Submit an Article
Become a reviewer

Search articles for by keywords:
coal properties

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-11
  • Date accepted
    2025-01-28
  • Date published
    2025-03-21

Research and development of technology for the construction of snow airfields for accommodating wheeled aircraft in Antarctica

Article preview

Construction of a new wintering complex at the Antarctic Vostok Station required prompt delivery of builders and mechanics to Progress Station to move them further to the work area. To solve this major logistical issue, a new landing site, later named Zenit, certified for accommodating heavy wheeled aircraft, was prepared in the Progress Station area from March to August 2022. Its snow pavement slab with a total area of 350 thousand m2 is from 100 to 120 cm high. It was made by applying snow layers with their subsequent compaction by a specially designed compaction platform for snow airfields suitable for heavy wheeled aircraft. As a result, the pavement has a surface hardness of at least 1 MPa. The layer from 30 to 60 cm has a hardness of at least 0.8 MPa, and the bottom layer at least 0.6 MPa. The first Il-76TD-90VD aircraft of the Russian company Volga-Dnepr was accommodated to the new runway on 7 November 2022. The aircraft landed in normal mode. The depth of the chassis wheels track after landing did not exceed 3 cm. The research provided in-depth understanding of the mechanisms for forming the supporting base of the runway from snow and ice in Antarctica. The experience gained can be used to solve similar issues in the Far North.

How to cite: Polyakov S.P., Popov S.V. Research and development of technology for the construction of snow airfields for accommodating wheeled aircraft in Antarctica // Journal of Mining Institute. 2025. p. EDN EKGJNF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-02-27

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. p. EDN VOBTXU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-06-25
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Study of wormhole channel formation resulting from hydrochloric acid treatment in complex-type reservoirs using filtration and X-ray computed tomography methods

Article preview

The primary function of hydrochloric acid treatment (HAT) is to create the maximum number of high-conductivity channels in the near-wellbore zone of the reservoir to restore its permeability and enhance hydraulic connectivity between the undisturbed part of the formation and the well. The objective of this study is to physically model HAT on core samples from the Orenburg oil and gas condensate field and to research the impact of such treatment on the structure of the pore space of rocks related to complex-type reservoirs. The complexity of the rock's pore space and the low permeability of the formations are distinguishing features of the study object. For this reason, HAT is a widely applied method for production intensification, necessitating the verification of acid injection rates, where the success criterion is the formation of high-conductivity filtration channels (wormholes) in the near-wellbore zone. These channels significantly expand the drainage area of wells, thereby bringing additional reservoir sections into development. The study examined the characteristics of filtration channel development resulting from acid treatment. Their structure was characterized and analyzed using X-ray computed tomography. The complex study confirmed the accuracy of the selected injection rate and provided practical recommendations for enhancing the efficiency of HAT.

How to cite: Аbrosimov A.A. Study of wormhole channel formation resulting from hydrochloric acid treatment in complex-type reservoirs using filtration and X-ray computed tomography methods // Journal of Mining Institute. 2025. Vol. 271 . p. 63-73. EDN AIJSIT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-28
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Radiation characteristics of coals at different stages of metamorphism

Article preview

The formation of deposits and subsequent metamorphic processes that affect concentrations of radioactive elements in coal can indicate ongoing geological activities, therefore, analyzing trends in the radiation characteristics of coal throughout the metamorphic series is highly relevant. The aim of this work is to experimentally evaluate the radiation characteristics of different coal ranks (metamorphic stages) using thermoluminescent (TL) dosimetry and beta activity measurements, and to identify correlations between these radiation characteristics and data obtained from technical, elemental, and thermogravimetric analyses, as well as mass spectrometric and electron paramagnetic resonance spectroscopy (EPR) measurements. For dosimetric measurements that indirectly characterize the content of radionuclides in coal, a modified dosimetric complex and original soil-equivalent thermoluminescent detectors based on SiO2 were used. The analysis of the obtained results supports the use of TL studies to determine the ash content of coals at low and medium stages of metamorphism (coal rank B→G), while indicating that this method is not feasible for coals at higher stages of metamorphism. The correlation dependencies in the metamorphism series suggest abrupt change in the conditions of coal formation during the time range corresponding to transformation from high to low volatile bituminous coals (coal rank G→Zh→K). These abrupt changes in regional metamorphism conditions (time, temperature, pressure, oxidation-reduction conditions) are confined to the boundary of the Permian and Triassic periods (~250 million years ago), during which both the transformation of existing coal deposits and the formation of new deposits occurred.

How to cite: Aluker N.L., Aduev B.P., Nurmukhametov D.R. Radiation characteristics of coals at different stages of metamorphism // Journal of Mining Institute. 2025. Vol. 271 . p. 131-140. EDN GYZHWV
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-12-15
  • Date accepted
    2024-06-13
  • Date published
    2025-02-25

Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation

Article preview

The results of the study of the functioning of the developed thickening equipment as part of the stowing complex for the formation of a flow of high-concentration hydromixture are presented. To explain the operation of the hydrotransport system of the stowing complex, equipped with a thickener of the developed design, its basic diagram is presented. A mathematical model has been created that describes the mechanism of inertial sedimentation of a solid component of a hydraulic mixture in a working chamber equipped with hydrodynamic profiles. Interaction with the profile leads to flow stratification due to a change in the trajectory of movement and a decrease in speed. The interval of rational velocity of primary pulp entering the input of the working chamber of the inertial thickener is substantiated. The synthesis of solutions of the thickening process model is performed in the COMSOL Multiphysics and Ansys Fluent programs. This made it possible to eliminate physical contradictions in the operation of the equipment and justify the overall dimensions of its main elements, ensuring the implementation of the mechanism of inertial sedimentation of the slurry. It was found that the concentration of the thickened flow at the outlet branch pipe of the thickener working chamber is determined by the level of the primary hydraulic fluid velocity, the characteristic length of the section of interaction with the deflecting profile, and the ratio of the flow and attack angles. A nomogram of the dynamics of the change in the hydraulic fluid concentration in the section of the outlet branch pipe depending on the ratios of the overall dimensions of the deflecting profile of the working chamber was compiled. The results of the study allowed formulating recommendations for selecting the dimensions of the thickener's deflecting hydrodynamic profile to form a flow of hydraulic mixture with a concentration of about 50 % by weight. The developed equipment can be used in a stowage complex and will increase the range of supply of the stowage mixture. This is due to the fact that a flow of primary slurry with a low concentration, due to lower pressure losses, can be moved in a pipeline system over a greater distance than a flow with a high filler content. The use of a thickener at the final stage of transportation is intended to increase the concentration of the hydraulic mixture immediately before production.

How to cite: Volchikhina A.A., Vasilyeva M.A. Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation // Journal of Mining Institute. 2025. Vol. 271 . p. 168-180. EDN MDHQZT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-29
  • Date accepted
    2024-11-07
  • Date published
    2025-02-26

Well killing with absorption control

Article preview

The development of new fields with low-permeability reservoirs required the introduction of new production technologies, of which the most significant for well killing and underground repair were multi-ton hydraulic fracturing, the simultaneous operation of two or three development sites by one well grid, and an increase in the rate of fluid extraction. These global decisions in field development have led to the need to search for new effective materials and technologies for well killing. The article is devoted to the analysis of problems associated with the process of killing production wells in fields characterized by increased fracturing, both natural and artificial (due to hydraulic fracturing), with reduced reservoir pressure and a high gas factor. The relevance of the analysis is due to the increase in the number of development sites where complications arise when wells are killed. Particular attention is paid to technical solutions aimed at preserving the filtration and capacity properties of the bottomhole formation zone, preventing the absorption of process fluid, and blocking the manifestation of gas. The classification of block-packs used in killing is given, based on the nature of the process fluid. Suspension thickened water-salt solutions are considered, forming a waterproof crust on the surface of the rock, which prevents the penetration of water and aqueous solutions into the formation. This approach ensures the safety and efficiency of killing operations, especially when working with formations in which maintaining water saturation and preventing the ingress of the water phase are of critical importance. Modern trends in the development of technology are revealed, and promising areas for further improvement of well killing with absorption control are outlined.

How to cite: Saduakasov D.S., Zholbasarova A.T., Bayamirova R.U., Togasheva A.R., Tabylganov M.T., Sarbopeeva M.D., Kasanova A.G., Gusakov V.N., Telin A.G. Well killing with absorption control // Journal of Mining Institute. 2025. p. EDN SBXUTZ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-09-09
  • Date accepted
    2024-11-05
  • Date published
    2024-11-12

Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths

Article preview

In order to study the mechanism of destruction of rocks of various genesis and the formation of fractured reservoirs at great depths, laboratory studies of rock samples in the loading conditions of comprehensive pressure with registration of acoustic emission (AE) and parameters of the process of changing the strength and deformation properties of samples were carried out. The spatial distributions of the hypocenters of AE events for each sample were investigated. By the nature of the distributions, the fracture geometry is described, then visually compared with the position of the formed macrofractures in the samples as a result of the tests. The time trends of the amplitude distribution b, set by the Guttenberg – Richter law, were calculated, which were compared with the loading curves and trends of the calculated AE activity. Based on the analysis of the AE process for three types of rocks – igneous (urtites), metamorphic (apatite-nepheline ores), and sedimentary (limestones) – parameterization of acoustic emission was carried out to determine the features of the deformation process and related dilatancy. As a result, three types of destruction of samples were identified, their geometry and changes in strength and seismic criteria were established.

How to cite: Trushko V.L., Rozanov A.O., Saitgaleev M.M., Petrov D.N., Ilinov M.D., Karmanskii D.A., Selikhov A.A. Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths // Journal of Mining Institute. 2024. Vol. 269 . p. 848-858. EDN EGOJFL
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-06-17
  • Date accepted
    2024-07-17
  • Date published
    2024-10-03

Justification on the safe exploitation of closed coal warehouse by gas factor

Article preview

The annual increase of coal production and its demand lead to the necessity in temporary storage places (warehouses) organization to accommodate raw coal materials before the shipment. It is noted that at the open method of coal storing the dust emission from loading/unloading operations and from the pile surface effects negatively the health of the warehouse workers and adjacent territories. An alternative solution is closed-type warehouses. One of the main hazards of such coal storage can be the release of residual methane from coal segregates into the air after degassing processes during mining and extraction to the surface, as well as transportation to the place of temporary storage. The study carries the analysis of methane content change in coal during the processes of extraction, transportation and storage. Physical and chemical bases of mass transfer during the interaction between gas-saturated coal mass and air are studied. It is determined that the intensity of methane emission depends on: the coal seam natural gas content, parameters of mass transfer between coal, and air and the ambient temperature. The dynamics of coal mass gas exchange with atmospheric air is evaluated by approximate approach, which is based on two interrelated iterations. The first one considers the formation of methane concentration fields in the air space of the bulk volume and the second accounts the methane emission from the pile surface to the outside air. It is determined that safety of closed coal warehouses exploitation by gas factor can be ensured by means of artificial ventilation providing volumetric methane concentration in the air less than 1 %. The flow rate sufficient to achieve this methane concentration was obtained as a result of computer modeling of methane concentration fields formation in the air medium at theoretically calculated methane emission from the pile surface.

How to cite: Gendler S.G., Stepantsova A.Y., Popov M.M. Justification on the safe exploitation of closed coal warehouse by gas factor // Journal of Mining Institute. 2024. p. EDN SIJDWE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-09-29
  • Date accepted
    2023-10-25
  • Date published
    2024-08-26

Laboratory studies of transformation of porosity and permeability and chemical composition of terrigenous reservoir rocks at exposure to hydrogen (using the example of the Bobrikovskii formations in the oil field in the northeast Volga-Ural oil and gas province)

Article preview

The article describes the methodology for laboratory studies of reservoir rock exposure to hydrogen. The stages of sample research and the instruments used in the experiments are considered. A comparative analysis of the results of studies on porosity and permeability of core samples was performed. It was shown that after exposure to hydrogen, the porosity decreased by 4.6 %, and the permeability by 7.9 %. The analysis of correlation dependencies demonstrated a typical change in the relationship of these characteristics: after the samples exposure to hydrogen the scatter of the values increased and the correlation coefficient decreased, which indicates a change in the structure of the void space. Based on the research results, it was concluded that the decrease in porosity and permeability of the core samples occurred due to their minor compaction under the action of effective stresses. The chemical analysis of the rock showed no major difference in the composition of the basic oxides before and after exposure to hydrogen, which points to the chemical resistance of the studied formation to hydrogen. The experimental results showed that the horizon under consideration can be a storage of the hydrogen-methane mixture.

How to cite: Popov S.N., Chernyshov S.E., Abukova L.A. Laboratory studies of transformation of porosity and permeability and chemical composition of terrigenous reservoir rocks at exposure to hydrogen (using the example of the Bobrikovskii formations in the oil field in the northeast Volga-Ural oil and gas province) // Journal of Mining Institute. 2024. Vol. 268 . p. 646-655. EDN MFPSXV
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-06
  • Date accepted
    2024-06-14
  • Date published
    2024-07-04

Natural carbon matrices based on brown coal, humic acids and humine extracted from it for purification of aqueous solutions from low molecular weight organic impurities

Article preview

Heterogeneous systems including natural carbon matrices in the solid phase and aqueous solutions of low molecular weight organic compounds with positive and negative variations from ideality in the liquid phase are considered. The technical characterization of the considered supramolecular ensembles on the basis of brown coal of the Kara-Keche deposit (Kyrgyzstan), humic acids and humine extracted from it is given. Functional analysis of the samples was carried out using FTIR spectroscopy. The morphology of the surface of the considered carbon matrices has been investigated, in different points of which the local microelement composition has been established. An X-ray phase analysis of Kara-Keche brown coal and humic acids and humine extracted from it was carried out. The isothermal adsorption of bipolar molecules of glycine and urea, neutral D-glucose from aqueous solutions on solid carbon sorbents has been studied. An assumption has been made about the adsorption of low molecular weight organic compounds from aqueous solutions on humine and Kara-Keche coal in irregularities and pores of the carbon matrix of sorbents, for humic acids – on surface reaction centers. Due to its developed pore structure and resistance to acids and alkalis, humine from Kara-Keche coal is recommended for the purification of industrial wastewater from low molecular weight organic ecotoxicants.

How to cite: Karabaev S.O., Kharchenko A.V., Gainullina I.P., Kudryavtseva V.A., Shigaeva T.D. Natural carbon matrices based on brown coal, humic acids and humine extracted from it for purification of aqueous solutions from low molecular weight organic impurities // Journal of Mining Institute. 2024. Vol. 267 . p. 402-412. EDN JJOYKR
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-05-19
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Development and research of backfill compounds with improved elastic and strength properties for oil and gas well lining

Article preview

This article describes operations from the well construction cycle where the cement rock behind the casing is subjected to dynamic action (impacts of the drill stem during drilling and normalization of the cement sleeve, secondary drilling operations, hydraulic fracturing, etc.). The developed cement mortar compositions were tested following API 10B-2, API 10B-6, API STD-65-2, and GOST 28985-91 standards. The composition of the cement system without the use of imported components (CM-5) was developed, which improved elastic and strength properties compared to existing industry solutions. An improvement in the elastic and strength features and technological properties of cement rock when using epoxy resins was identified, the optimal composition of the cement-and-epoxy grout was determined, and the internal structure of the formed backfill rock, its permeability, and porosity were studied.

How to cite: Blinov P.A., Sadykov M.I., Gorelikov V.G., Nikishin V.V. Development and research of backfill compounds with improved elastic and strength properties for oil and gas well lining // Journal of Mining Institute. 2024. Vol. 268 . p. 588-598. EDN OWJFHS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-01-16
  • Date accepted
    2023-06-20
  • Date published
    2024-04-25

Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan

Article preview

Coal is one of the world's most important energy substances. China is rich in coal resources, accounting for more than 90 % of all ascertained fossil energy reserves. The consumption share of coal energy reaches 56.5 % in 2021. Due to the high moisture content of low-rank coal, it is easy to cause equipment blockage in the dry sorting process. This paper considers low-rank coal coming from Inner Mongolia (NM samples) and Yunnan (YN samples). The weight loss performance of the samples was analyzed using thermogravimetric experiments to determine the appropriate temperature for drying experiments. Thin-layer drying experiments were carried out at different temperature conditions. The drying characteristics of low-rank coal were that the higher the drying temperature, the shorter the drying completion time; the smaller the particle size, the shorter the drying completion time. The effective moisture diffusion coefficient was fitted using the Arrhenius equation. The effective water diffusion coefficient of NM samples was 5.07·10–11 - 9.58·10–11 m2/s. The effective water diffusion coefficients of the three different particle sizes of YN samples were 1.89·10–11 - 4.92·10–11 (–1 mm), 1.38·10–10 - 4.13·10–10 (1-3 mm), 5.26·10–10 - 1.49·10–9 (3-6 mm). The activation energy of Inner Mongolia lignite was 10.97 kJ/mol (–1 mm). The activation energies of Yunnan lignite with different particle sizes were 17.97 kJ/mol (–1 mm), 33.52 kJ/mol (1-3 mm), and 38.64 kJ/mol (3-6 mm). The drying process was simulated using empirical and semi-empirical formulas. The optimal model for Inner Mongolia samples was the Two-term diffusion model, and Yunnan samples were the Hii equation was used.

How to cite: Wang C., Wang D., Chen Z., Duan C., Zhou C. Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan // Journal of Mining Institute. 2024. Vol. 266 . p. 326-338. EDN XMIQWH
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-17
  • Date accepted
    2023-04-03
  • Date published
    2024-02-29

Improvement of concentrate quality in flotation of low-rank coal

Article preview

Percentage of high-rank coal with low content of ash, moisture, and sulfur in total coal production output is low. Most of the produced coal has a low quality (lignite, bituminous coal: long-flame and fiery). Under increasing requirements for ecological cleanness of coal, the efficient use of coal products is only possible after improvement of their processing properties. The authors discuss the enhancement of flotation efficiency of low-rank coal using the mechanism of physisorption of a collecting agent in particle – bubble attachment. It is explained why the yield of concentrate with low ash content increases as a result of combination of collectors having different physical properties. It is shown that the surface activity of a heteropolar agent relative to the gas – liquid interface and the adsorption density of the agent govern its collecting properties. Based on the recovery – surface activity relationship, the correlation is found between the collecting activity of a chemical compound and the structure of its molecules. The combination of the collectors with different surface activity enables adjusting collectability and selectivity of the blend. The physisorption mechanism of collectors can be a framework for developing recommendations on modification of concentrate yield and ash content, and on selection of optimized ratios of surface activities of miscible collectors relative to the gas – liquid interface.

How to cite: Kondratev S.A., Khamzina T.A. Improvement of concentrate quality in flotation of low-rank coal // Journal of Mining Institute. 2024. Vol. 265 . p. 65-77. EDN RJTNNI
Energy industry
  • Date submitted
    2023-04-02
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Integration of renewable energy at coal mining enterprises: problems and prospects

Article preview

This article addresses the issue of developing renewable energy in coal mining enterprises in the Russian Federation. The study presents a methodology for assessing the technical and economic efficiency of introducing renewable energy sources based on simulation modeling. An analysis of the potential of solar and wind energy for coal mining regions in Russia is conducted. The authors use a custom software developed by them to simulate the power supply system for various scenarios of renewable energy integration, including solar generation, wind generation, solar generation with energy storage, wind generation together with solar generation. Based on the example of the Rostov region, a feasibility study of the considered options is presented. Additionally, the research includes a sensitivity analysis of the investment project in the conditions of uncertainty in the development of Russian renewable energy. The research findings indicate that even in market conditions with CO2 emission quotas and prices at the level of the Sakhalin experiment, renewable energy in coal mining enterprises in Russia remains unattractive and requires additional support.

How to cite: Nepsha F.S., Varnavskiy K.A., Voronin V.A., Zaslavskiy I.S., Liven A.S. Integration of renewable energy at coal mining enterprises: problems and prospects // Journal of Mining Institute. 2023. Vol. 261 . p. 455-469. EDN LNSCEY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-31
  • Date accepted
    2023-03-02
  • Date published
    2023-12-25

Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps

Article preview

On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.

How to cite: Sidorenko A.A., Dmitriev P.N., Alekseev V.Y., Sidorenko S.A. Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps // Journal of Mining Institute. 2023. Vol. 264 . p. 949-961. EDN SCAFOE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-11-04
  • Date accepted
    2023-03-03
  • Date published
    2023-04-25

Efficiency of acid sulphate soils reclamation in coal mining areas

Article preview

During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.

How to cite: Mitrakova N.V., Khayrulina E.A., Blinov S.M., Perevoshchikova A.A. Efficiency of acid sulphate soils reclamation in coal mining areas // Journal of Mining Institute. 2023. Vol. 260 . p. 266-278. DOI: 10.31897/PMI.2023.31
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-15
  • Date accepted
    2022-09-12
  • Date published
    2023-08-28

Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings

Article preview

The issue of the influence of the concentration of the solid phase on the reduction of energy costs and specific energy consumption during pulp transportation is considered. The procedure for preparing slurry from the current enrichment tailings is shown. A scheme is given and the operation of a hydroficated unit for thickening and hydraulic transport of backfill mixtures is described. A diagram of the movement of solid particles in one of the units of the complex – a lamellar thickener is shown. The summary table shows the main design parameters and characteristics of the lamellar thickener. A general view of the laboratory setup used for experimental studies with slurry at various concentrations is given. An example of calculating productivity, density and specific load is presented. The dependence of the shear stress on the velocity gradient was determined for various pulp concentrations. Experimental studies of the process of thickening the production of slurry from the current enrichment tailings have been carried out. It was found that the geometric dimensions of the thickener depend on the concentration of the solid phase in the transported mixture. It is concluded that the flow rate of the slurry and the head loss are functions of the rheological characteristics of the viscoplastic slurry and can be calculated from the derived calculated dependencies.

How to cite: Alexandrov V.I., Vatlina A.M., Makharatkin P.N. Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings // Journal of Mining Institute. 2023. Vol. 262 . p. 541-551. DOI: 10.31897/PMI.2022.68
Energy industry
  • Date submitted
    2022-08-05
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Feasibility study of using cogeneration plants at Kuzbass coal mines

Article preview

The paper considers the problem of reducing greenhouse gas emissions in the process of coal mining during the coal mine methane utilization in power supply systems. An algorithm to form recommendations for the implementation of CMM generation is presented. A simulation model for one of the Kuzbass coal mines was developed in the PowerFactory software application. The simulation model considers the uneven nature of the power consumption of mining equipment. As a result of modeling, daily power consumption profiles and voltage levels in the coal mine power supply system were determined before and after the implementation of the proposed measures. Based on the results, the technical and economic effects was estimated, which consisted in reducing the direct and indirect carbon footprint, electricity and capacity fees. It has been established that the cost of carbon dioxide emission quotas significantly affects the investment attractiveness of cogeneration projects. Based on the results, recommendations are given to stimulate the development of small generation in coal mines.

How to cite: Nepsha F.S., Voronin V.A., Liven A.S., Korneev A.S. Feasibility study of using cogeneration plants at Kuzbass coal mines // Journal of Mining Institute. 2023. Vol. 259 . p. 141-150. DOI: 10.31897/PMI.2023.2
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-07-05
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation

Article preview

A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.

How to cite: Hosseini A., Najafi M., Morshedy A.H. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation // Journal of Mining Institute. 2022. Vol. 258 . p. 1050-1060. DOI: 10.31897/PMI.2022.106
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-05
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines)

Article preview

It is shown that the creation of the variants of resource-saving systems for the development of long-column mining is one of the main directions for improving the technological schemes for mining operations in the mines of the Kuang Nin coal basin. They provide a reduction in coal losses in the inter-column pillars and the cost of maintaining preliminary workings fixed with anchorage. The implementation of these directions is difficult (and in some cases practically impossible) when tight rocks are lying over the coal seam, prone to significant hovering in the developed space. In the Quang Ninh basin, 9-10 % of the workings are anchored, the operational losses of coal reach 30 % or more; up to 50 % of the workings are re-anchored annually. It is concluded that the real conditions for reducing coal losses and the effective use of anchor support as the main support of reusable preliminary workings are created when implementing the idea put forward at the St. Petersburg Mining University: leaving the coal pillar of increased width between the reused mine working and the developed space and its subsequent development on the same line with the stoping face simultaneously with the reclamation of the reused mine working.

How to cite: Zubov V.P., Phuc L.Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines) // Journal of Mining Institute. 2022. Vol. 257 . p. 795-806. DOI: 10.31897/PMI.2022.72
Metallurgy and concentration
  • Date submitted
    2022-03-17
  • Date accepted
    2022-06-20
  • Date published
    2022-11-03

Assessment of collecting activity of physically sorbed reagents on the example of easily floatable coking coal sludge

Article preview

The article presents one of the new approaches to theoretical assessment of collecting ability of reagents. The efficiency of reagents-collectors with different chemical composition used for flotation of coking coals was studied. A comparative assessment of the flotation activity of kerosene, mineral oil, thermal gas oil, KETGOL and FLOTEK is given. The criteria of collecting activity of the above reagents-collectors for coal sludge flotation were specified. A correlation was established between the indicators of coal sludge flotation by the above reagents and their physical parameters. It is shown that the rate of spreading over water surface can characterize the flotation activity of reagents. Based on dependence of the collecting activity of a reagent on its rate of spreading along the “gas – liquid” interface and surface pressure, the main approaches to determining the structure and composition of molecules of an effective flotation collector can be determined. A new concept of the function performed by a physically sorbed collector in the elementary act of flotation and a criterion for the flotation activity of reagents used in coal sludge beneficiation are proposed. It is shown that the collector used in coal flotation, in addition to hydrophobizing the surface of the extracted particles, should reduce the induction time and remove the kinetic constraint on formation of a flotation aggregate.

How to cite: Kondratev S.A., Khamzina T.A. Assessment of collecting activity of physically sorbed reagents on the example of easily floatable coking coal sludge // Journal of Mining Institute. 2022. Vol. 256 . p. 549-559. DOI: 10.31897/PMI.2022.52
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-07
  • Date published
    2022-11-03

Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading

Article preview

One of the most reliable methods for assessing the physical and mechanical properties of rocks as a result of their destruction are laboratory tests using hard or servo-driven test presses. They allow to obtain reliable information about changes in these properties beyond the limit of compressive strength. The results of laboratory tests of rich sulfide ore samples are presented, which made it possible to obtain graphs of their extreme deformation. Both monolithic samples and samples with stress concentrators in the form of circular holes with a diameter of 3, 5 and 10 mm were tested. It was revealed that during the destruction of the samples, the modules of elasticity and deformation decrease by 1.5-2 times, and in the zone of residual strength – by 5-7 times.

How to cite: Gospodarikov A.P., Trofimov A.V., Kirkin A.P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading // Journal of Mining Institute. 2022. Vol. 256 . p. 539-548. DOI: 10.31897/PMI.2022.87
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-27
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Application of resonance functions in estimating the parameters of interwell zones

Article preview

It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.

How to cite: Batalov S.А., Andreev V.Е., Mukhametshin V.V., Lobankov V.М., Kuleshova L.S. Application of resonance functions in estimating the parameters of interwell zones // Journal of Mining Institute. 2022. Vol. 257 . p. 755-763. DOI: 10.31897/PMI.2022.85
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-19
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts

Article preview

The main volume of coal is mined underground using shearers. In modern shearers, auger actuators are mainly used, which are distinguished by the simplicity of design, manufacturability and reliability. However, in the process of separating coal from mass by cutting, the yield of fine grades is 40-50 % of the total production volume. Therefore, the search and development of technical solutions that provide an increase in the yield of large fractions in the process of coal mining with auger shearers is an urgent task. Traditionally, this problem is solved by increasing the thickness of the slices, which is achieved by installing cutters with a larger radial reach and increasing the shearer feed rate. An unconventional way to increase the cross section of slices by forming energy-efficient paired and group slices with mutual superposition of stress fields in the mass from the action of neighboring cutters is considered. The results of modeling the process of cutting coal confirm that an increase in the efficiency of destruction of the rock mass by the cutters of the auger executive bodies of the shearer can be achieved by a complex technical solution, including the formation of paired cuts and combined stress zones in the rock mass. As a result, the output of large fragments when cutting with paired cutters increases by 1.3-1.8 times compared with cutting with a single cutter.

How to cite: Gabov V.V., Xuan N.V., Zadkov D.A., Tho T.D. Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts // Journal of Mining Institute. 2022. Vol. 257 . p. 764-770. DOI: 10.31897/PMI.2022.66
Geology
  • Date submitted
    2022-02-24
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies

Article preview

Mineralogical, petrophysical and geochemical studies have been carried out to determine the sequence and formation conditions of uranium mineralization within the Litsa ore occurrence (Kola Region). Mineralogical studies show the following formation sequence of ore minerals: uraninite – sulfides – uranophane, coffinite, pitchblende. Two stages of uranium mineralization are distinguished: Th-U (1.85-1.75 Ga) and U (400-300 Ma). The distribution of physical properties of rocks in the area is consistent with the presence of two temporal stages in the formation of mineralization with different distribution and form of uranium occurrence in rocks. The factors that reduce rock anisotropy are the processes of migmatization and hydrothermal ore mineralization, which heal pores and cracks. Fluid inclusions in quartz studied by microthermometry and Raman spectroscopy contain gas, gas-liquid and aqueous inclusions of different salinity (1.7-18.4 wt.% NaCl-eq.). According to homogenization temperatures of inclusions in liquid phase, the temperature of the Paleoproterozoic and Paleozoic stages of uranium mineralization at the Litsa ore occurrence is ~ 300 and 200 °С, respectively. Correlations of the spatial distribution of elastic anisotropy index with an elevated radioactive background allow using this petrophysical feature as one of the prognostic criteria for uranium and complex uranium mineralization when carrying out uranium predictive work.

How to cite: Il’chenko V.L., Afanasieva E.N., Kaulina T.V., Lyalina L.M., Nitkina E.A., Mokrushina O.D. Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies // Journal of Mining Institute. 2022. Vol. 255 . p. 393-404. DOI: 10.31897/PMI.2022.44