Submit an Article
Become a reviewer
Vol 220
Pages:
611-621
Download volume:
RUS ENG
Research article
Geo-nanomaterials

Spatial distribution of energy release during propagation of fast electron beam in the air

Authors:
V. S. Sukhomlinov1
A. S. Mustafaev2
About authors
  • 1 — Ph.D., Dr.Sci. associate professor Saint-Petersburg State University
  • 2 — Ph.D., Dr.Sci. professor Saint-Petersburg Mining University
Date submitted:
2015-10-24
Date accepted:
2015-12-17
Date published:
2016-08-22

Abstract

The paper focuses on development of the analytical theory to assess spatial distribution of energy released during propagation of the fast electron beam in a gas, in particular in the air at electron energies of 1-100 keV. An approach adopted by authors [2, 3] to study inelastic deceleration of electrons in the air is further developed here. As the inelastic interaction in most cases leads to energy relaxation while elastic interaction causes distribution isotropization over directions, the first task solved in the paper is finding the electron distribution function including only elastic collisions. In the final part of this paper an analytical solution to this task is presented with account of both types of electron deceleration in the air. The calculations show that when elastic collisions are taken into account this leads to increased spatial density of energy release and to narrowing of the primary energy release region of the fast electrons, as compared to calculations accounting for only inelastic deceleration.

Keywords:
deceleration of electron beam with energy of 1 to 100keV in a gas elastic and inelastic interactions of electrons energy and momentum relaxation electron velocity distribution function Boltzmann kinetic equation numerical simulation based on Monte Carlo method
10.18454/pmi.2016.4.611
Go to volume 220

References

  1. Марчук Г.И. Методы расчета ядерных реакторов. М.: Госатомиздат, 1961. 667 с.
  2. Сухомлинов В.С. Аналитическая теория релаксации энергии при распространении пучка быстрых электронов в газе / В.С.Сухомлинов, А.С.Мустафаев // Теплофизика высоких температур. 2016, в печати.
  3. Сухомлинов В.С. Влияние неупругих столкновений на релаксацию энергии пучка быстрых электронов в воздухе / В.С.Сухомлинов, А.С.Мустафаев // Записки Горного института. 2016. Т.219. С.392-402. DOI 10.18454/PMI.2016.3.392
  4. Черчиньяни К. Математические методы в кинетической теории газов. М.: Мир, 1973. 245 с.
  5. Черчиньяни К. Теория и приложения уравнения Больцмана. М.: Мир, 1978. 495 с.
  6. Froman N. JWKB Approximation / N.Froman, P.O.Froman; Inst. of the Theoretical Phys., University of Uppsala. Sweden. 1965. 168 p.
  7. Grun A.E. Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen Eindimensionaler Fall in Luft // Z. Naturforsch A. 1957. Vol.12a. P.89-95.
  8. Mayol R.R. Total and transport cross section for elastic scatterig of electrons by atoms / R.R.Mayol, F.Salvat // Atomuc Data and Nuclear Data Tables. 1997. Vol.65. N 21. P.55-154.
  9. Sheikin E.G. Calculation of Space Disribution of Energy Deposited by E-Beam for Flow Control Applications / E.G.Sheikin, V.S.Sukhomlinov //AIAA Paper. 2006. P.1369-1374.

Similar articles

Nondestructive techniques to control the quality and quantity of oil flows
2016 R. M. Proskuryakov, A. V. Kopteva
Key directions in processing carbonaceous rocks
2016 T. N. Aleksandrova
Changes in thermal plasticity of low grade coals during selective extraction of metals
2016 V. Yu. Bazhin
Directions and prospects of using low grade process fuel to produce alumina
2016 O. A. Dubovikov, V. N. Brichkin
Complex utilization of treatment wastes from thermal power plants
2016 A. N. Shabarov, N. V. Nikolaeva
Effect of surface geometry and insolation on temperature profile of green roof in Saint-Petersburg environment
2016 S. A. Ignatev, D. S. Kessel