Submit an Article
Become a reviewer
Ekaterina V. Levashova
Ekaterina V. Levashova
Researcher, Ph.D.
Institute of Precambrian Geology and Geochronology RAS
Researcher, Ph.D.
Institute of Precambrian Geology and Geochronology RAS
Saint Petersburg
Russia

Articles

Geology
  • Date submitted
    2024-02-05
  • Date accepted
    2024-03-12
  • Date published
    2024-04-17

The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon

Article preview

Based on the isotopic-geochemical analyses of zircons from granites of the Belokurikhinsky massif in the Gorny Altai using the U-Pb method, the ages of three intrusion phases have been determined for the first time: the age of the first phase refers to the time interval of 255-250 Ma, the second and the third phases have similar ages of about 250 Ma. The formation time of the Belokurikhinsky massif is estimated as not exceeding 5-8 Ma. The δ18O values for zircons from granites of the second and the third intrusion phases average around 11.5-12.0 ‰, indicating a significant contribution of a crustal component in the formation of the parent melts for granites of these phases. The crystallization temperature values of the zircons by the Ti-in-zircon thermometer for three phases range from 820 to 800 °C. The P-T crystallization parameters of titanite from the first phase, determined using a titanite thermobarometer, average around 770 °C and 2.7 kbar. The zircons from the first phase mostly exhibits geochemical characteristics of typical magmatic zircons. The zircons from the second and the third intrusion phases either may be unaltered magmatic zircons or enriched in incompatible elements (LREE, Th, U, Ti, Ca, etc.) due to fluid influence, resembling hydrothermal-metasomatic type zircons in terms of their geochemical characteristics. A number of zircon grains from the second and the third phases of granites demonstrate anomalous geochemical characteristics – the REE distribution spectra atypical for zircons (including “bird's wing” type spectra with oppositely tilted of light and heavy REE distribution profiles), as well as significantly higher contents of certain trace elements compared to other varieties. Such an enriched zircon composition and wide variations in the incompatible element content are due to non-equilibrium conditions of zircon crystallization and evolution of the fluid-saturated melt composition during the final stages of the massif formation.

How to cite: Skublov S.G., Levashova E.V., Mamykina M.E., Gusev N.I., Gusev A.I. The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon // Journal of Mining Institute. 2024. p. EDN RGKCIJ
Geology
  • Date submitted
    2022-04-04
  • Date accepted
    2022-05-13
  • Date published
    2022-07-13

Distribution of trace elements controlled by sector and growth zonings in zircon from a miaskite pegmatite of the Vishnegorsky massif, the Southern Urals

Article preview

Data on the content and distribution of trace and rare-earth elements (SIMS method) in sectors and growth zones of a large zircon crystal from miaskite pegmatites of the Vishnegogorsky massif are presented. The morphology of the zircon crystal is a combination of a dipyramid {111} and prism {010}. It has been established that the growth sector of dipyramid {111} is characterized by almost one order of magnitude higher contents of Y, Nb, REE, Th; higher Th/U and Eu/Eu* values; REE distribution spectra are flatter compared to prism {010} growth sector. A regular decrease in the content of trace and rare-earth elements in the direction from the central zone to the marginal zone of crystal growth was revealed. A smooth regression of zircon crystallization temperature of zircon from 960 °C in the central zone to 740 °C in the marginal zone of the dipyramid sector and 700-650 °C in the prism sector has been revealed, which may be a reflection of thermal evolution of the crystallization process. It is assumed that crystallization of the central zone of zircon occurred at early stages from a relatively trace-еlement-rich melt. The crystallization was completed at lower temperatures, probably, simultaneously with the formation of REE-concentrating minerals, which resulted in natural decrease of content of trace and rare-earth elements in the melt and, consequently, in zircon crystallizing from it.

How to cite: Levashova E.V., Popov V.A., Levashov D.S., Rumyantseva N.A. Distribution of trace elements controlled by sector and growth zonings in zircon from a miaskite pegmatite of the Vishnegorsky massif, the Southern Urals // Journal of Mining Institute. 2022. Vol. 254. p. 136-148. DOI: 10.31897/PMI.2022.29
Geology
  • Date submitted
    2019-09-04
  • Date accepted
    2019-12-25
  • Date published
    2020-04-26

Composition of spherules and lower mantle minerals, isotopic and geochemical characteristics of zircon from volcaniclastic facies of the Mriya lamproite pipe

Article preview

The article presents the results of studying the rocks of the pyroclastic facies of the Mriya lamproite pipe, located on the Priazovsky block of the Ukrainian shield. In them the rock's mineral composition includes a complex of exotic mineral particles formed under extreme reduction mantle conditions: silicate spherules, particles of native metals and intermetallic alloys, oxygen-free minerals such as diamond, qusongite (WC), and osbornite (TiN). The aim of the research is to establish the genesis of volcaniclastic rocks and to develop ideas of the highly deoxidized mantle mineral association (HRMMA), as well as to conduct an isotopic and geochemical study of zircon. As a result, groups of minerals from different sources are identified in the heavy fraction: HRMMA can be attributed to the juvenile magmatic component of volcaniclastic rocks; a group of minerals and xenoliths that can be interpreted as xenogenic random material associated with mantle nodules destruction (hornblendite, olivinite and dunite xenoliths), intrusive lamproites (tremolite-hornblende) and crystalline basement rocks (zircon, hornblende, epidote, and granitic xenoliths). The studied volcaniclastic rocks can be defined as intrusive pyroclastic facies (tuffisites) formed after the lamproites intrusion. Obviously, the HRMMA components formed under extreme reducing conditions at high temperatures, which are characteristic of the transition core-mantle zone. Thus, we believe that the formation of primary metal-silicate HRMMA melts is associated with the transition zone D".

How to cite: YATSENKO I.G., SKUBLOV S.G., LEVASHOVA E.V., GALANKINA O.L., BEKESHA S.N. Composition of spherules and lower mantle minerals, isotopic and geochemical characteristics of zircon from volcaniclastic facies of the Mriya lamproite pipe // Journal of Mining Institute. 2020. Vol. 242. p. 150. DOI: 10.31897/PMI.2020.2.150