied by significant dynamic loads on the drives of planetary organs and an overload of the drives of the Berm organs, which leads to an accelerated consumption of the resource and emergency failures of the gearboxes and motors of the extraction machine.

How to cite: Shishlyannikov D.I., Trifanov M.G., Trifanov G.D. “Ural-20R” combines loading drives evaluation in two-stage development of the face // Journal of Mining Institute. 2020. Vol. 242. p. 234-241. DOI: 10.31897/PMI.2020.2.234
Mining
  • Date submitted
    2019-07-21
  • Date accepted
    2019-09-20
  • Date published
    2020-02-25

Assessment of operational reliability of quarry excavator-dump truck complexes

Article preview

The method proposed in the article is based on the mathematical apparatus for quantitative assessment of the reliability of majority schemes of structural redundancy of transport processes, which provide the availability and usage of several backup delivery channels in the transport process in case of any malfunction. The principle of multi-channel haulage is commonly used in quarries for transportation of overburden and minerals from benches by dump trucks, when excavators and dump trucks performing cyclic operations function as a single excavator-dump truck complex. This pattern of work significantly increases the likelihood of fulfilling the daily plan for transporting rock mass due to the redistribution of dump trucks between mining and overburden excavators in the event of failure of one or more units of mining and handling equipment. The reliability of excavator-dump truck complexes is assessed in three stages: initial data collection for mathematical modeling of excavator-dump truck complex performance; solving the problem of optimizing the distribution of dump trucks between excavators, ensuring maximum productivity of the excavator-dump truck complex; assessment of the reliability of its work depending on the probability of fulfilling the daily plan for the transportation of rock mass. The proposed method is implemented as part of a computer program and makes it possible to automate the operational management of the process of transporting rock mass in a quarry using a mobile application. The developed guidelines can be used for any quarries with automobile transport, regardless of the type of mineral extracted, the mining method, the loading pattern, the capacity of the excavation and loading equipment fleet, and the capacity of operated dump trucks.

How to cite: Kurganov V.M., Gryaznov M.V., Kolobanov S.V. Assessment of operational reliability of quarry excavator-dump truck complexes // Journal of Mining Institute. 2020. Vol. 241. p. 10-21. DOI: 10.31897/PMI.2020.1.10
Electromechanics and mechanical engineering
  • Date submitted
    2019-07-06
  • Date accepted
    2019-08-25
  • Date published
    2019-12-24

Improving the efficiency of technological preparation of single and small batch production based on simulation modeling

Article preview

Technological preparation of production is an integral stage of the production process, which is characterized by high complexity, which is largely felt in the conditions of single and small-scale types of production. The effectiveness of technological preparation of production is increased through automation with the use of simulation modeling. The objective of the study is to develop a simulation model that allows you to determine a rational version of the process for processing a batch of parts. The simulation model described in the article allows to analyze the production schedule of the enterprise, build processing routes, evaluate options for using various types of workpieces and technological equipment, determine the acceptable values of cutting conditions, and choose a rational variant of the technological process of processing a batch of parts. The developed simulation model is based on the principles of modular technologies, the part is considered as a combination of individual elementary surfaces. Each elementary surface contains information about the technological processing route, technological equipment and the type of technological equipment used in its manufacture, cutting conditions and the size of the allowance for each processing stage. The rational choice of the technological process is selected on the basis of multicriteria analysis according to three criteria: the value of variable costs, the production time of a batch of parts and the value of the processing error. The analysis of these criteria is made and the parameters that have the greatest impact on their value are determined. The developed classification of surface elements is described: design elements, technological elements, basic elements, as well as a mathematical model based on which the calculation of the values of the criteria for choosing a rational option.

How to cite: Lyubomudrov S.A., Khrustaleva I.N., Tolstoles A.A., Maslakov A.P. Improving the efficiency of technological preparation of single and small batch production based on simulation modeling // Journal of Mining Institute. 2019. Vol. 240. p. 669-677. DOI: 10.31897/PMI.2019.6.669
Oil and gas
  • Date submitted
    2019-03-21
  • Date accepted
    2019-05-05
  • Date published
    2019-08-23

Stimulation of the Drilling Process with the Top Driven Screw Downhole Motor

Article preview

Paper considers application of the top driven screw downhole motor during drilling of directional wells. The advantages and disadvantages of the rotation-sliding technology with implementation of top drive together with screw downhole motor are shown. It has been proven that the use of a screw downhole motor with simultaneous rotation of drilling pipes using the drilling rig's top drive allows increasing the bit rotation frequency without additional loading of the drilling string. Field data for the work out of one-type PDC bits in identical geological and technical conditions with different types of drives during the construction of three directed wells at the Rumaila oil field of the Republic of Iraq were obtained. A regular increase in the mechanical penetration rate, which is explained by an increase in the bit rotation frequency, has been proved. According to the data obtained, a comparative analysis of the drilling indices was carried out, as a result of which the feasibility of joint use of top power drive with screw downhole motor at drilling oil and gas wells was proved.

How to cite: Simonyants S.L., Al Taee M. Stimulation of the Drilling Process with the Top Driven Screw Downhole Motor // Journal of Mining Institute. 2019. Vol. 238. p. 438-442. DOI: 10.31897/PMI.2019.4.438
Mining
  • Date submitted
    2019-01-03
  • Date accepted
    2019-03-23
  • Date published
    2019-06-25

Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners

Article preview

Thermal working conditions in the deep mines of Donbass are the main deterrent to the development of coal mining in the region. Mining is carried out at the lower technical boundaries at a depth of almost 1,400 m with a temperature of rocks of 47.5-50.0 °C. The air temperature in the working faces significantly exceeds the permissible safety standards. The most severe climatic conditions are formed in the faces of blind development workings, where the air temperature is 38-42 °С. It is due to the adopted coal seam mining systems, the large remoteness of the working faces from the main air supply openings, the difficulty in providing blind workings with a calculated amount of air due to the lack of local ventilation fans of the required range. To ensure thermodynamic safety mine n.a. A.F.Zasyadko we accepted the development of a draft of a central cooling system with ground-based absorption refrigerating machines with a total capacity of 9 MW with the implementation of the three types of generation principle (generation of refrigeration, electrical and thermal energy). However, the long terms of design and construction and installation work necessitated the use of mobile air conditioners in blind development faces. The use of such air conditioners does not require significant capital expenditures, and the terms of their commissioning do not exceed several weeks. The use of a mobile air conditioner of the KPSh type with a cooling capacity of 130 kW made it possible to completely normalize the thermal working conditions at the bottom of the blind workings 2200 m long, carried out at a depth of 1220-1377 m at a temperature of host rocks 43.4-47.5 °С. It became possible due to the closest placement of the air conditioner to the face in combination with the use of a high-pressure local ventilation fan and ducts, which ensured the air flow produced by the calculated amount of air. The use of the air conditioner did not allow to fully normalize the thermal conditions along the entire length of the blind face but reduced the urgency of the problem of normalizing the thermal regime and ensured the commissioning of the clearing face.

How to cite: Alabyev V.R., Novikov V.V., Pashinyan L.A., Bazhina T.P. Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners // Journal of Mining Institute. 2019. Vol. 237. p. 251-258. DOI: 10.31897/PMI.2019.3.251
Mining
  • Date submitted
    2019-01-10
  • Date accepted
    2019-03-02
  • Date published
    2019-06-25

Modeling of the welding process of flat sheet parts by an explosion

Article preview

The list of materials subject to explosive welding is very extensive and amounts to several hundred combinations of various alloys and metals, and the variety of explosive welding schemes has more than a thousand options. In almost all technical solutions, the process involves the sequential creation of physical contact of the materials to be welded and their connection due to plastic deformation of the contacting surfaces. The strength of such a connection depends on the mode of the welding process. With the correct selection of the parameters of the mode, it is possible to obtain a high-quality connection of the required strength. However, the experimental selection of such options is a very laborious and costly process. Computer simulation and application of mathematical models for solving dynamic problems of explosion mechanics simplifies the search for optimal parameters and allows to predict the expected result in the shortest possible time. The article discusses the issues of modeling of explosive welding of metals, calculations related to the parameters of the process of formation of the weld using the Ansys Autodyn software package. A model is presented for analyzing the deformation process of explosion welding of a plate and its connection with a matrix. The main parameters of explosion welding (velocity, pressure, time) are determined. The adequacy of the obtained values was evaluated in the systems aluminum – copper and copper – steel. It also provides a comparative analysis of simulation results and field experiments. Based on numerical calculations, a conclusion was substantiated on the suitability of the model obtained for a preliminary analysis of the main welding parameters at the preparatory stage.

How to cite: Marinin M.A., Khokhlov S.V., Isheyskiy V.A. Modeling of the welding process of flat sheet parts by an explosion // Journal of Mining Institute. 2019. Vol. 237. p. 275-280. DOI: 10.31897/PMI.2019.3.275
Geoecology and occupational health and safety
  • Date submitted
    2018-07-15
  • Date accepted
    2018-09-07
  • Date published
    2018-12-21

Justification of rational methods for provision of air to faces of operating coal mines of Vietnam during deepening of mines

Article preview

Based on the analysis of the mining and geological conditions for developing coal deposits in Vietnam, the existing mining safety regulations, the application of methods for calculating the air supply of working and development faces using the methane factor and modern methods of mathematical modeling of the ventilation of mines threr was developed the procedure for analyzing the efficiency of air distribution management considering the proposed indicator - energy efficiency coefficient for ventilation systems, determined by the efficiency of air use and energy consumption. Relations have been obtained that determine the relationship between the aerodynamic resistance of negative regulators, the number of simultaneously developed working and development faces, the performance of main ventilation fans and the consumed electric power.

How to cite: Gendler S.G., Nguen T.K. Justification of rational methods for provision of air to faces of operating coal mines of Vietnam during deepening of mines // Journal of Mining Institute. 2018. Vol. 234. p. 652-657. DOI: 10.31897/PMI.2018.6.652