FACTORS AFFECTING BACTERIAL AND CHEMICAL PROCESSES OF SULPHIDE ORES PROCESSING
- Scientific Research Geotechnological Center Far Eastern Branch of Russian Academy of Science
Abstract
Extraction of valuable components from sulphide ores using microorganisms is a recognized biotechnological method, combining several advantages over traditional methods of mineral processing. This paper presents the main factors affecting the bacterial-chemical leaching and methods of leaching with the participation of microorganisms. Some physical-chemical (temperature, pH, oxygen, carbon dioxide, nutrients, metals and other chemical elements) and microbial (cell count and microflora activity) properties are given, either directly or indirectly (suppressing or contributing to the growth and oxidative capacity of microorganisms) affecting the kinetics of the process. The paper discusses the characteristics of the mineral substrate, including galvanic interaction of sulfide minerals and the formation of passivating layers on the surface of the ore during oxidation, emphasizing the importance of the electrochemical interaction of the components of the leaching system. Bioleaching is a complex process, which is a combination of mainly chemical reactions mediated by the microbial component, therefore, to improve the kinetics, it is necessary to consider, monitor and regulate the listed range of factors.
References
- Karavaiko G.I., Rossi Dzh., Agate A., Grudev S., Avakyan Z.A. Biogeotechnology of metals. Tsentr mezhdunarodnykh proektov GKNT. Moscow, 1989, p. 75 (in Russian).
- Levenets O.O., Khainasova T.S., Balykov A.A., Pozolotina L.A. Bioleaching of sulfide cobalt-copper-nickel ore. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 63 «Kamchatka-2». 2015. N 11, p. 291-296 (in Russian).
- Khainasova T.S., Kungurova V.E., Pozolotina L.A., Balykov A.A., Levenets O.O. Bioleaching of sulphidic cobalt-copper-nickel ore from the Shanuch deposit with various cultures of native microorganisms. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 63 «Kamchatka-2». 2015. N 11, р. 297-304 (in Russian).
- Khainasova T.S., Levenets O.O., Trukhin Yu.P. Application of microbial immobilization in bioleaching. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 31 «Kamchatka-3». 2016. N 11, p. 235-246 (in Russian).
- Khomchenkova A.S. Study of the effect of various concentrations of heavy metal salts on the growth of acidophilic chemolithotrophic microorganisms. Gornyi informatsionno-analiticheskii byulleten'. Spetsial'nyi vypusk N 31 «Kamchatka-3». 2016. N 11, p. 217-222 (in Russian).
- Varela P., Levica G., Rivera F., Jerez C.A. An immunological strategy to monitor in situ the phosphate starvation state in Thiobacillus ferrooxidans. Applied and environmental microbiology. 1998. Vol. 64. N 12, p. 4990-4993.
- Bryan C.G., Joulian C., Spolaore P., Challan-Belval S., Achbouni H.E., Morin D.H.R., P.D'Hugues. Adaptation and evolution of microbial consortia in a stirred tank reactor bioleaching system: indigenous population versus a defined consortium. Advanced materials research. 2009. Vol. 71-73, p. 79-82. DOI: 10.4028/www.scientific.net/AMR.71-73.79
- Bosecker K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews. 1997. Vol. 20, p. 591-604. DOI: 10.1111/j.1574-6976.1997.tb00340.x
- Brandl H. Microbial leaching of metals. Chapter 8, 2008, р. 192-217. URL:http://www.wiley-vch.de/books/biotech/
- pdf/v10_bran.pdf (date of access 20.01.2018).
- Qureshi N., Annous B.A., Thaddeus E.C. et al. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial cell factories. 2005. Vol. 4. N 24, p. 1-21. DOI: 10.1186/1475-2859-4-24
- Das T. Factors affecting bioleaching kinetics of sulfide ores using acidophilic microorganisms. Biometals. 1999. Vol. 12, p. 1-10.
- Doelle H.W., Rokem J.S., Berovic M. Biotechnology – Vol.X: fundamentals in biotechnology. Encyclopedia of Life Support Systems Publications. 2009, p. 538.
- Savic D.S., Veljkovic V.B., Lazic M.L. et al. Effects of oxygen transfer rate on ferrous iron oxidation Thiobacillus ferrooxidans. Ensime and microbial technology. 1998. Vol. 23, p. 427-431. DOI: 10.1016/S0141-0229(98)00071-4
- Gentina J.C., Acevedo F. Application of bioleaching to copper mining in Chile. Electronic Journal of Biotechnology. Special Issue on Process Biotechnology. 2013. Vol. 16.N 3, p.725-731. DOI: 10.2225/vol16-issue3-fulltext-12
- Jaantinen T. Biooxidation and bioleaching of arsenic-containing and refractory gold concentrates. Master of Thesis. Tampere University of Technology. Finland. 4th of May 2011, p. 100.
- Johnson D.B. Minireview. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology and ecology. 1998. Vol. 27, p. 307-317. DOI: 10.1111/j.1574-6941.1998.tb00547.x
- Maluckov B.S. The catalytic role of Acidithiobacillus ferrooxidans for metals extraction from mining – Metallurgical Resource. Biodiversity International Journal. 2017. Vol. 1 (3), p. 1-12. DOI: 10.15406/bij.2017.01.00017
- Natarajan K.A. Metals Biotechnology. Lecture 14. Heap bioleaching technology for nickel. NPTEL Web Course, 2008,
- p. 1-8. URL: https://nptel.ac.in/courses/113108055/module2/lecture14.pdf (date of access 20.01.2018).
- Nemati M., Webb C. Nemati M. Inhibition effect of ferric iron on the kinetics of ferrous iron. Biotechnology letters. 1998. Vol. 20. N 9, р. 873-877. DOI: 10.1023/A:1005319710861Issn
- Nemati M., Lowenadler J., Harrison S.T.L. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Applied microbiology and biotechnology. 2000. Vol. 53, p. 173-179. DOI: 10.1007/s002530050005
- Neale J.W. Mintek. Integrated piloting of a thermophilic nickel-copper bioleaching process. 2009. URL: http://
- www.powershow.com/view/229d4d-NWNkN/Integrated_piloting_of_a_thermophilic_nickelcopper_bioleaching_process_powerpoint_ppt_
- presentation (date of access 20.01.2018).
- Neale J.W., Gericke M., Ramcharan K. The application of bioleaching to base metal sulfides in Southern Africa: prospects and opportunities. 6th Southern African Base Metals Conference. The Southern African Institute of Mining and Metallurgy, 2011, p. 367-388.
- Olson G.J., Brierley J.A., Brierley C.L. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Applied microbiology and biotechnology. 2003. Vol. 63, р. 249-257. DOI 10.1007/s00253-003-1404-6
- Rawlings D.E., Dew D., Plessis C. Biomineralization of metal-containing ores and concentrates. Review. Trends in biotechnology. 2003. Vol. 21. N 1, p. 38-44.
- Rawlings D.E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial cell factories. 2005. Vol. 4. N 13, p. 1-15. DOI: 10.1186/1475-2859-4-13
- Rawlings D.E., Johnson D.B. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology. 2007. Vol. 153, p. 315-324. DOI: 10.1099/mic.0.2006/001206-0
- Spencer A. Influence of bacterial culture selection on the operation selection of a plant treating refractory gold ore. International journal of mineral processing. 2001. Vol. 62, p. 217-229. DOI: 10.1016/S0301-7516(00)00054-5
- Watling H.R. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals. 2015. Vol. 5. N 1, р. 1-60. DOI: 10.3390/min5010001