Submit an Article
Become a reviewer

Search articles for by keywords:
selection of seam degassing technology

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-07
  • Date accepted
    2023-09-20
  • Date published
    2024-02-29

Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching

Article preview

One of the techniques used in extracting gold in small-scale gold mining is mercury amalgamation. However, the use of mercury presents significant health and environmental hazards, as well as suboptimal efficiency in gold extraction. This study explores the possibility of the use of rice husk as a prototype adsorbent for mercury removal from its leaching in mining environments. To support the analysis, the rice husk adsorbent was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, atomic absorption spectrophotometers and Brunauer − Emmett − Teller analysis. To investigate the removal of Hg from aqueous solutions, batch adsorption experiments were conducted, and the efficiency was optimized under various parameters such as contact time, rice husk dosage, and initial concentration of mercury. Kinetic and isotherm investigations were also carried out to gain a better understanding of the adsorption properties. The kinetic adsorption was analyzed using the pseudo-first-order and pseudo-second-order. Furthermore, the isotherm adsorption was analyzed using ten adsorption isotherm models (i.e., Langmuir, Freundlich, Temkin, Dubinin – Radushkevich, Flory – Huggins, Fowler – Guggenheim, Hill – de Boer, Jovanovic, Harkin – Jura, and Halsey). The amount of mercury absorption increased with increasing contact time, adsorbent mass, and initial concentration of mercury. The pseudo-second-order kinetic model is the best model that can be applied to describe the adsorption process. Analysis of the adsorption results obtained shows that the adsorption pattern is explained through the formation of a monolayer without any lateral interaction between the adsorbate and adsorbent. In addition, the formation of multilayers due to inhomogeneous pore distribution also occurs which causes a pore filling mechanism. We found that the isotherm phenomena are near the Jovanovic models with the maximum adsorption capacity) of rice husk found to be 107.299 mg/g. As a result, rice husk could be a promising option for wastewater treatment due to its fast and efficient removal capacity, as well as its affordability and eco-friendliness. The predicted thermodynamic studies using the Flory – Huggins isotherm model show that the adsorption process is endothermic, spontaneous, and physisorption. The impact shows that the utilization of rice husk can be used and fit for the current issues in the sustainable development goals (SDGs).

How to cite: Nandiyanto A.B.D., Nugraha W.C., Yustia I., Ragadhita R., Fiandini M., Meirinawati H., Wulan D.R. Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching // Journal of Mining Institute. 2024. Vol. 265 . p. 104-120. EDN BZVWDO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-13
  • Date accepted
    2023-10-11
  • Date published
    2023-10-27

An innovative approach to injury prevention in mining companies through human factor management

Article preview

This study argues that human error has an effect on occupational injury risks in mining companies. It shows through an analysis of existing approaches to occupational risk assessment that it is necessary to develop a quantitative assessment method factoring in individual psychophysiological attributes in order to analyze injury risks posed to miners. The article presents the results of a comprehensive analysis of how workers’ psychophysiological attributes influence their susceptibility to occupational injuries in underground mining conditions. By utilizing statistical data processing methods, such as discriminant and regression analysis, the study develops models to forecast personal injury risks among miners. These quantitative models underlie the proposed method for assessing miners’ susceptibility to injuries. The study outlines an algorithm for the practical application of this method and shows how the method was validated using a training sample. It provides recommendations for managing the human factor, incorporating the results of the proposed method, and emphasizes the importance of implementing a series of protective measures to mitigate the risk of occupational injuries in underground mining operations.

How to cite: Kabanov E.I., Tumanov M.V., Smetanin V.S., Romanov K.V. An innovative approach to injury prevention in mining companies through human factor management // Journal of Mining Institute. 2023. Vol. 263 . p. 774-784. EDN DRHFAN
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-08
  • Date accepted
    2022-07-21
  • Date published
    2023-12-25

Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement

Article preview

The results of the analysis of practical experience in the development of potash seams using longwall mining systems at the mines of OAO “Belaruskali” are presented. Positive changes in the technical and economic indicators of mines and an increase in the safety of mining operations were noted with the introduction of resource-saving technologies without leaving the pillars between the excavation columns or with leaving the pillars between the columns with dimensions at which they are destroyed by mining pressure in the goaf. It is noted that the use of mechanized stoping complexes characterized by high energy capacity, combined with large depths of development, is the main reason for the temperature increase in longwalls to values exceeding the maximum permissible air temperature regulated by sanitary standards. Based on production studies, it was concluded that the temperature regime along the length of the longwall face is determined by the temperature of rocks in the developed longwall space, heat emissions from the equipment of the power train, and the temperature of the rock mass ahead of the longwall. The conclusion has been drawn about the feasibility of using developed technological schemes in deep mining conditions, which provide a reduction in longwall temperature by 6-9 °C or more through isolated ventilation of longwall and power trains, as well as heat exchange between the airflow entering the longwall and the rocks in the developed space.

How to cite: Zubov V.P., Sokol D.G. Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement // Journal of Mining Institute. 2023. Vol. 264 . p. 874-885. EDN YYMIQY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-31
  • Date accepted
    2023-03-02
  • Date published
    2023-12-25

Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps

Article preview

On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.

How to cite: Sidorenko A.A., Dmitriev P.N., Alekseev V.Y., Sidorenko S.A. Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps // Journal of Mining Institute. 2023. Vol. 264 . p. 949-961. EDN SCAFOE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-17
  • Date accepted
    2023-02-13
  • Date published
    2023-04-25

Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste

Article preview

Due to the constantly deteriorating environmental situation in the regions with mining enterprises, the article considers the topical issue of disposing the maximum possible volume of waste from the mining and processing of low-grade ferrous ores through the creation of an effective underground environmental geotechnology. Traditional procedure with descending mining of reserves with a caving system does not allow waste to be disposed of in a gob. The idea is to use geotechnology based on the ascending order of mining the ore body, room excavation, leaving truncated pillars, and staggered arrangement of adjacent rooms in height, which makes it possible to form containers for waste disposal in the form of a cementless backfill. The main characteristics of the proposed procedure are investigated and compared with the traditional procedure of low-grade iron ores mining. It was established that from the point of view of the complete extraction of reserves and the unit costs for the preparatory-development operations, the processes are comparable, while in terms of the mining quality, the proposed option is much more efficient. Evaluation of environmental geotechnology by the criterion of waste disposal, performed according to the proposed methodology, showed that the combination of these technical solutions ensures the placement in the formed gob from 80 to 140% of all waste generated during the mining and beneficiation of low-grade iron ores.

How to cite: Sokolov I.V., Antipin Y.G., Rozhkov A.A., Solomein Y.M. Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste // Journal of Mining Institute. 2023. Vol. 260 . p. 289-296. DOI: 10.31897/PMI.2023.21
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-15
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production

Article preview

The oil and gas industry has been an integral and fundamental sector of the Russian economy for the past few years. The main problems of this industry have traditionally been the deteriorating structure of oil reserves; depreciation of main assets; slowdown and decline in oil production. Recently these have been complicated by a number of new negative trends related to underinvestment, limited financial resources, deteriorating access to new equipment and technologies. The task of the research is to make a comprehensive assessment of hydraulic fracturing technology during well construction and to increase the recovery and intensification of hydrocarbons production. In this research, modeling techniques were used to assess the productivity of each fracture. Geophysical methods (seismic survey) were used to determine the geomechanical properties of the formation. Comprehensive assessment of hydraulic fracturing technology during well construction was carried out, which allowed to increase vertical permeability and unite disparate parts of the reservoir in practice, and to determine the development efficiency of the hydrocarbon field.

How to cite: Bosikov I.I., Klyuev R.V., Мayer А.V. Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production // Journal of Mining Institute. 2022. Vol. 258 . p. 1018-1025. DOI: 10.31897/PMI.2022.98
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-04-12
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)

Article preview

Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.

How to cite: Gasumov R.А., Minchenko Y.S., Gasumov E.R. Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits) // Journal of Mining Institute. 2022. Vol. 258 . p. 895-905. DOI: 10.31897/PMI.2022.99
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-11-06
  • Date accepted
    2022-11-29
  • Date published
    2022-12-29

Technological sovereignty of the Russian Federation fuel and energy complex

Article preview

The review to achieve technological sovereignty of the Russian fuel and energy complex (FEC) in the ongoing geopolitical situation is presented in the article. The main scope has been to identify the key technology development priorities, restrictions and internal resources to overcome these utilizing the developed by the author the innovative methodology that consists of novel approaches to calculate level of local content, digitalization, business continuity andinteractions with military-industrial complex. Some organizational changes have been proposed to intensify the development of hi-tech products for the FEC and related industries, including establishment of the state committee for science and technology and the project office of lead engineers for the critical missing technologies. Two successful examples to utilize the described in the paper methodology is presented: the first domestic hydraulic fracturing fleet and polycrystalline diamond compact cutter bit inserts.

How to cite: Zhdaneev O.V. Technological sovereignty of the Russian Federation fuel and energy complex // Journal of Mining Institute. 2022. Vol. 258 . p. 1061-1078. DOI: 10.31897/PMI.2022.107
Metallurgy and concentration
  • Date submitted
    2022-06-27
  • Date accepted
    2022-09-09
  • Date published
    2022-11-03

Study of the composition and properties of the beneficiation tailings of currently produced loparite ores

Article preview

The increase in demand for rare earth metals and the depletion of natural resources inevitably causes the need to search for alternative unconventional sources of rare metal raw materials. The article presents the results of a study of the composition and properties of the beneficiation tailings of currently produced loparite ores. Sieve, mineralogical, chemical, and radionuclide analyses were carried out. The average content of loparite in tailings was determined. Using scanning electron microscopy, minerals-concentrators of rare earth elements in the loparite ore beneficiation tailings were diagnosed. The distribution of valuable components and thorium in the tailings was determined depending on the particle size class. The radium-thorium nature of radioactivity was established, the values of the effective specific activity of the samples were calculated. We concluded that it is necessary to develop an integrated technology for processing the beneficiation tailings of loparite ore, due to the complex and heterogeneous mineral and chemical composition of the tailings material.

How to cite: Maksimova V.V., Krasavtseva E.A., Savchenko Y.E., Ikkonen P.V., Elizarova I.R., Masloboev V.A., Makarov D.V. Study of the composition and properties of the beneficiation tailings of currently produced loparite ores // Journal of Mining Institute. 2022. Vol. 256 . p. 642-650. DOI: 10.31897/PMI.2022.88
Metallurgy and concentration
  • Date submitted
    2022-04-20
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Iron ore beneficiation technologies in Russia and ways to improve their efficiency

Article preview

Increasing the efficiency of crushing circuits is associated with a decrease in the particle size of finely crushed ore and the use of dry magnetic separation of crushed ore. Reducing grinding costs is achieved by using drum mills jointly with mills of other designs. The use of automation systems, slurry demagnetization, technologies with staged concentrate separation, and beneficiation and fine screening in a closed grinding cycle lead to a reduction in grinding costs. The main industrial technology for improving the quality of concentrate is its additional beneficiation using regrinding, fine screening, flotation, and magnetic-gravity separators. Increasing the integrated use of iron ore raw materials is associated with an increase in the yield of iron concentrate and the production of hematite concentrate during the beneficiation of hematite-magnetite ores and ilmenite concentrate during the beneficiation of titanomagnetite ores. Incremented concentrate yield is possible by using magnetic separators with an increased magnetic induction up to 0.25-0.5 T in the first stages of beneficiation. To obtain hematite and ilmenite concentrates, combined technologies can be used, including fine screening, high-gradient magnetic, gravity, flotation, and electrical separation.

How to cite: Pelevin A.E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency // Journal of Mining Institute. 2022. Vol. 256 . p. 579-592. DOI: 10.31897/PMI.2022.61
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-19
  • Date accepted
    2022-05-25
  • Date published
    2022-07-13

Development of the technology of stowing the developed space during mining

Article preview

An analysis of the world experience in the development of potash deposits shows that the main problems arising during their development are a high level of mineral losses, an increased risk of flooding of mine workings as a result of water-proof layer discontinuance and the development of emergency water inflows in the mined-out spaces. Reduction of potash ore losses can be achieved by using a long-pillar mining system, but this method is limited by the peculiarities of the geological structure of the potash deposits and the need to preserve the continuity of the water-proof layer during its underworking. The safety of underworking of the water-proof layer can be improved by using the stowing of the developed longwall space. However, the question of the influence of the stowing on the height of the zone of water supply cracks development remains little-studied. The world experience of stowing the developed spaces in the development of layers with long pillars is analyzed and the technology of placing the stowing masses, which can solve these problems, is proposed. The considered technology and the proposed solutions are supported by laboratory tests of stowing materials and mathematical modeling of deformation zones in the overlying rocks.

How to cite: Kovalskii E.R., Gromtsev K.V. Development of the technology of stowing the developed space during mining // Journal of Mining Institute. 2022. Vol. 254 . p. 202-209. DOI: 10.31897/PMI.2022.36
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-07-05
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings

Article preview

On the basis of analysis of mining plans and field studies at mines of JSC SUEK-Kuzbass, it is shown that in conditions of increasing the size of excavation columns during the development of flat-lying coal seams the stress-strain state of the rock mass along the workings length changes significantly. The necessity of predicting the stress-strain state at the design stage of the workings timbering standards, as well as subsequent monitoring of the workings roof state and its changes in the mining operations using video endoscopes, is noted. The results of numerical studies of the stress-strain state of the rock mass during the development of excavation sites by three workings for various combinations of width of the pillars between the workings for mining-geological and mining-technical conditions of the “Taldinskaya-Zapadnaya-2” mine are provided. The stresses in the vicinity of the three workings are compared with the values obtained during the development of the excavation sites by double drift. A set of recommendations on the choice of the location of the workings, the width of pillars, timbering standards that ensure the stable condition of the workings throughout the entire service life at the minimal losses of coal in the pillars is presented.

How to cite: Kazanin O.I., Ilinets A.A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings // Journal of Mining Institute. 2022. Vol. 253 . p. 41-48. DOI: 10.31897/PMI.2022.1
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-27
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing

Article preview

The technogenic impact of mining on the environment is analyzed and the transition to geotechnology with stowing to reduce the impact of mining operations is proposed. The results of the research work devoted to the justification of parameters of the development of salt deposits with stowing and the definition of the influence of stowing on the dynamics of deformation of the underworked rock massif are presented. The relevance of research aimed at creating a safe and efficient technology for the transition from systems with natural maintenance of stoping space to systems with stowing has been substantiated. The results of studies on qualitative and quantitative assessment of the state of the rock massif (by the finite element method using FLAC3D software), worked out by combines, are given and the dynamics of the impact of mining operations on the rock mass and the change in the maximum stresses during the hardening of the stowing in the chambers are revealed. The numerical modeling method is used to analyze the conditions of change in the state of the underworked rock mass, to establish the mechanisms of its deformation at various stages of development. It is recommended to use this approach for geotechnical assessment of the rock mass state in conditions of using development systems of different classes.

How to cite: Rybak J., Khayrutdinov M.M., Kuziev D.A., Kongar-Syuryun C.B., Babyr N.V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing // Journal of Mining Institute. 2022. Vol. 253 . p. 61-70. DOI: 10.31897/PMI.2022.2
Mining
  • Date submitted
    2021-06-01
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Indicator assessment of the reliability of mine ventilation and degassing systems functioning

Article preview

The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.

How to cite: Kaledina N.O., Malashkina V.A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning // Journal of Mining Institute. 2021. Vol. 250 . p. 553-561. DOI: 10.31897/PMI.2021.4.8
Mining
  • Date submitted
    2021-01-18
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines

Article preview

The reasons for the lag of the indicators of the leading Russian coal mines engaged in the longwall mining of the flat-lying coal seams from similar foreign mines are considered. The analysis of the efficiency of the longwall face move operations at the JSC SUEK-Kuzbass mines was carried out. A significant excess of the planned deadlines for the longwall face move during the thick flat-lying seams mining, the reasons for the low efficiency of disassembling operations and the main directions for improving the technology of disassembling operations are revealed. The directions of ensuring the operational condition of the recovery room formed by the longwall face are considered. The recommended scheme of converged coal seams mining and a three-dimensional model of a rock mass to justify its parameters are presented. Numerical studies using the finite element method are performed. The results of modeling the stress-strain state of a rock mass in the vicinity of a recovery room formed under conditions of increased stresses from the boundary part of a previously mined overlying seam are shown. The main factors determining the possibility of ensuring the operational condition of the recovery rooms are established. It is shown that it is necessary to take into account the influence of the increased stresses zone when choosing timbering standards and organizing disassembling operations at a interbed thickness of 60 m or less. A sufficient distance from the gob of above- or undermined seams was determined to ensure the operational condition of the recovery room of 50 m, for the set-up room – 30 m. Recommendations are given for improving technology and organization of the longwall face move operations at the mines applied longwall mining of flat-lying coal seams with the formation of a recovery room by the longwall face.

How to cite: Meshkov А.A., Kazanin O.I., Sidorenko A.A. Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines // Journal of Mining Institute. 2021. Vol. 249 . p. 342-350. DOI: 10.31897/PMI.2021.3.3
Metallurgy and concentration
  • Date submitted
    2020-07-29
  • Date accepted
    2021-03-30
  • Date published
    2021-06-24

Model of baddeleyite recovery from dump products of an apatite-baddeleyite processing plant using a CVD6 concentrator

Article preview

The paper is devoted to developing a model of baddeleyite recovery from dump products of an apatite-baddeleyite processing plant using centrifugal concentrators. The relevance of the work arises from the acquisition of new knowledge on the optimization of technological parameters of centrifugal concentrators using Knelson CVD (continuous variable discharge) technology – in particular, setting the frequency of valve opening and the duration of valves remaining open. The purpose of the research was to assess the applicability of CVD technology in the treatment of various dump products of the processing plant and to build a model of dependencies between the concentrate and tailings yields and the adjustable parameters, which will allow to perform preliminary calculations of the efficiency of implementing this technology at processing plants. The research objects are middling and main separation tailings of the coarse-grained stream and combined product of main and recleaner separation tailings of the fine-grained stream. The study uses general methods of mathematical statistics: methods of regression analysis, aimed at building statistically significant models, describing dependence of a particular variable on a set of regressors; group method of data handling, the main idea of which is to build a set of models of a given class and choose the optimal one among them. Authors proposed an algorithm for processing experiment results based on classical regression analysis and formulated an original criterion for model selection. Models of dependencies between the concentrate and tailings yields and the adjustable parameters were built, which allowed to establish a relationship between the concentrate yield and the valve opening time, as well as a relationship between the tailings yield and the G-force of the installation.

How to cite: Pelikh V.V., Salov V.M., Burdonov A.E., Lukyanov N.D. Model of baddeleyite recovery from dump products of an apatite-baddeleyite processing plant using a CVD6 concentrator // Journal of Mining Institute. 2021. Vol. 248 . p. 281-289. DOI: 10.31897/PMI.2021.2.12
Oil and gas
  • Date submitted
    2020-05-13
  • Date accepted
    2020-11-12
  • Date published
    2020-12-29

Improving the efficiency of terrigenous oil-saturated reservoir development by the system of oriented selective slotted channels

Article preview

A comparative assessment of variation in the flow rate of oil production wells was performed taking into account increasing of perforated area of the productive part of the rocks, as well as recover of reservoir rocks permeability due to their unloading by creating slotted channels with the method of oriented slotted hydro-sandblast perforation. Different orientation directions and slotting intervals were analyzed, taking into account water encroachment of individual interlayers and azimuth direction of the majority of remaining reserves in separate blocks of the examined formation. In order to estimate development efficiency of terrigenous oil-saturated porous-type reservoirs by means of oriented slotted hydro-sandblast perforation, calculations were performed on a full-scale geological and hydrodynamic model of an oil field in the Perm Region. The object of modeling was a Visean terrigenous productive forma tion. The modeling of implementing oriented slotted hydro-sandblast perforation was carried out on a 3D filtration model for fourteen marginal wells, located in the zone with excessive density of remaining recoverable reserves and he terogeneous reserve recovery along the section. An optimal layout of slotted channels along the depth of the productive part of the well section was developed. Selective formation of 24 slotted channels was carried out con sidering the intervals of increased oil saturation. Comparative analysis of estimated flow rate of the wells was per formed for cumulative perforation of the examined productive formation and the developed method of slotted perforation. As a result of modeling, an increase in the oil average flow rate of 2.25 t/day was obtained. With oriented slotted hydro-sandblast perforation, incremental cumulative production for two years of prediction calculations per one well reached 0.5 thousand t.

How to cite: CHERNYSHOV S.E., Repina V.A., Krysin N.I., Macdonald D.I.M. Improving the efficiency of terrigenous oil-saturated reservoir development by the system of oriented selective slotted channels // Journal of Mining Institute. 2020. Vol. 246 . p. 660-666. DOI: 10.31897/PMI.2020.6.8
Mining
  • Date submitted
    2020-06-12
  • Date accepted
    2020-10-28
  • Date published
    2020-11-24

Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining

Article preview

The paper is devoted to the problem of increasing energy efficiency of coalmine methane utilization to provide sustainable development of geotechnologies in the context of transition to a clean resource-saving energy production. Its relevance results from the fact that the anthropogenic effect of coalmine methane emissions on the global climate change processes is 21 times higher than the impact of carbon dioxide. Suites of gassy coal seams and surrounding rocks should be classified as technogenic coal-gas deposits, while gas extracted from them should be treated as an alternative energy source. Existing practices and methods of controlling coalmine methane need to be improved, as the current “mine – longwall” concept does not fully take into account spatial and temporal specifics of production face advancement. Therefore, related issues are relevant for many areas of expertise, and especially so for green coal mining. The goal of this paper is to identify patterns that describe non-linear nature of methane release dynamics in the underground boreholes to provide sustainable development of geotechnologies due to quality improvement of the withdrawn methane-air mixture. For the first time in spatial-temporal studies (in the plane of CH 4 - S ) of methane concentration dynamics, according to the designed approach, the parameter of distance from the longwall ( L ) is introduced, which allows to create function space for the analyzed process (CH 4 of S-L ). Results of coalmine measurements are interpreted using the method of local polynomial regression (LOESS). The study is based on using non-linear variations of methane concentration in the underground boreholes and specific features of their implementation to perform vacuum pumping in the most productive areas of the undermined rock mass in order to maintain safe aerogas conditions of the extraction block during intensive mining of deep-lying gassy seams. Identification of patterns in the influence of situational geomechanical conditions of coal mining on the initiation of metastable gas-coal solution transformation and genesis of wave processes in the coal-rock mass allows to improve reliability of predicting methane release dynamics, as well as workflow manageability of mining operations. Presented results demonstrate that development of high-methane Donbass seams is associated with insufficient reliability of gas drainage system operation at distances over 40 m behind the longwall face. Obtained results confirm a working hypothesis about the presence of spatial migration of methane concentration waves in the underground gas drainage boreholes. It is necessary to continue research in the area of estimating deviation angles of “advance fracturing” zone boundaries from the face line direction. Practical significance of research results lies in the possibility to use them in the development of scientific foundation for 3D gas drainage of a man-made coal-methane reservoir, taking into account spatial and temporal advancement of the production face.

How to cite: Dzhioeva A.K., Brigida V.S. Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining // Journal of Mining Institute. 2020. Vol. 245 . p. 522-530. DOI: 10.31897/PMI.2020.5.3
Mining
  • Date submitted
    2020-05-24
  • Date accepted
    2020-07-23
  • Date published
    2020-11-24

Estimation of ore contour movements after the blast using the BMM system

Article preview

Measurement of ore movements by blast is one of the key components of the quality control system at any mining enterprise, which allows to obtain the accuracy necessary for determining the location of ore contours. About 15 years ago, a monitoring system was developed in Australia that allows mine personnel to make three-dimensional measurements of ore blocks movement at each blast. Studies have shown that ore blocks movement is extremely variable, and it characterized by a complete absence of a deterministic component. The consequence is that modeling ore contour movements during the blast will be inaccurate, and the best results for the mining enterprise can only be achieved by directly measuring the movement. The technology of measuring ore contours movements considered in the article is based on three-dimensional movement vectors obtained in different parts of the blasted block, characterized by different movements. It is obvious that the accuracy of determining the ore contours position after the blast is proportional to the number of measurements made on the block. Currently, the movement control technology based on the BMM system is actively used by global mining companies, its use reduces losses and dilution of ore. In 2017, the pilot implementation of the BMM system was started at the Olympiadinsky GOK, and the system is being implemented in several Russian mining companies.

How to cite: Rakhmanov R.A., Loeb J., Kosukhin N.I. Estimation of ore contour movements after the blast using the BMM system // Journal of Mining Institute. 2020. Vol. 245 . p. 547-553. DOI: 10.31897/PMI.2020.5.6
Geoeconomics and Management
  • Date submitted
    2020-04-24
  • Date accepted
    2020-05-20
  • Date published
    2020-10-08

Prospects and social effects of carbon dioxide sequestration and utilization projects

Article preview

The issues of global warming and occurrence of the greenhouse effect are widely discussed on a global scale. Various methods of reducing greenhouse gas emissions are actively being investigated and tested, including technologies for sequestration of carbon dioxide, the implementation of which is carried out in the form of CC(U)S (carbon capture, utilization and storage) projects related to capture, disposal and, in some cases, use of CO 2 . In Russia, CC(U)S technologies are not yet used, but there is a significant potential for their development and distribution. CC(U)S technologies acquire a special role in the context of the development of the energy and industrial sectors of Russia, which are key sources of emissions, and the geological objects belonging to them are potential carbon storages. The purpose of this study is to conceptually analyze the CC(U)S technological cycle and typify such projects, assess the prospects for their implementation in Russia, and identify social effects from the implementation of CC(U)S projects. The main results of the study are presented in the form of a typology of CC(U)S projects, a strategic analysis of the prospects for introduction of such technologies in Russia, as well as development of approaches to assessing social effects with systematization and highlighting a set of indicators for their assessment, which can serve as a basis for re-estimation of the values of CC(U)S projects. The main research methods used were methods of decomposition, systematization and typology, as well as strategic analysis with a focus on relevant practical materials on the topic of the work. Directions for further research are related to the substantiation of the methodology for assessing social effects of CC(U)S projects, including for the conditions of Russia, based on the principles of balancing the interests of key participants.

How to cite: Ilinova A.A., Romasheva N.V., Stroykov G.A. Prospects and social effects of carbon dioxide sequestration and utilization projects // Journal of Mining Institute. 2020. Vol. 244 . p. 493-502. DOI: 10.31897/PMI.2020.4.12
Geoeconomics and Management
  • Date submitted
    2019-10-15
  • Date accepted
    2019-11-19
  • Date published
    2020-10-08

Oilfield service companies as part of economy digitalization: assessment of the prospects for innovative development

Article preview

The digital transformation of the economy as the most important stage of scientific and technological progress and transition to a new technological structure is becoming one of the determining factors in the development and competitiveness of the domestic upstream sector. Prospects for innovative development of oilfield service companies are the key technological areas within the first project of the Hi-Tech Strategy of the German Government until 2020 – “Industry 4.0”. The purpose of this study is to assess the prospects for innovative development of the domestic oilfield service industry in the context of the digitalization of the oil and gas industry. The subject of the research is the process of the formation of key technological lines of “Industry 4.0” and their impact on the domestic oil and gas sector. The research is based on logical-theoretical and empirical analyses. The main factors that determine processes of digital transformation in the oil and gas industry are considered; the results of digitalization processes in the largest foreign and Russian industry companies of the upstream and oilfield services segments are presented. The information base is made up of data from oilfield service and oil and gas producing companies, presented on the official websites of companies in the public domain on the Internet. It has been proven that, unlike the world's leading companies in oilfield services segment, independent domestic oilfield service companies provide mainly traditional service technologies in a fairly narrow range. The limited scope of functioning and technological capabilities of Russian companies is explained by the lack of necessary investment in development and expansion of business, as well as interest on the part of the state and corporate sectors in the development and replication of domestic technologies and the formation of a full-fledged oilfield services market in Russia.

How to cite: Razmanova S.V., Andrukhova O.V. Oilfield service companies as part of economy digitalization: assessment of the prospects for innovative development // Journal of Mining Institute. 2020. Vol. 244 . p. 482-492. DOI: 10.31897/PMI.2020.4.11
Metallurgy and concentration
  • Date submitted
    2020-04-15
  • Date accepted
    2020-05-13
  • Date published
    2020-10-08

Processing of platinum group metal ores in Russia and South Africa: current state and prospects

Article preview

The presented study is devoted to a comparative review of the mineral raw material base of platinum group metals (PGMs) and technologies of their processing in South Africa and Russia, the largest PGM producers. Mineralogical and geochemical classification and industrial value of iron-platinum and platinum-bearing deposits are presented in this work. The paper also reviews types of PGM ore body occurrences, ore processing methods (with a special focus on flotation processes), as well as difficulties encountered by enterprises at the processing stage, as they increase recovery of the valuable components. Data on mineralogical features of PGM deposits, including the distribution of elements in the ores, are provided. The main lines of research on mineralogical features and processing of raw materials of various genesis are identified and validated. Sulfide deposits are found to be of the highest industrial value in both countries. Such unconventional PGM sources, as black shale, dunites, chromite, low-sulfide, chromium and titanomagnetite ores, anthropogenic raw materials, etc. are considered. The main lines of research that would bring into processing non-conventional metal sources are substantiated. Analysis of new processing and metallurgical methods of PGM recovery from non-conventional and industrial raw materials is conducted; the review of existing processing technologies for platinum-bearing raw materials is carried out. Technologies that utilize modern equipment for ultrafine grinding are considered, as well as existing reagents for flotation recovery; evaluation of their selectivity in relation to platinum minerals is presented. Basing on the analysis of main technological processes of PGM ore treatment, the most efficient schemes are identified, i.e.,gravity and flotation treatment with subsequent metallurgical processing.

How to cite: Aleksandrova T.N., О’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects // Journal of Mining Institute. 2020. Vol. 244 . p. 462-473. DOI: 10.31897/PMI.2020.4.9
Mining
  • Date submitted
    2020-02-19
  • Date accepted
    2020-04-17
  • Date published
    2020-10-08

Decrease in coal losses during mining of contiguous seams in the near-bottom part at Vorkuta deposit

Article preview

The problem of formation of extended zones with high rock pressure (HRP) from safety pillars at the boundaries of extraction pillars formed due to the mine layout of complex geometry is considered at the example of JSC Vorkutaugol mines. A detailed analysis of the remaining reserves of the near-bottom part of the deposit was carried out to estimate losses and the impact of HRP zones from the Chetvertyi protective seam to mining operations on the Troinoi upper seam along with the possibilities for the reduction of sizes of HRP zones at the account of expanding the underworked space. Due to research on the near-bottom part of the Vorkuta deposit, within the framework of the accepted layout, a zone at the Komsomolskaya mine and two zones at the Zapolyarnaya-2 mine were singled out, at which losses at the boundaries of the extraction pillars amount up to 13-22 % of the total resources of the mine field. The high volume of losses in these pillars indicates the relevance of research on the priority extraction impact of protective seams on the efficiency and safety of mining operations in the working area of underworked and HRP zones. Based on the analysis of foreign and Russian experience in the pillar cleaning-up at the boundaries of working areas and the methodical guidelines and instructions, a technological scheme was developed that allows increasing the coal mining recovery factor in the near-bottom part of the Vorkuta deposit from 0.75 to 0.9 without fundamental changing of the ventilation and transport networks and also without purchasing any additional mining equipment. The conducted economic calculations confirmed the effectiveness of implementing the new technological scheme for cleaning-up reserves at the boundaries of extraction districts. The economic effect is from 0.079 to1.381 billion rubles of additional profit from coaxial extraction pillars, depending on the mining and geological conditions and the size of the pillars.

How to cite: Kazanin O.I., Yaroshenko V.V. Decrease in coal losses during mining of contiguous seams in the near-bottom part at Vorkuta deposit // Journal of Mining Institute. 2020. Vol. 244 . p. 395-401. DOI: 10.31897/PMI.2020.4.1
Oil and gas
  • Date submitted
    2019-10-30
  • Date accepted
    2020-02-03
  • Date published
    2020-10-08

Concept of technology for determining the permeability and porosity properties of terrigenous reservoirs on a digital rock sample model

Article preview

The aim of the article is to form the concept of technology for determining the permeability and porosity properties of terrigenous reservoirs using mathematical modeling methods on a digital rock sample model. Digital rock sample modeling is used to assess geological oil reserves. The article presents the concept of digital rock sample modeling technology, which allows carrying out qualitative investigations to determine the permeability and porosity characteristics of the formation, including modeling the pore space and filtration processes. The essence of the concept is that the simulation model of the microstructure for the digital model is formed on the basis of a large number of parameters obtained during lithological and petrographic investigations of thin sections, a study of the sludge and geophysical investigations of wells. The acquired model can be used as a basis for subsequent modeling of filtration processes. Conductivity of single channels of the formed model can be calculated using molecular dynamics methods, models of Boltzmann's lattice equations, and other mathematical models and methods. Based on the results of the study carried out, the application of stochastic packing methods for modeling the structure of the pore space in the digital rock sample model of terrigenous reservoirs is substantiated. In connection with the development of computer and nanotechnologies and their use in the oil and gas industry, solutions that allow obtaining adequate results of digital rock sample models are of high importance and relevance for the production sector. It is especially important to use digital rock sample models in the study of reservoir rocks of shelf fields in the western part of the Russian Arctic, oil shales, rocks represented by loose weakly cemented reservoirs, and others, which are complex for physical experiments.

How to cite: Belozerov I.P., Gubaydullin M.G. Concept of technology for determining the permeability and porosity properties of terrigenous reservoirs on a digital rock sample model // Journal of Mining Institute. 2020. Vol. 244 . p. 402-407. DOI: 10.31897/PMI.2020.4.2
Oil and gas
  • Date submitted
    2019-07-09
  • Date accepted
    2019-09-26
  • Date published
    2020-04-24

Development of mathematical models to control the technological properties of cement slurries

Article preview

Oil and gas producing enterprises are making increasingly high demands on well casing quality, including the actual process of injection and displacement of cement slurry, taking into account requirements for the annular cement level, eliminating possible hydraulic fracturing, with developing a hydraulic cementing program. It is necessary to prevent deep invasion of cement slurry filtrate into the formation to exclude bridging of productive layers. It is impossible to fulfill all these requirements at the same time without application of modifying additives; complex cement compositions are being developed and applied more often. Furthermore, need to adjust cement slurries recipes appears for almost every particular well. In order to select and justify cement slurries recipes and their prompt adjustment, taking into account requirements of well construction project, as well as geological and technical conditions for cementing casing strings, mathematical models of the main technological properties of cement slurries for cementing production casing strings in the Perm Region were developed. Analysis of the effect of polycarboxylic plasticizer (Pl) and a filtration reducer (fluid loss additive) based on hydroxyethyl cellulose (FR) on plastic viscosity (V), spreadability (S) and filtration (F) of cement slurries is conducted. Development of mathematical models is performed according to more than 90 measurements.

How to cite: Chernyshov S.E., Galkin V.I., Ulyanova Z.V., Macdonald D.I. Development of mathematical models to control the technological properties of cement slurries // Journal of Mining Institute. 2020. Vol. 242 . p. 179-190. DOI: 10.31897/PMI.2020.2.179