Submit an Article
Become a reviewer
Vol 267
Pages:
388-401
Download volume:

Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals)

Authors:
Lyudmila S. Rybnikova1
Petr A. Rybnikov2
Vera Yu. Navolokina3
About authors
  • 1 — Ph.D., Dr.Sci. Chief Researcher Institute of Mining of the Ural Branch of the RAS ▪ Orcid
  • 2 — Ph.D. Head of Laboratory Institute of Mining of the Ural Branch of the RAS ▪ Orcid
  • 3 — Researcher Institute of Mining of the Ural Branch of the RAS ▪ Orcid
Date submitted:
2024-04-11
Date accepted:
2024-06-03
Date published:
2024-07-04

Abstract

According to the results of the anti-rating of regions with extreme pollution of watercourses in the Sverdlovsk region, the largest number of polluted rivers has been recorded in recent years – more than a quarter of all high and extremely high pollution. One of the sources of pollution of natural water bodies in the Middle Urals are closed and flooded copper-pyrite mines, where acidic mine drainage continue to form and unload to the surface. Several of them have organized collection and a two-stage acidic drainage purification system, including neutralization with lime milk and settling in a clarifier pond. Despite the identical schemes, different indicators of pollutants are recorded during discharge into water bodies. The aim of the work is to evaluate the effectiveness of the applied acid mine drainage purification system and identify the parameters affecting the quality of treated mine water. Laboratory studies were performed using methods of flame emission spectrometry, flame atomic absorption, atomic absorption spectrometry, mass spectrometry with ionization in inductively coupled plasma, potentiometric, etc. It has been established that the existing mine drainage purification system at the Degtyarskii mine makes it possible to significantly reduce the concentrations of most toxic components of mine waters to almost standard values. At the Levikhinskii mine, the multiplicity of exceeding the maximum permissible concentrations reaches hundreds and thousands of times. To achieve a higher degree of purification, it is necessary that the duration of passive purification is sufficient for the reactant to interact with acidic waters. However, to ensure this possibility, it will require the creation of a cascade of ponds with an area of several thousand hectares. If the current two-stage system is quite effective for the Degtyarskii mine, then for Levikhinskii it is necessary to switch to the use of more modern systems, including three stages of purification.

Keywords:
acid mine drainages hydrosphere active and passive purification methods copper-pyrite mines clarifier pond reagents
Go to volume 267

References

  1. Алексеев В.А. Причины образования кислых дренажных вод в отвалах сульфидсодержащих пород // Геохимия. 2022. Т. 67. № 1. С. 69-83. DOI: 10.31857/S0016752522010022
  2. Рыбникова Л.С., Рыбников П.А. Закономерности формирования качества подземных вод на отработанных медноколчеданных рудниках Левихинского рудного поля (Средний Урал, Россия) // Геохимия. 2019. Т. 64. № 3. C. 282-299. DOI: 10.31857/S0016-7525643282-299
  3. Mugova E., Molaba L., Wolkersdorfer C. Understanding the Mechanisms and Implications of the First Flush in Mine Pools: Insights from Field Studies in Europe’s Deepest Metal Mine and Analogue Modelling // Mine Water and the Environment. 2024. Vol. 43. Iss. 1. P. 73-86. DOI: 10.1007/s10230-024-00969-3
  4. Пшеничный И.А. Модели и методы геохимической оценки риска взаимодействия породных отвалов с факторами внешней среды // Вестник Забайкальского государственного университета. 2022. Т. 28. № 3. С. 21-27. DOI: 10.21209/2227­9245­2022­28­3­21­27
  5. Пашкевич М.А., Алексеенко А.В., Нуреев Р.Р. Формирование экологического ущерба при складировании сульфидсодержащих отходов обогащения полезных ископаемых // Записки Горного института. 2023. Т. 260. С. 155-167. DOI: 10.31897/PMI.2023.32
  6. Kharko P.A., Matveeva V.A. Bottom Sediments in a River under Acid and Alkaline Wastewater Discharge // Ecological Engineering & Environmental Technology. 2021. Vol. 22. Iss. 3. P. 35-41. DOI: 10.12912/27197050/134870
  7. Карагодин С.С., Карагодин В.С., Морозов Ю.П., Заузолков И.В. К вопросу о перспективах (второй жизни) заброшенных медноколчеданных рудников Урала // Известия Уральского государственного горного университета. 2018. Вып. 4 (52). С. 114-121 (in English). DOI: 10.21440/2307-2091-2018-4-114-121
  8. Muravyov M., Radchenko D., Tsupkina M. et al. Old Sulfidic Ore Tailing Dump: Ground Features, Mineralogy, Biodiversity – A Case Study from Sibay, Russia // Minerals. 2024. Vol. 14. Iss. 1. № 23. DOI: 10.3390/min14010023
  9. Sengupta M. Environmental Impacts of Mining. Monitoring, Restoration, and Control. Boca Raton: CRC Press, 2021. 374 р. DOI: 10.1201/9781003164012
  10. Рыбникова Л.С., Рыбников П.А., Наволокина В.Ю. Снижение негативного влияния законсервированного медноколчеданного рудника Урала на состояние гидросферы // Физико-технические проблемы разработки полезных ископаемых. 2022. № 3. С. 194-201. DOI: 10.15372/FTPRPI20220318
  11. Барабанова Е.А. Водохранилища водосбора арктических морей России // Водные ресурсы. 2019. Т. 46. № 2. C. 123-131. DOI: 10.31857/S0321-0596462123-131
  12. Рыбникова Л.С., Рыбников П.А. Оценка факторов формирования гидросферы природно-технических систем (на примере верховьев бассейна реки Тагил, Свердловская область) // Горный информационно-аналитический бюллетень. 2021. № 5-2. С. 257-272. DOI: 10.25018/0236_1493_2021_52_0_257
  13. Давыдов В.А. Изучение техногенеза Дегтярского рудника с помощью аудиомагнитотеллурических экспресс-зондирований // Записки Горного института. 2020. Т. 243. С. 379-387. DOI: 10.31897/PMI.2020.3.379
  14. Гуман О.М., Макаров А.Б., Антонова И.А., Хасанова Г.Г. Эколого-гидрохимические особенности современных техногенных водоемов (на примере Уральского региона) // Вестник ВГУ. Серия: Геология. 2018. № 1. С. 148-154. DOI: 10.17308/geology.2018.1/1469
  15. Макаров А.Б., Антонова И.А., Хасанова Г.Г. Тяжелые металлы в компонентах техногенных водоемов Уральского региона // Вестник Уральского отделения Российского минералогического общества. 2017. № 14. С. 81-86.
  16. Федорова О.И. Геоэлектрический мониторинг Ельчевской грунтовой плотины методом частотной дисперсии электрического сопротивления // Уральский геофизический вестник. 2020. № 2 (40). С. 37-44. DOI: 10.25698/UGV.2020.2.4.37
  17. Федорова О.И., Давыдов В.А. Диагностика грунтовых гидротехнических сооружений электрическими и сейсмическими методами на примере Ельчевской плотины // Водное хозяйство России. 2014. № 6. C. 44-55.
  18. Попов А.Н., Павлюк Т.Е., Мухутдинов В.Ф. и др. Исследование состояния водоема для выбора приоритетных действий по экологической реабилитации (на примере Волчихинского водохранилища) // Водное хозяйство России. 2019. № 4. С. 170-195. DOI: 10.35567/1999-4508-2019-4-8
  19. Kruse Daniels N., LaBar J.A., McDonald L.M. Acid Mine Drainage in Appalachia: Sources, Legacy, and Treatment / Appalachia’s Coal-Mined Landscapes. Cham: Springer, 2021. P. 193-216. DOI: 10.1007/978-3-030-57780-3_8
  20. Acharya B.S., Kharel G. Acid mine drainage from coal mining in the United States – An overview // Journal of Hydrology. 2020. Vol. 588. № 125061. DOI: 10.1016/j.jhydrol.2020.125061
  21. Максимович Н.Г., Пьянков С.В. Кизеловский угольный бассейн: экологические проблемы и пути решения. Пермь: Раритет-Пермь, 2018. 288 с.
  22. Wolkersdorfer С. Mine Water Treatment – Active and Passive Methods. Springer, 2022. 328 p. DOI: 10.1007/978-3-662-65770-6
  23. Yongwei Song, Zehao Guo, Rui Wang et al. A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization // Water Research. 2022. Vol. 221. № 118748. DOI: 10.1016/j.watres.2022.118748
  24. Yanan Jiao, Chunhui Zhang, Peidong Su et al. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization // Process Safety and Environmental Protection. 2023. Vol. 170. P. 1240-1260. DOI: 10.1016/j.psep.2022.12.083
  25. Zendelska A., Trajanova A., Golomeova M. et al. Comparison of Efficiencies of Neutralizing Agents for Heavy Metal Removal from Acid Mine Drainage // Journal of Mining and Environment. 2022. Vol. 13. № 3. P. 679-691. DOI: 10.22044/jme.2022.12090.2205
  26. Saha S., Sinha A. Review on Treatment of Acid Mine Drainage with Waste Materials: A Novel Approach // Global NEST Journal. 2018. Vol. 20. № 3. P. 512-528. DOI: 10.30955/gnj.002610
  27. Skousen J.G., Ziemkiewicz P.F., McDonald L.M. Acid mine drainage formation, control and treatment: Approaches and strategies // The Extractive Industries and Society. 2019. Vol. 6. Iss. 1. P. 241-249. DOI: 10.1016/j.exis.2018.09.008
  28. Skousen J. Chapter 29 – Overview of Acid Mine Drainage Treatment with Chemicals / Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Prevention, and Remediation. Wiley, 2014. P. 325-337. DOI: 10.1002/9781118749197.ch29
  29. Kleinmann B., Skousen J., Wildeman T. et al. The Early Development of Passive Treatment Systems for Mining-Influenced Water: A North American Perspective // Mine Water and the Environment. 2021. Vol. 40. Iss. 4. P. 818-830. DOI: 10.1007/s10230-021-00817-8
  30. Kleinmann R., Sobolewski A., Skousen J. The Evolving Nature of Semi-passive Mine Water Treatment // Mine Water and the Environment. 2023. Vol. 42. Iss. 1. P. 170-177. DOI: 10.1007/s10230-023-00922-w
  31. Skousen J., Zipper C.E., Rose A. et al. Review of Passive Systems for Acid Mine Drainage Treatment // Mine Water and the Environment. 2017. Vol. 36. Iss. 1. P. 133-153. DOI: 10.1007/s10230-016-0417-1
  32. Turingan C.O.A., Cordero K.S., Santos A.L. et al. Acid Mine Drainage Treatment Using a Process Train with Laterite Mine Waste, Concrete Waste, and Limestone as Treatment Media // Water. 2022. Vol. 14. Iss. 7. № 1070. DOI: 10.3390/w14071070
  33. Rambabu K., Banat F., Pham Q.M. et al. Biological remediation of acid mine drainage: Review of past trends and current outlook // Environmental Science and Ecotechnology. 2020. Vol. 2. № 100024. DOI: 10.1016/j.ese.2020.100024
  34. Фетисова Н.Ф. Кислотность и щелочность шахтных вод как ключевые показатели для планирования систем очистки // Горное эхо. 2022. № 2. С. 32-38. DOI: 10.7242/echo.2022.2.5
  35. Рыбникова Л.С., Рыбников П.А., Наволокина В.Ю. Реабилитация техногенных объектов отработанных медноколчеданных месторождений на примере Левихинского рудника (Средний Урал) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 8. С. 137-150. DOI: 10.18799/24131830/2023/8/4089

Similar articles

Comprehensive utilization of urban wastewater sludge with production of technogenic soil
2024 Marina V. Bykova, Dmitrii M. Malyukhin, Dmitrii O. Nagornov, Arina A. Duka
Iron ore tailings as a raw material for Fe-Al coagulant production
2024 Vera A. Matveeva, Maria A. Chukaeva, Aleksandra I. Semenova
Anomaly detection in wastewater treatment process for cyber resilience risks evaluation
2024 Evgeniya S. Novikova, Elena V. Fedorchenko, Marat A. Bukhtiyarov, Igor B. Saenko
Rationale for a possibility of using humic preparations production waste for wastewater purification from metals (Cd2+, Zn2+, Mg2+, Cu2+) aimed at developing efficient measures on environmental rehabilitation
2024 Natalya Yu. Antoninova, Artem V. Sobenin, Albert I. Usmanov, Aleksey A. Gorbunov
Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems
2024 Ivan P. Sverchkov, Vladimir G. Povarov
Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies
2024 Anatolii Yu Opekunov, Dariya V. Korshunova, Marina G. Opekunova, Vsevolod V. Somov, Daniil A. Akulov