Submit an Article
Become a reviewer

Search articles for by keywords:
метод конечных элементов

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-02-27

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. p. EDN VOBTXU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-09-05
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations

Article preview

At all stages of the life cycle of buildings and structures, geodetic support is provided by electronic measuring instruments – a laser scanning system, unmanned aerial vehicles, and satellite equipment. In this context, a set of geospatial data is obtained that can be presented as a digital model. The relevance of this work is practical recommendations for constructing a local quasigeoid model and a digital elevation model (DEM) of a certain accuracy. A local quasigeoid model and a DEM were selected as the study objects. It is noted that a DEM is often produced for vast areas, and, therefore, it is necessary to build a local quasigeoid model for such models. The task of assessing the accuracy of constructing such models is considered; its solution will allow obtaining a better approximation to real data on preassigned sets of field materials. A general algorithm for creating both DEM and local quasigeoid models in the Golden Software Surfer is presented. The constructions were accomplished using spatial interpolation methods. When building a local quasigeoid model for an area project, the following methods were used: triangulation with linear interpolation (the least value of the root mean square error (RMSE) of interpolation was 0.003 m) and kriging (0.003 m). The least RMSE value for determining the heights by control points for an area project was obtained using the natural neighbour (0.004 m) and kriging (0.004 m) methods. To construct a local quasigeoid model for a linear project, the following methods were applied: kriging (0.006 m) and triangulation with linear interpolation (0.006 m). Construction of the digital elevation model resulted in the least aggregate value of the estimated parameters: on a flat plot of the earth’s surface – the natural neighbour method, for a mountainous plot with anthropogenic topography – the quadric kriging method, for a mountainous plot – quadric kriging.

How to cite: Bryn M.Y., Mustafin M.G., Bashirova D.R., Vasilev B.Y. Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations // Journal of Mining Institute. 2025. Vol. 271. p. 95-107. EDN ZDVPPC
Economic Geology
  • Date submitted
    2024-07-28
  • Date accepted
    2024-11-26
  • Date published
    2024-12-12

From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry

Article preview

Achieving technological sovereignty implies accelerating innovation and reducing import dependence. An effective tool for addressing these challenges is local content policy (LCP). The purpose of this study is to assess the impact of LCP on innovation activity in oil and gas companies and to provide recommendations for enhancing the effectiveness of this policy in Russia. The paper analyzes the influence of LCP on innovation levels in the oil and gas sector, drawing on examples from 10 countries. A positive short-term impact of LCP on innovation was identified in Brazil, Malaysia, and Saudi Arabia, with long-term effects observed in China and South Africa. Recommendations for improving the effectiveness of LCP in Russia are supplemented with a methodology for calculating the level of technological sovereignty. A refinement of the method for solving the «responsiveness» problem, incorporating the level of localization, has been proposed.

How to cite: Zhdaneev O.V., Ovsyannikov I.R. From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry // Journal of Mining Institute. 2024. p. EDN KMCTLU
Editorial
  • Date submitted
    2024-10-29
  • Date accepted
    2024-10-29
  • Date published
    2024-11-12

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths

Article preview

In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.

How to cite: Prishchepa O.M., Aleksandrova T.N. Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths // Journal of Mining Institute. 2024. Vol. 269. p. 685-686.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-07
  • Date accepted
    2023-12-27
  • Date published
    2024-08-26

Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method

Article preview

Landslides are one of the most frequent natural disasters that cause significant damage to property in Vietnam, which is characterized by mountainous terrain covering three-quarters of the territory. In 17 northern mountainous provinces of the country, over 500 communes are at a high to very high landslide hazard. The main goal of this study was to establish landslide hazard maps and conduct a comparative evaluation of the efficiency of the methods employed in Tinh Tuc town, Cao Bang province. The landslide hazard assessment was carried out in this study using the combined Fractal-frequency ratio (FFR) and the Frequency ratio (FR) methods. The FR method is based on the actualist principle, which assumes that future landslides may be caused by the same factors that contributed to slope failure in the past and present. The FFR method is based on the determination of the fractal dimension, which serves as a measure of the landslide filling density in the study area. Eight landslide-related factors were considered and presented in cartographic format: elevation, distance to roads, slope, geology, distance to faults, land use, slope aspect, and distance to drainage. Determining the area under the receiver operating characteristic curve (ROC-AUC) and verification index (LRclass) was performed to assess the performance of prediction models and the accuracy of the obtained maps. As a result, five zones were identified for the study area, characterized by very low, low, moderate, high, and very high landslide hazards. The analysis of the reliability of the obtained landslide hazard maps using the AUC and LRclass indices revealed that the FFR model has a higher degree of reliability (AUC = 86 %, LRclass = 86 %) compared to the FR model (AUC = 72 %, LRclass = 73 %); therefore, its use is more effective.

How to cite: Duong B.V., Fomenko I.K., Nguyen K.T., Zerkal O.V., Sirotkina O.N., Vu D.H. Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method // Journal of Mining Institute. 2024. Vol. 268. p. 613-624. EDN HTDPXJ
Geology
  • Date submitted
    2023-11-10
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

Paleoproterozoic Saltakh Pluton, Anabar Shield: mineralogical composition, age and a geodynamic setting

Article preview

The Saltakh Massif is located in the northern Anabar Shield, in the Saltakh shear-zone. It consists of two-pyroxene schists and plagiogneisses metamorphosed under granulite-facies conditions. Their chemical composition is consistent with that of a differentiated series of rocks ranging from gabbro to tonalites with abundant alaskitic gneissose granite veins and bodies. The rocks are mainly high-potassium (K2O/Na2O > 0.50), high-magnesium (mg# 50-70), low-titanium (TiO2 0.35-1.31 wt.%) with low TiO2 concentration in clino- and orthopyroxene. Normative olivine makes up 6-9 % of metagabbroic rocks. The rocks display well-defined negative Ti, Nb, Ta, and P anomalies typical of subduction magmatism. The two-pyroxene gneisses show high Sr/Y ratios of 67.6-88 and (La/Yb)N of 24.8-25.6. Saltakh rocks are part of a shoshonite series, as indicated by Nb/La, La/Yb, Th/Nb and Ce/Yb ratios. All the rocks display positive εNd(T) values of 1.9-4.1 and εSr(T) of 0.77-17.8 indicative of a mantle source of magma and T(Nd)DM of 2,20-2,26 Ga. U-Pb zircon dating (SHRIMP II) has shown that the protoliths of Saltakh melanocratic rocks were dated at 2100-2086 Ma, and those of two-pyroxene plagiogneisses of tonalite composition were dated at 2025±7 Ma. Alaskitic gneissose granites were dated at 1969±7 Ma. The study of the trace element composition of zircon has revealed general enrichment in LREE. High LREE concentrations are due to secondary zircon alterations and the shoshonitic pattern of the melt, the high-temperature conditions of crystallization, and an anomalous fluid regime. The geodynamic setting in which the Saltakh Massif was formed was consistent with a pericontinental magmatic arc. The formation of alaskitic gneissose granites was due to anatexis provoked by later collision processes. Saltakh magmatic rocks were formed simultaneously with magmatic rocks from the Khapchan prospect which occur farther south, and were studied earlier (2095±10 Ma tholeiitic metadiorites and 2030±17 Ma calc-alkaline metatonalites). We interpret them as part of a metamorphosed juvenile Paleoproterozoic suprasubduction complex.

How to cite: Gusev N.I., Romanova L.Y. Paleoproterozoic Saltakh Pluton, Anabar Shield: mineralogical composition, age and a geodynamic setting // Journal of Mining Institute. 2024. p. EDN SRITGO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-27
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Normalized impulse response testing in underground constructions monitoring

Article preview

Impulse Response testing is a widespread geophysical technique of monolithic plate-like structures (foundation slabs, tunnel lining, and supports for vertical, inclined and horizontal mine shafts, retaining walls) contact state and grouting quality evaluation. Novel approach to data processing based on normalized response attributes analysis is presented. It is proposed to use the energy of the normalized signal calculated in the time domain and the normalized spectrum area and the average-weighted frequency calculated in the frequency domain as informative parameters of the signal. The proposed technique allows users a rapid and robust evaluation of underground structure’s grouting or contact state quality. The advantage of this approach is the possibility of using geophysical equipment designed for low strain impact testing of piles length and integrity to collect data. Experimental study has been carried out on the application of the technique in examining a tunnel lining physical model with a known position of the loose contact area. As examples of the application of the methodology, the results of the several monolitic structures of operating municipal and transport infrastructure underground structures survey are presented. The applicability of the technique for examining the grouting of the tunnel lining and the control of injection under the foundation slabs is confirmed. For data interpretation the modified three-sigma criteria and the joint analysis of the attribute’s behavior were successfully used. The features of the field work methodology, data collection and analysis are discussed in detail. Approaches to the techniques' development and its application in the framework of underground constructions monitoring are outlined. The issues arising during acoustic examination of reinforced concrete plate-like structures are outlined.

How to cite: Churkin A.A., Kapustin V.V., Pleshko M.S. Normalized impulse response testing in underground constructions monitoring // Journal of Mining Institute. 2024. Vol. 270. p. 963-976. EDN BPIOTO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-11
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals)

Article preview

According to the results of the anti-rating of regions with extreme pollution of watercourses in the Sverdlovsk region, the largest number of polluted rivers has been recorded in recent years – more than a quarter of all high and extremely high pollution. One of the sources of pollution of natural water bodies in the Middle Urals are closed and flooded copper-pyrite mines, where acidic mine drainage continue to form and unload to the surface. Several of them have organized collection and a two-stage acidic drainage purification system, including neutralization with lime milk and settling in a clarifier pond. Despite the identical schemes, different indicators of pollutants are recorded during discharge into water bodies. The aim of the work is to evaluate the effectiveness of the applied acid mine drainage purification system and identify the parameters affecting the quality of treated mine water. Laboratory studies were performed using methods of flame emission spectrometry, flame atomic absorption, atomic absorption spectrometry, mass spectrometry with ionization in inductively coupled plasma, potentiometric, etc. It has been established that the existing mine drainage purification system at the Degtyarskii mine makes it possible to significantly reduce the concentrations of most toxic components of mine waters to almost standard values. At the Levikhinskii mine, the multiplicity of exceeding the maximum permissible concentrations reaches hundreds and thousands of times. To achieve a higher degree of purification, it is necessary that the duration of passive purification is sufficient for the reactant to interact with acidic waters. However, to ensure this possibility, it will require the creation of a cascade of ponds with an area of several thousand hectares. If the current two-stage system is quite effective for the Degtyarskii mine, then for Levikhinskii it is necessary to switch to the use of more modern systems, including three stages of purification.

How to cite: Rybnikova L.S., Rybnikov P.A., Navolokina V.Y. Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals) // Journal of Mining Institute. 2024. Vol. 267. p. 388-401. EDN SBKRCK
Geology
  • Date submitted
    2023-11-02
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon

Article preview

Based on the isotopic-geochemical analyses of zircons from granites of the Belokurikhinsky massif in the Gorny Altai using the U-Pb method, the ages of three intrusion phases have been determined for the first time: the age of the first phase refers to the time interval of 255-250 Ma, the second and the third phases have similar ages of about 250 Ma. The formation time of the Belokurikhinsky massif is estimated as not exceeding 5-8 Ma. The δ18O values for zircons from granites of the second and the third intrusion phases average around 11.5-12.0 ‰, indicating a significant contribution of a crustal component in the formation of the parent melts for granites of these phases. The crystallization temperature values of the zircons by the Ti-in-zircon thermometer for three phases range from 820 to 800 °C. The P-T crystallization parameters of titanite from the first phase, determined using a titanite thermobarometer, average around 770 °C and 2.7 kbar. The zircons from the first phase mostly exhibits geochemical characteristics of typical magmatic zircons. The zircons from the second and the third intrusion phases either may be unaltered magmatic zircons or enriched in incompatible elements (LREE, Th, U, Ti, Ca, etc.) due to fluid influence, resembling hydrothermal-metasomatic type zircons in terms of their geochemical characteristics. A number of zircon grains from the second and the third phases of granites demonstrate anomalous geochemical characteristics – the REE distribution spectra atypical for zircons (including “bird's wing” type spectra with oppositely tilted of light and heavy REE distribution profiles), as well as significantly higher contents of certain trace elements compared to other varieties. Such an enriched zircon composition and wide variations in the incompatible element content are due to non-equilibrium conditions of zircon crystallization and evolution of the fluid-saturated melt composition during the final stages of the massif formation.

How to cite: Skublov S.G., Levashova E.V., Mamykina M.E., Gusev N.I., Gusev A.I. The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon // Journal of Mining Institute. 2024. Vol. 268. p. 552-575. EDN RGKCIJ
Geology
  • Date submitted
    2023-05-31
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Velocity structure of the Earth’s crust and upper mantle in the Pechenga ore region and adjacent areas in the northwestern part of the Lapland-Kola orogen by the receiver function technique

Article preview

The article presents a study of the Earth’s crust and upper mantle in the Pechenga ore region, as well as areas adjacent to it in the northwestern part of the Kola region. Applying the receiver function technique to data acquired by three broadband seismic stations, we obtained one-dimensional seismic velocity distribution models to a depth of 300 km. The stations are located in the northern parts of Finland and Norway, as well as in the Pechenga region of the Russian Federation. Despite the stations being in relatively close proximity (within 100 km of each other), the velocity models turned out to be significantly different, which indicates structural discontinuity within the lithosphere. Thus, Finland station data set revealed a gradient crust-mantle transition, which is not present in the other two models. At depths of about 150 km, a low-velocity zone was discovered, associated with mid-lithospheric discontinuity, which was not found beneath the Pechenga ore region. Furthermore, the crustal structure of the Pechenga region has an anomalously high Vp/Vs ratio to a depth of about 20 km. Considering the fact that the Pechenga (Nikel) seismic station was installed in close proximity to major copper-nickel deposits, this anomaly can be interpreted as a relic of Proterozoic plume activity.

How to cite: Goev A.G. Velocity structure of the Earth’s crust and upper mantle in the Pechenga ore region and adjacent areas in the northwestern part of the Lapland-Kola orogen by the receiver function technique // Journal of Mining Institute. 2024. Vol. 266. p. 188-198. EDN NZMXJC
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-14
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons

Article preview

In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.

How to cite: Kusochkova E.V., Indrupskii I.M., Surnachev D.V., Alekseeva Y.V., Drozdov A.N. Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons // Journal of Mining Institute. 2024. Vol. 270. p. 904-918. EDN QBQQCT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-03-16
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks

Article preview

Operation of vertical mine shafts in complex mining and geological conditions is associated with a number of features. One of them is a radial displacement of the concrete shaft lining, caused by the influence of mining pressure on the stress-strain state of the mine workings. A rigid reinforcing system with shaft buntons fixed in the concrete lining thus experiences elastoplastic deformations, their value increases with time. It results in deviation of conductors from design parameters, weakening of bolt connections, worsening of dynamic properties of geotechnical system “vehicle – reinforcing”, increase of wear rate of reinforcing system elements, increase of risks for creating an emergency situation. The article offers a comprehensive assessment of displacements of characteristic points of the bunton system based on approximate engineering relations, numerical modeling of the deformation process of the bunton system and laser measurements of the convergence of the inner surface of the concrete shaft lining. The method was tested on the example of the reinforcing system of the skip-cage shaft of the potash mine. Displacement of the characteristic points of the reinforcing system is determined by the value of radial displacements of the surface of the concrete shaft lining. Evaluation of the radial displacements was made using monitoring measurements and profiling data. The results obtained make it possible to justify the need and timing of repair works. It is shown that the deterioration of the reinforcing system at different levels occurs at different rates, defined, among other things, by mechanical properties of the rock mass layers located at a given depth.

How to cite: Tarasov V.V., Aptukov V.N., Ivanov O.V. Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks // Journal of Mining Institute. 2024. Vol. 266. p. 305-315. EDN TNNIZP
Energy industry
  • Date submitted
    2022-07-10
  • Date accepted
    2023-06-20
  • Date published
    2024-02-29

Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline

Article preview

A mathematical model of the in-line control of the insulation resistance state for cathodically polarized main pipelines according to electrometry data is considered. The relevance of the work is caused by the opportunity to create in-line internal isolation defects indicators of the main pipelines for transported liquids that are good conductors and expand the functionality of monitoring and controlling cathodic protection systems of the main pipelines. Features of the mathematical model are: consideration of the electric conductivity of transported liquid influence on electric field distribution; consideration of the influence of external and internal insulating coating resistance; use of the electric field of an in-line diagnostic probe for quality control of internal insulation. Practical significance consists in the development of modeling methods for control subsystems of main pipeline protection against corrosion and the development of special mathematical and algorithmic support systems for monitoring and controlling the operating modes of the cathodic protection station of main pipelines.

How to cite: Krizskii V.N., Kosarev O.V., Aleksandrov P.N., Luntovskaya Y.A. Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline // Journal of Mining Institute. 2024. Vol. 265. p. 156-164. EDN XRDQFW
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

The wireless charging system for mining electric locomotives

Article preview

The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.

How to cite: Zavyalov V.M., Semykina I.Y., Dubkov E.A., Velilyaev A.- han S. The wireless charging system for mining electric locomotives // Journal of Mining Institute. 2023. Vol. 261. p. 428-442. EDN JSNTAQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-11
  • Date accepted
    2023-02-20
  • Date published
    2023-08-28

Application of the support vector machine for processing the results of tin ores enrichment by the centrifugal concentration method

Article preview

The relevance of the research is due to the acquisition of new knowledge about the features of the applicability of the support vector machine, related to machine learning tools, for solving problems of mathematical modeling of mining and processing equipment. The purpose of the research is a statistical analysis of the results of semi-industrial tests of the Knelson CVD technology on tin raw materials using the support vector machine method and the development of mathematical models suitable for further optimization of the technological parameters of the equipment. The objects of research were the products obtained as a result of the operation of hydro-cyclones, as well as the technological parameters of the operation of centrifugal concentrators. The work uses classical methods of mathematical statistics, the least squares method for constructing a linear regression model, the support vector machine implemented on the basis of the Scikit-learn library, as well as the method of verifying the resulting models based on the ShuffleSplit library. A general description of the process of testing the Knelson concentrator with continuous controlled unloading in relation to the enrichment of tin ores is presented. The results obtained were processed using the support vector machine. Regression models are obtained in the form of polynomials of the second degree and in the form of radial basis functions. A significant non-linearity is shown in the dependence between the content of the valuable component in the tailings and the values of the technological parameters of the apparatus.

How to cite: Burdonov A.E., Lukyanov N.D., Pelikh V.V., Salov V.M. Application of the support vector machine for processing the results of tin ores enrichment by the centrifugal concentration method // Journal of Mining Institute. 2023. Vol. 262. p. 552-561. EDN BDULJO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-11-04
  • Date accepted
    2023-03-03
  • Date published
    2023-04-25

Efficiency of acid sulphate soils reclamation in coal mining areas

Article preview

During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.

How to cite: Mitrakova N.V., Khayrulina E.A., Blinov S.M., Perevoshchikova A.A. Efficiency of acid sulphate soils reclamation in coal mining areas // Journal of Mining Institute. 2023. Vol. 260. p. 266-278. DOI: 10.31897/PMI.2023.31
Economic Geology
  • Date submitted
    2022-05-03
  • Date accepted
    2022-11-22
  • Date published
    2023-02-27

Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex

Article preview

Theoretical and applied aspects of scenario analysis of investment projects of enterprises in the mineral resource sector of the economy are considered, its advantages and disadvantages are analyzed. Taking into account the organizational and economic features of mineral resources management, a number of new modifications of the scenario analysis method, aimed at solving an urgent problem - reducing the information uncertainty in assessing the expected efficiency and risk of investment projects, are proposed. The peculiarity of the proposed new modifications is the use of the interval-probabilistic approach in the implementation of the scenario analysis procedure. This approach is based on a moderately pessimistic system of preferences in obtaining point values of the investment project initial parameters. Fishburn estimates and the hierarchy analysis method were used to reduce subjective uncertainty. The maximum likelihood values in the sense of the maximum a priori probability are used as expected estimates. An additional indicator of risk assessment, which characterizes the probability of the event that the net present value of the project will take a value less than the specified one, is proposed. When analyzing one project, this indicator is more informative than the standard deviation. A statistical hypothesis was tested on the improvement of the validity of investment decisions developed using the modified scenario analysis method compared to the standard method.

How to cite: Matrokhina K.V., Trofimets V.Y., Mazakov E.B., Makhovikov A.B., Khaykin M.M. Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex // Journal of Mining Institute. 2023. Vol. 259. p. 112-124. DOI: 10.31897/PMI.2023.3
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-07-15
  • Date accepted
    2022-12-13
  • Date published
    2023-02-27

Mathematical modelling of displacement during the potash ores mining by longwall faces

Article preview

In favourable mining conditions, in particular at the Starobinskoye potash deposit (Belarus), longwall mining systems are used. They cause a high human-induced load on the subsoil, including intense deformation of the ground surface. The presented investigations are aimed at studying the dynamics of the ground surface displacement during the longwall face advance. Mathematical modelling was carried out in an elastic-plastic formulation with numerical implementation by the finite element method. The condition for the roof rocks collapse was opening of the contact between the seams when its boundaries were reached by shear fractures or formation of the tensile stresses area at the outcrop. With the working front advance, an increase in subsidence is observed, followed by its stabilization to a value determined by the process parameters of mining operations and the physical and mechanical properties of collapsed rocks. In this case, each point of the ground surface experiences sign-alternating horizontal deformations: when the front approaches, it causes tension, and when it moves away, compression. The obtained results of mathematical modelling are in good agreement with the data of instrumental measurements of the ground surface displacements, which indicates the adequate description of the rock mass deformation during the slice excavation of sylvinite seams by longwall faces.

How to cite: Baryakh A.A., Devyatkov S.Y., Denkevich E.T. Mathematical modelling of displacement during the potash ores mining by longwall faces // Journal of Mining Institute. 2023. Vol. 259. p. 13-20. DOI: 10.31897/PMI.2023.11
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-23
  • Date accepted
    2022-07-21
  • Date published
    2023-02-27

Alluvial tin mining by spray-suction borehole method: a case study on remaining alluvial tin reserves in Bangka Belitung, Indonesia

Article preview

The area of the Bangka Belitung Islands, which is a potential area for alluvial tin deposits in Indonesia, has been affected by the destruction of tin reserves on the mainland due to rampant artisanal mining, which has left remnants of small-dimensional reserves. The remnants of these reserves can no longer be mined using the hydraulic mining of open pit method due to the small dimensions of the deposits. The hypothesis is that such sedimentary conditions can only be mined by the borehole method. This research aimed to design tools and perform test mining using the borehole method with a spray-suction mechanism. This research produced a novelty, namely, a method and parameters for alluvial tin deposits mining using borehole mining methods, such as the excavation capacity, excavation radius, mining recovery, and dilution factor. The benefit of this research is expected to provide an opportunity to increase the amount of onshore alluvial tin reserves to support tin production.

How to cite: Ichwan A., Wibowo A.P., Anggayana K., Widodo N.P. Alluvial tin mining by spray-suction borehole method: a case study on remaining alluvial tin reserves in Bangka Belitung, Indonesia // Journal of Mining Institute. 2023. Vol. 259. p. 3-12. DOI: 10.31897/PMI.2022.70
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-24
  • Date accepted
    2022-07-21
  • Date published
    2022-12-29

A probabilistic study on hole cleaning optimization

Article preview

Hole cleaning is considered as one of the most important drilling fluid functions. An efficient hole cleaning ensures a reliable well drilling practice with minimum troublesome problems. In this study, two main steps of hole cleaning, i.e., cuttings removal from under the bit and cuttings transport to the surface are discussed based on the drilling data of a shale formation. The traditional models for optimization of each step are presented. As the models require variety of input data, which are usually subjected to some extent of errors and uncertainties, the output of the model is also an uncertain parameter. Using Monte Carlo simulation, a simple probabilistic study was conducted to quantify the certainty level of the obtained results. Based on the result of this study, it is shown that for the proposed well, a good hole cleaning is expected. However, a more reliable decision for further hole cleaning optimization should be made considering the results of uncertainty analysis.

How to cite: Tabatabaee Moradi S.S. A probabilistic study on hole cleaning optimization // Journal of Mining Institute. 2022. Vol. 258. p. 956-963. DOI: 10.31897/PMI.2022.67
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-26
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Renovation method of restoring well productivity using wavefields

Article preview

A stagewise theoretical substantiation of the renovation vibrowave method of influencing the near-wellbore zone of reservoir for restoring well productivity is presented. The area of treatment by the proposed method covers the reservoir with a heterogeneous permeability with fractures formed by fracking. In this method a decrease in concentration of colmatants occurs due to a change in direction of contaminants migration. Under the influence of pressure pulses, they move deep into the reservoir and disperse through the proppant pack. The results of mathematical modelling of the propagation of pressure wave and velocity wave and the calculations of particles entrainment in wave motion are presented.

How to cite: Shatalova N.V., Apasov T.K., Shatalov A.V., Grigoriev B.V. Renovation method of restoring well productivity using wavefields // Journal of Mining Institute. 2022. Vol. 258. p. 986-997. DOI: 10.31897/PMI.2022.108
Geology
  • Date submitted
    2021-12-21
  • Date accepted
    2022-06-20
  • Date published
    2022-11-10

Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling

Article preview

The article presents the results of analysing geological structure of the Famennian deposits (Devonian) in the Perm Region. Numerical modelling of the distribution of inhomogeneous stress field near the well was performed for the two considered types of perforation. With regard for the geometry of the forming perforation channels, numerical finite element models of near-wellbore zones were created considering slotted and cumulative perforation. It is ascertained that in the course of slotted perforation, conditions are created for a significant restoration of effective stresses and, as a result, restoration of reservoir rock permeability. Stress recovery area lies near the well within a radius equal to the length of the slots, and depends on the drawdown, with its increase, the area decreases. From the assessment of failure areas, it was found that in case of slotted perforation, the reservoir in near-wellbore zone remains stable, and failure zones can appear only at drawdowns of 10 MPa and more. The opposite situation was recorded for cumulative perforation; failure zones near the holes appear even at a drawdown of 2 MPa. In general, the analysis of results of numerical simulation of the stress state for two simulated types of perforation suggests that slotted perforation is more efficient than cumulative perforation. At the same time, the final conclusion could be drawn after determining the patterns of changes in permeability of the considered rocks under the influence of changing effective stresses and performing calculations of well flow rates after making the considered types of perforation channels.

How to cite: Chernyshov S.E., Popov S.N., Varushkin S.V., Melekhin A.A., Krivoshchekov S.N., Ren S. Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling // Journal of Mining Institute. 2022. Vol. 257. p. 732-743. DOI: 10.31897/PMI.2022.51
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-11-17
  • Date accepted
    2022-04-06
  • Date published
    2022-11-10

Method for predicting the stress state of the lining of underground structures of quasi-rectangular and arched forms

Article preview

A method for predicting the stress-strain state of the lining of underground structures, the shape of the cross-section of which is different from the circular outline, is considered. The main task of the study is to develop a methodology for assessing the influence of the parameters of the cross-section shape of underground structures on the stress state of the lining. To solve this problem, a method for calculating the stress state of the lining for arched tunnels with a reverse arch and quasi-rectangular forms is substantiated and developed. The methodology was tested, which showed that the accuracy of the prediction of the stress state of the lining is sufficient to perform practical calculations. An algorithm for multivariate analysis of the influence of the cross-sectional shape of underground structures of arched and quasi-rectangular shapes on the stress state of the lining is proposed. Parametric calculations were performed using the developed algorithm and regularities of the formation of the stress state of the lining of underground structures for various engineering and geological conditions, as well as the initial stress state field, were obtained. A quantitative assessment of the influence of geometric parameters of tunnels on their stress-strain state was performed.

How to cite: Karasev M.A., Nguyen T.T. Method for predicting the stress state of the lining of underground structures of quasi-rectangular and arched forms // Journal of Mining Institute. 2022. Vol. 257. p. 807-821. DOI: 10.31897/PMI.2022.17
Geology
  • Date submitted
    2022-04-17
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE)

Article preview

A study of the trace element composition of beryl varieties (469 SIMS analyses) was carried out. Red beryls are distinguished by a higher content of Ni, Sc, Mn, Fe, Ti, Cs, Rb, K, and B and lower content of Na and water. Pink beryls are characterized by a higher content of Cs, Rb, Na, Li, Cl, and water with lower content of Mg and Fe. Green beryls are defined by the increased content of Cr, V, Mg, Na, and water with reduced Cs. A feature of yellow beryls is the reduced content of Mg, Cs, Rb, K, Na, Li, and Cl. Beryls of various shades of blue and dark blue (aquamarines) are characterized by higher Fe content and lower Cs and Rb content. For white beryls, increased content of Na and Li has been established. Principal Component Analysis (PCA) for the CLR-transformed dataset showed that the first component separates green beryls from other varieties. The second component divides pink and red beryls. The stochastic neighborhood embedding method with t-distribution (t-SNE) with CLR-transformed data demonstrated the contrasting compositions of green beryls relative to other varieties. Red and pink beryls form the most compact clusters.

How to cite: Skublov S.G., Gavrilchik A.K., Berezin A.V. Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) // Journal of Mining Institute. 2022. Vol. 255. p. 455-469. DOI: 10.31897/PMI.2022.40
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-08
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry

Article preview

The analysis of the main environmental consequences of leaks and local spills of petroleum products at the enterprises of the mineral resource complex is presented. It is established that the problem of soil contamination with petroleum products at the facilities of the mineral resource complex and enterprises of other industries is caused by significant volumes of consumption of the main types of oil products. Based on the results of the author's previous field research, a series of experiments was carried out, consisting in modeling artificial soil pollution with petroleum products such as gasoline, diesel fuel, highly refined oil, motor oil, and transmission oil, followed by their purification by heat treatment at temperatures of 150, 200, and 250 °C. The 250 °C limit of the heating temperature was set due to the need to partially preserve the structure and quality of the soil after heat treatment to preserve its fertility. When the processing temperature rises to 450 °C, all humates are completely burned out and, as a result, productivity is lost. Confirmation is provided by the results of experiments to determine the humus content in uncontaminated soil and soil treated at different temperatures. It was found that at a maximum processing temperature of 250 °C, about 50 % of the initial organic carbon content is preserved. According to the results of the conducted experimental studies, the dependences of the required processing temperature on the concentration of petroleum products to reduce the concentration of petroleum products to an acceptable level have been established. The methodology of thermal desorption cleaning of soils with varying degrees of contamination at enterprises of the mineral resource complex is presented.

How to cite: Pashkevich M.A., Bykova M.V. Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry // Journal of Mining Institute. 2022. Vol. 253. p. 49-60. DOI: 10.31897/PMI.2022.6