-
Date submitted2024-03-20
-
Date accepted2024-11-07
-
Date published2025-02-27
Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation
The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values of pressure drawdown and changes in stress-strain properties depending on the area of mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.
-
Date submitted2023-09-05
-
Date accepted2024-11-07
-
Date published2025-02-25
Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations
At all stages of the life cycle of buildings and structures, geodetic support is provided by electronic measuring instruments – a laser scanning system, unmanned aerial vehicles, and satellite equipment. In this context, a set of geospatial data is obtained that can be presented as a digital model. The relevance of this work is practical recommendations for constructing a local quasigeoid model and a digital elevation model (DEM) of a certain accuracy. A local quasigeoid model and a DEM were selected as the study objects. It is noted that a DEM is often produced for vast areas, and, therefore, it is necessary to build a local quasigeoid model for such models. The task of assessing the accuracy of constructing such models is considered; its solution will allow obtaining a better approximation to real data on preassigned sets of field materials. A general algorithm for creating both DEM and local quasigeoid models in the Golden Software Surfer is presented. The constructions were accomplished using spatial interpolation methods. When building a local quasigeoid model for an area project, the following methods were used: triangulation with linear interpolation (the least value of the root mean square error (RMSE) of interpolation was 0.003 m) and kriging (0.003 m). The least RMSE value for determining the heights by control points for an area project was obtained using the natural neighbour (0.004 m) and kriging (0.004 m) methods. To construct a local quasigeoid model for a linear project, the following methods were applied: kriging (0.006 m) and triangulation with linear interpolation (0.006 m). Construction of the digital elevation model resulted in the least aggregate value of the estimated parameters: on a flat plot of the earth’s surface – the natural neighbour method, for a mountainous plot with anthropogenic topography – the quadric kriging method, for a mountainous plot – quadric kriging.
-
Date submitted2024-04-11
-
Date accepted2024-06-03
-
Date published2024-07-04
Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals)
According to the results of the anti-rating of regions with extreme pollution of watercourses in the Sverdlovsk region, the largest number of polluted rivers has been recorded in recent years – more than a quarter of all high and extremely high pollution. One of the sources of pollution of natural water bodies in the Middle Urals are closed and flooded copper-pyrite mines, where acidic mine drainage continue to form and unload to the surface. Several of them have organized collection and a two-stage acidic drainage purification system, including neutralization with lime milk and settling in a clarifier pond. Despite the identical schemes, different indicators of pollutants are recorded during discharge into water bodies. The aim of the work is to evaluate the effectiveness of the applied acid mine drainage purification system and identify the parameters affecting the quality of treated mine water. Laboratory studies were performed using methods of flame emission spectrometry, flame atomic absorption, atomic absorption spectrometry, mass spectrometry with ionization in inductively coupled plasma, potentiometric, etc. It has been established that the existing mine drainage purification system at the Degtyarskii mine makes it possible to significantly reduce the concentrations of most toxic components of mine waters to almost standard values. At the Levikhinskii mine, the multiplicity of exceeding the maximum permissible concentrations reaches hundreds and thousands of times. To achieve a higher degree of purification, it is necessary that the duration of passive purification is sufficient for the reactant to interact with acidic waters. However, to ensure this possibility, it will require the creation of a cascade of ponds with an area of several thousand hectares. If the current two-stage system is quite effective for the Degtyarskii mine, then for Levikhinskii it is necessary to switch to the use of more modern systems, including three stages of purification.
-
Date submitted2023-08-14
-
Date accepted2023-12-27
-
Date published2024-12-25
Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons
In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.
-
Date submitted2023-03-14
-
Date accepted2023-10-25
-
Date published2024-04-25
Predictive assessment of ore dilution in mining thin steeply dipping deposits by a system of sublevel drifts
The purpose of research is the study of stress-strain state of marginal rock mass around the stope and predictive assessment of ore dilution with regard for changes in ore body thickness in mining thin ore deposits on the example of the Zholymbet mine. Study of the specific features of the stress-strain state development was accomplished applying the methodology based on numerical research methods taking into account the geological strength index (GSI) which allows considering the structural features of rocks, fracturing, lithology, water content and other strength indicators, due to which there is a correct transition from the rock sample strength to the rock mass strength. The results of numerical analysis of the stress-strain state of the marginal part of the rock mass using the finite element method after the Hoek – Brown strength criterion made it possible to assess the geomechanical state in the marginal mass provided there are changes in ore body thickness and to predict the volume of ore dilution. It was ascertained that when mining thin ore deposits, the predicted value of ore dilution is influenced by the ore body thickness and the GSI. The dependence of changes in ore dilution values on the GSI was recorded taking into account changes in ore body thickness from 1 to 3 m. Analysis of the research results showed that the predicted dimensions of rock failure zone around the stopes are quite large, due to which the indicators of the estimated ore dilution are not attained. There is a need to reduce the seismic impact of the blasting force on the marginal rock mass and update the blasting chart.
-
Date submitted2022-08-24
-
Date accepted2023-02-15
-
Date published2023-08-28
Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems
The article is devoted to the analysis of approaches to modeling the stress-strain state of a block rock mass in the vicinity of a single mine workings and in the area of rock cantilever influence during the development of the Khibiny apatite-nepheline deposits. The analysis of the existing in international engineering practice ideas about tectonic disturbances as a geomechanical element and the experience of predicting the stress-strain state of a block rock mass was carried out. On the basis of the analysis, the formulation of the basic modeling tasks is carried out and its main results are presented. Methodological recommendations for solving similar problems were developed.
-
Date submitted2021-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps
On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.
-
Date submitted2022-05-06
-
Date accepted2022-11-17
-
Date published2023-02-27
Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stack
There are the results of a study of the factors determining the formation and changes in the filtration properties of a heap leaching stack formed from pelletized poor sandy-clay ores. An analysis of methods of investigation of filtration properties of ore material for different stages of heap leaching plots functioning is carried out. Influence of segregation process during stack dumping on formation of zones with very different permeability parameters of ore has been established by experimental and filtration works. The construction and application of a numerical model of filtration processes in pelletized ores based on laboratory experiments is shown. By means of solution percolation simulation at different irrigation intensities the justification of optimal stack parameters is provided in terms of the geomechanical stability and prevention of solution level rise above the drainage layer.
-
Date submitted2022-05-26
-
Date accepted2022-11-17
-
Date published2022-12-29
Renovation method of restoring well productivity using wavefields
A stagewise theoretical substantiation of the renovation vibrowave method of influencing the near-wellbore zone of reservoir for restoring well productivity is presented. The area of treatment by the proposed method covers the reservoir with a heterogeneous permeability with fractures formed by fracking. In this method a decrease in concentration of colmatants occurs due to a change in direction of contaminants migration. Under the influence of pressure pulses, they move deep into the reservoir and disperse through the proppant pack. The results of mathematical modelling of the propagation of pressure wave and velocity wave and the calculations of particles entrainment in wave motion are presented.
-
Date submitted2021-12-21
-
Date accepted2022-06-20
-
Date published2022-11-10
Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling
The article presents the results of analysing geological structure of the Famennian deposits (Devonian) in the Perm Region. Numerical modelling of the distribution of inhomogeneous stress field near the well was performed for the two considered types of perforation. With regard for the geometry of the forming perforation channels, numerical finite element models of near-wellbore zones were created considering slotted and cumulative perforation. It is ascertained that in the course of slotted perforation, conditions are created for a significant restoration of effective stresses and, as a result, restoration of reservoir rock permeability. Stress recovery area lies near the well within a radius equal to the length of the slots, and depends on the drawdown, with its increase, the area decreases. From the assessment of failure areas, it was found that in case of slotted perforation, the reservoir in near-wellbore zone remains stable, and failure zones can appear only at drawdowns of 10 MPa and more. The opposite situation was recorded for cumulative perforation; failure zones near the holes appear even at a drawdown of 2 MPa. In general, the analysis of results of numerical simulation of the stress state for two simulated types of perforation suggests that slotted perforation is more efficient than cumulative perforation. At the same time, the final conclusion could be drawn after determining the patterns of changes in permeability of the considered rocks under the influence of changing effective stresses and performing calculations of well flow rates after making the considered types of perforation channels.
-
Date submitted2021-07-13
-
Date accepted2021-10-18
-
Date published2021-12-16
Prediction of the stress state of the shotcreting support under repeated seismic load
- Authors:
- Maksim A. Karasev
- Roman O. Sotnikov
The article assesses the impact of repeated blasts on the stress-strain state of the shotcreting support, which negatively affects the bearing capacity of the support and can lead to the formation of local rock falls in places of significant degradation of the shotcreting strength. Despite the fact that a single seismic load usually does not have a significant impact on the technical condition of the shotcreting support, repeated dynamic loading can lead to the development of negative processes and affect the safety. The article considers unreinforced and dispersed-reinforced shotcreting concrete as a shotcreting support. Models of deformation of rock and shotcreting support have been studied. To describe the deformation model of a rock mass, an elastic–plastic model based on the Hook-Brown plasticity condition has been accepted, which accurately describes the elastic-plastic behavior of a fractured medium. When performing the prediction of the stress-strain state of the shotcreting support, a model of plastic deformation of concrete with the accumulation of Concrete Damage Plasticity (CDP) was adopted, which allows to comprehensively consider the process of concrete deformation both under conditions of uniaxial compression and stress, and with minor edging draft. At the first calculation stage, a forecast of the seismic waves propagation in the immediate vicinity of the explosive initiation site was made. At the second stage, forecasts of the seismic waves propagation to the mine working and the stress-strain state of the support were made. On the basis of the performed studies, a methodology for assessing the impact of repeated blasts on the stress-strain state of the shotcreting support of the mine working is proposed.
-
Date submitted2021-02-05
-
Date accepted2021-03-30
-
Date published2021-04-26
Assessment of negative infrastructural externalities when determining the land value
- Authors:
- Elena N. Bykova
The work forms and substantiates the concept of land value, based on a new institutional theory. The infrastructural component of the cost of land in the presented concept determines, on the one hand, the efficiency of the use of natural resources, properties, demand for land on the market, on the other hand, the costs, which are determined not only by capital investments in construction of engineering infrastructure, but also by losses associated with restrictions on activities within zones with special conditions for territory use, creation of unfavorable conditions for economic activity, small contours, irregularities and others on a specific land plot, which are external negative infrastructural externalities that create losses of rights holders of land plots that are not compensated by the market, falling within the boundaries of these zones. Methods for assessing the impact of such negative infrastructural externalities on the cost of land encumbered by zones in different conditions of land market activity have been developed and tested, based on an expert-analytical approach (depressed market); the ratio of market values of land plots encumbered and unencumbered by a specific zone, and qualimetric modeling (inactive market); modeling by introducing into the model the factor of presence of zones with special conditions for territory use, based on the grouping of zones according to similar regulations for use, or by introducing the parameters of this factor (active market). Methods for taking into account spatial deficiencies and compensating for restrictions and prohibitions on activities on the territory of land plots with an individual market assessment are proposed.
-
Date submitted2020-05-25
-
Date accepted2020-06-11
-
Date published2020-12-29
Technological aspects of cased wells construction with cyclical-flow transportation of rock
- Authors:
- Andrei S. Kondratenko
A high-performance technology for constructing cased wells is proposed. Essence of the technology is the advance insertion of the casing pipe into the sedimentary rock mass and the cyclical-flow transportation of the soil rock portions using the compressed air pressure supplied to the open bottomhole end of the pipe through a separate line. Results of mathematical modeling for the process of impact insertion of a hollow pipe into a soil mass in horizontal and vertical settings are considered. Modeling of the technology is implemented by the finite element method in the ANSYS Mechanical software. Parameters of the pipe insertion in the sedimentary rock mass are determined - value of the cleaning step and the impact energy required to insert the pipe at a given depth. Calculations were performed for pipes with a diameter from 325 to 730 mm. Insertion coefficient is introduced, which characterizes the resistance of rocks to destruction during the dynamic penetration of the casing pipe in one impact blow of the pneumatic hammer. An overview of the prospects for the application of the proposed technology in geological exploration, when conducting horizontal wells of a small cross-section using a trenchless method of construction and borehole methods of mining, is presented. A variant of using the technology for determining the strength properties of rocks is proposed. Some features of the technology application at industrial facilities of the construction and mining industry are considered: for trenchless laying of underground utilities and for installing starting conductors when constructing degassing wells from the surface in coal deposits. Results of a technical and economic assessment of the proposed technology efficiency when installing starting conductors in sedimentary rocks at mining allotments of coal mines are presented.
-
Date submitted2020-05-29
-
Date accepted2020-09-16
-
Date published2020-11-24
Numerical modeling of a double-walled spherical reservoir
Extensive and important class of multilayer shell structures is three-layer structures. In a three-layer structure, a rigid filler plays an important role, due to which the bearing layers are spaced that gives the layer stack high rigidity and durability with a relatively low weight. By combining the thicknesses of the bearing layers and the filler, the desired properties of a three-layer shell structure can be achieved. Compared with traditional single-walled, three-layer construction has increased rigidity and durability, which allows reducing the thickness and weight of the shells. In order to reduce the metal content of the spherical reservoir for storing liquefied gases, this work considers the design of a double-walled reservoir, in which the inter-wall space is filled with reinforced polyurethane. Numerical modeling made it possible to determine the parameters of the stress-strain state of the structure with an error of no more than 5 %. It has been established on the example of a reservoir with a volume of 4000 m 3 that the spatial structure of the spherical reservoir wall can reduce the metal content up to 19 %. Field of application for the research results is the assessment of the stress-strain state of spherical reservoirs at their designing. Method for building the structure of a double-walled spherical reservoir in the SCAD software has been developed, which allows calculating the stress-strain state (SSS) by the finite element method. Numerical model of a double-walled spherical reservoir has been developed. It was found that to obtain calculation results with an error of P ≤ 5 % the size of the final element should not exceed 300×300×δ mm. Design of a double-walled spherical reservoir was investigated. Design parameters have been established to ensure the operational reliability of the structure with a decrease in metal content in comparison with a single-wall reservoir by 19 %.
-
Date submitted2019-11-20
-
Date accepted2020-01-20
-
Date published2020-10-08
Effect of shear stress on the wall of technological pipelines at a gas condensate field on the intensity of carbon dioxide corrosion
The object of the study is a section of the gas and gas condensate collection system, consisting of an angle throttle installed on a xmas tree and a well piping located after the angle throttle. The aim of the study is to assess the impact of the flow velocity and wall shear stress (WSS) on the carbon dioxide corrosion rate in the area of interest and to come up with substantiated recommendations for the rational operation of the angle throttle in order to reduce the corrosion intensity. In the course of solving this problem, a technique was developed and subsequently applied to assess the influence of various factors on the rate of carbon dioxide corrosion. The technique is based on a sequence of different modeling methods: modeling the phase states of the extracted product, three-dimensional (solid) modeling of the investigated section, hydrodynamic flow modeling of the extracted product using the finite volume method, etc. The developed technique has broad possibilities for visualization of the obtained results, which allow identifying the sections most susceptible to the effects of carbon dioxide corrosion. The article shows that the average flow velocity and its local values are not the factors by which it is possible to predict the occurrence of carbon dioxide corrosion in the pipeline section after the angle throttle. The paper proves that WSS has prevailing effect on the corrosion intensity in the section after the angle choke. The zones of corrosion localization predicted according to the technique are compared with the real picture of corrosion propagation on the inner surface of the pipe, as a result of which recommendations for the rational operation of the angle throttle are formed.
-
Date submitted2019-06-22
-
Date accepted2019-09-11
-
Date published2020-04-24
Effective capacity building by empowerment teaching in the field of occupational safety and health management in mining
The paper is dealing with a developed concept named Empowerment Teaching, which is based on practical teaching experience gained in various mining universities. It is demonstrated that this concept can be used to increase the effectiveness of knowledge transfer to mining countries in the world, as well as to overcome cultural barriers between lecturers and their students. The two models of participatory training, which are proposed to be named “physical” and “emotional” models, are portrayed. The authors are convinced that participatory training methods can be an ideal answer to a challenge associated with workers’ competencies in mining, namely – the potential of highly motivated and well-educated young academics is often diminished by a lack of ability to apply their knowledge. A special emphasis is made on the possible application of empowerment teaching for educational and training activities in the field of occupational safety and health (OSH), which is a matter of utmost importance for the mining industry. Several benchmarking initiatives in the field of OSH (“safety culture”, zero-accident vision) are underlined to be encouraged and promoted by means of new teaching methods. The examples of successful international cooperation among universities are given, as well.
-
Date submitted2019-03-24
-
Date accepted2019-05-13
-
Date published2019-08-23
Calculation of Oil-saturated Sand Soils’ Heat Conductivity
- Authors:
- J. Sobota
- V. I. Malarev
- A. V. Kopteva
Nowadays, there are significant heavy high-viscosity oil reserves in the Russian Federation with oil recovery coefficient not higher than 0.25-0.29 even with applying modern and efficient methods of oil fields development. Thermal methods are the most promising out of the existing ways of development, main disadvantage of which is large material costs, leading to the significant rise in the cost of extracted oil. Thus, creating more efficient thermal methods and improving the existing ones, is the task of great importance in oil production. One of the promising trends in enhancing thermal methods of oil recovery is the development of bottomhole electric steam generators. Compared to the traditional methods of thermal-steam formation treatment, which involve steam injection from surface, well electrothermal devices can reduce energy losses and improve the quality of steam injected into the formation. For successful and efficient organization of oil production and rational development of high-viscosity oil fields using well electrothermal equipment, it is necessary to take into account the pattern of heat propagation, both in the reservoir and in the surrounding space, including the top and bottom. One of the main values characterizing this process is the heat conductivity λ of oil-bearing rocks. The article describes composition of typical oil-saturated sand soils, presents studies of heat and mass transfer in oil-saturated soils, reveals the effect of various parameters on the heat conductivity of a heterogeneous system, proposes a method for calculating the heat conductivity of oil-bearing soils by sequential reduction of a multicomponent system to a two-component system and proves the validity of the proposed approach by comparing acquired calculated dependencies and experimental data.
-
Date submitted2018-11-03
-
Date accepted2019-01-21
-
Date published2019-04-23
Estimation of critical depth of deposits by rock bump hazard condition
- Authors:
- V. N. Tyupin
During the development of minerals by the underground method, dynamic manifestations of rock pressure occur at a certain depth, which significantly reduces the safety of mining operations. Regulatory documents prescribe at the exploration and design stages to establish the critical depth for classifying a deposit as liable to rock bumps. Currently, there are a number, mainly instrumental, methods for determining the liability of rock mass to rock bumps and methods based on the determination of physical and technical properties and the stress-strain state of rock massifs. The paper proposes a theoretical method for determining the critical depth for classifying a deposit as liable to rock bumps. A formula for determining the critical depth of the rock bump hazard condition is obtained. A mathematical analysis of the influence of the physical and technical parameters of the formula on the critical depth is carried out. Its physical and mathematical validity is substantiated. The numerical calculations of the critical depth for 17 developed fields were carried out using a simplified formula. It also provides a comparison of calculated and actual critical depth values. It is established that the variation of the actual and calculated critical depth is due to the lack of actual data on the value of the friction coefficient and parameters of fracturing of the rock mass in the simplified formula. A simplified calculation formula can be used to estimate the critical depth of a field at the survey and design stages. More accurate results can be obtained if there are actual data on fracture parameters, friction coefficients and stress concentration near the working areas.
-
Date submitted2018-09-02
-
Date accepted2018-10-28
-
Date published2019-02-22
Factors affecting bacterial and chemical processes of sulphide ores processing
- Authors:
- T. S. Khainasova
Extraction of valuable components from sulphide ores using microorganisms is a recognized biotechnological method, combining several advantages over traditional methods of mineral processing. This paper presents the main factors affecting the bacterial-chemical leaching and methods of leaching with the participation of microorganisms. Some physical-chemical (temperature, pH, oxygen, carbon dioxide, nutrients, metals and other chemical elements) and microbial (cell count and microflora activity) properties are given, either directly or indirectly (suppressing or contributing to the growth and oxidative capacity of microorganisms) affecting the kinetics of the process. The paper discusses the characteristics of the mineral substrate, including galvanic interaction of sulfide minerals and the formation of passivating layers on the surface of the ore during oxidation, emphasizing the importance of the electrochemical interaction of the components of the leaching system. Bioleaching is a complex process, which is a combination of mainly chemical reactions mediated by the microbial component, therefore, to improve the kinetics, it is necessary to consider, monitor and regulate the listed range of factors.
-
Date submitted2018-05-09
-
Date accepted2018-06-30
-
Date published2018-10-24
Scientific and methodical approaches to increase prospecting efficiency of the russian arctic shelf state geological mapping
- Authors:
- A. S. Egorov
- I. Yu. Vinokurov
- A. N. Telegin
A rationale for the set of theoretical and methodological techniques of mapping and deep modeling in the Russian Arctic shelf and adjacent sedimentary basins in continental Russia is based on the materials for the Barents and Kara Seas region. This article provides the factual basis of the research and shows how to apply zonal-block model of the crust and generalized models of geodynamic settings in terms of the different geophysical data inconsistency. The necessity and approach for global and regional paleo-reconstructions are also discussed. It is shown that localization of the principal structural and compositional units of the lithosphere being a consequence of geodynamic processes at the boundaries of lithospheric plates, form at the basis of sedimentary cover and crystalline basement layered maps as well as cross-sections of the continental crust. The identified parameters of the deep structure and milestones of the regional tectonic history open new opportunities to explore the regularities of ore deposits distribution. The shown example of the forecast and metallogeny problems solution within Western Siberia and Khatanga-Vilyui petroleum provinces is made using the parameters of known industrial oil and gas fields for training the pattern recognition system.
-
Date submitted2018-05-24
-
Date accepted2018-07-20
-
Date published2018-10-24
Moisture content of natural gas in bottom hole zone
- Authors:
- E. A. Bondarev
- I. I. Rozhin
- K. K. Argunova
For the traditional problem of gas flow to a well in the center of circular reservoir, the influence of initial reservoir conditions on dynamics of gas moisture content distribution has been determined. Investigations have been performed in the framework of mathematical model of non-isothermal real gas flow through porous media where heat conductivity was considered to be negligible in comparison with convective heat transfer. It is closed by empirical correlation of compressibility coefficient with pressure and temperature, checked in previous publications. Functional dependence of moisture content in gas on pressure and temperature is based on empirical modification of Bukacek relation. Numerical experiment was performed in the following way. At first step, axisymmetric problem of non-isothermal flow of real gas in porous media was solved for a given value of pressure at the borehole bottom, which gives the values of pressure and temperature as functions of time and radial coordinate. Conditions at the outer boundary of the reservoir correspond to water drive regime of gas production. At the second step, the calculated functions of time and coordinate were used to find the analogous function for moisture content. The results of experiment show that if reservoir temperature essentially exceeds gas – hydrate equilibrium temperature than moisture content in gas distribution is practically reflects the one of gas temperature. In the opposite case, gas will contain water vapor only near bottom hole and at the rest of reservoir it will be almost zero. In both cases, pressure manifests its role through the rate of gas production, which in turn influences convective heat transfer and gas cooling due to throttle effect.
-
Date submitted2017-11-22
-
Date accepted2018-01-04
-
Date published2018-04-24
Justification of a methodical approach of aerologic evaluation of methane hazard in development workings at mines of Vietnam
- Authors:
- V. V. Smirnyakov
- Nguen Min' Fen
The methods of evaluation of the aerological conditions to be performed for the purpose of normalization of mining conditions are provided in the present review; the location of possible accumulations of explosive gases during the drift of the development workings are taken into account. To increase the safety of the development working regarding the gas factor, a complex evaluation of a working was developed with respect to the dynamics of methane emission and air coursing along the working which is strongly affected by the character of the leakages from the ventilation ducting. Thereby, there occurs a necessity of the enhancement of a methodical approach of calculation of ventilation of a working which consists in taking into consideration a total aerodynamic resistance of the booster fan including the local resistances of the zones of the working. An integer simulation of the gas-air flows realized on the basis of a software package FLowVision allows to evaluate a change in the methane concentration in the zones of local accumulations.
-
Date submitted2017-09-20
-
Date accepted2017-10-29
-
Date published2018-02-22
Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods
- Authors:
- E. T. Voronov
- V. N. Tyupin
The development of the uranium ore bodies at the ore mines of PJSC «Priargunsky Industrial Mining and Chemical Union» (PJSC «PIMCU») by room-and-pillar method as high as a pillar between the levels (60 m) without fill, as a rule, leads to the fall of the adjoining rock, to the strong contamination of the ore and to the high yield of the oversize pieces of the barren rock. A longstanding industrial and theoretical research shows that the sizes of the self-sustaining rock escarpments at the ore mines of PJSC «PIMCU» in the solid mass of trachydacites, conglomerates, sandstones, felsites are equal to 20-40 m. Moreover, the sizes of the self-sustaining rock escarpments depend to a great extent on the intensity of fracturing of the adjoining rocks. The stable size of the escarpment does not exceed 5-10 m for the rocks with the size of a jointing up to 0.05 m. Consequently, timely performance of the filling operations of the worked-out space of the chamber is important. However, the question then arises: which characteristic strength should the filling mass have? The calculations of the characteristics of the filling mass in compliance with the reference guide «Shaft filling operations» show underestimated values of the characteristic compressive strength of the fill (1.4 MPa) for the room-and-pillar method, which leads to the increase of the ore contamination by the fill and provokes the additional costs for refilling of the volumes of the rock fall. On the basis of the Russian experience of using of the consolidated fill for the development of the ore bodies of 15 m thickness by chamber method the strength of the fill is taken as 3-5 MPa under the resultant value of the static stresses without taking into account the character of the dynamic loading stresses induced by the sequence blasthole ring initiating in a chamber. Overestimating the characteristic strength of the filling mass results in the high consumption of the cementing materials. On the basis of the theoretical research the authors suggested the theoretical dependence of calculation of the characteristic strength of the filling material with respect to compressive stresses of the fill induced by the blasting operations. The process of designing of the filling mass with the zones of diverse strength for the room-and-pillar extraction with the consolidated rock fill is proven to be economically reasonable. The bottom zone of the solid mass should have high strength (3-4 MPa), and the strength of the upper zone should be up to 2-2.5 MPa.
-
Date submitted2015-10-24
-
Date accepted2015-12-17
-
Date published2016-08-22
Spatial distribution of energy release during propagation of fast electron beam in the air
- Authors:
- V. S. Sukhomlinov
- A. S. Mustafaev
The paper focuses on development of the analytical theory to assess spatial distribution of energy released during propagation of the fast electron beam in a gas, in particular in the air at electron energies of 1-100 keV. An approach adopted by authors [2, 3] to study inelastic deceleration of electrons in the air is further developed here. As the inelastic interaction in most cases leads to energy relaxation while elastic interaction causes distribution isotropization over directions, the first task solved in the paper is finding the electron distribution function including only elastic collisions. In the final part of this paper an analytical solution to this task is presented with account of both types of electron deceleration in the air. The calculations show that when elastic collisions are taken into account this leads to increased spatial density of energy release and to narrowing of the primary energy release region of the fast electrons, as compared to calculations accounting for only inelastic deceleration.
-
Date submitted2014-11-15
-
Date accepted2015-01-11
-
Date published2015-10-26
On the necessity of taking into consideration the increment of the growing stock in cadastral valuation of lands of forest fund
- Authors:
- V. F. Kovyazin
Currently there are no methods of cadastral valuation of forest land although the area covers 2/3 of the territory of the Russian Federation. In 2002, the Federal Land Inventory Service of Russia proposed a method but it failed to find practical use due to the complicated calculation of the cadastral value according to the Faustmann formula and lack of open access to some information about the forest fund and was totally abolished seven years later. There were several reasons for abolishing the method and the main reason was lack of methods to predict a supply of wood to the age of maturity when the cadastral assessment was carried out in the plantations under the age of main felling. The author proposes to take into account the current growth rate of the growing stock per year on one hectare of land in the cadastral evaluation of forest fund lands. Based on the increment of the growing stock it is possible to construct a mathematical model of changes in the forest reserve to the age of maturity. The author suggests using the existing forest inventory materials to build the model. By updating existing data you can obtain any inventory indices including the growing stock in different age plantations. The resulting inventory of plantations at the age of maturity is recommended for cadastral valuation of the forest fund lands. The calculation of the cadastral value of forest land for one taxation quarter with and without current increment of the growing stock is given and the difference is 37 %.