Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths
- 1 — Ph.D., Dr.Sci. Director of the Institute of Special Scientific Projects Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 2 — Senior Researcher Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 3 — Postgraduate Student Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 4 — Ph.D. Associate Professor Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 5 — Ph.D. Head of the Laboratory Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 6 — Leading Engineer Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 7 — Postgraduate Student Empress Catherine II Saint Petersburg Mining University ▪ Orcid
Abstract
In order to study the mechanism of destruction of rocks of various genesis and the formation of fractured reservoirs at great depths, laboratory studies of rock samples in the loading conditions of comprehensive pressure with registration of acoustic emission (AE) and parameters of the process of changing the strength and deformation properties of samples were carried out. The spatial distributions of the hypocenters of AE events for each sample were investigated. By the nature of the distributions, the fracture geometry is described, then visually compared with the position of the formed macrofractures in the samples as a result of the tests. The time trends of the amplitude distribution b , set by the Guttenberg – Richter law, were calculated, which were compared with the loading curves and trends of the calculated AE activity. Based on the analysis of the AE process for three types of rocks – igneous (urtites), metamorphic (apatite-nepheline ores), and sedimentary (limestones) – parameterization of acoustic emission was carried out to determine the features of the deformation process and related dilatancy. As a result, three types of destruction of samples were identified, their geometry and changes in strength and seismic criteria were established.
References
- Lockner D.A., Byerlee J.D., Kuksenko V. et al. Chapter 1. Observations of Quasistatic Fault Growth from Acoustic Emissions / Fault Mechanics and Transport Properties of Rocks. Academic Press, 1992. P. 3-31. DOI: 10.1016/S0074-6142(08)62813-2
- Lockner D.A., Byerlee J.D., Kuksenko V. et al. Quasi-static fault growth and shear fracture energy in granite // Nature. 1991. Vol. 350. № 6313. P. 39-42. DOI: 10.1038/350039a0
- Kuksenko V., Tomilin N., Damaskinskaya E., Lockner D. A two-stage model of fracture of rocks // Pure and Applied Geophysics. 1996. Vol. 146. № 2. P. 253-263. DOI: 10.1007/BF00876492
- Prischepa O.M., Kireev S.B., Nefedov Yu.V. et al. Theoretical and methodological approaches to identifying deep accumulations of oil and gas in oil and gas basins of the Russian Federation // Frontiers in Earth Science. 2023. Vol. 11. № 1192051. DOI: 10.3389/feart.2023.1192051
- Egorov A.S., Prischepa O.M., Nefedov Y.V. et al. Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic // Journal of Marine Science and Engineering. 2021. Vol. 9. Iss. 3. № 258. DOI: 10.3390/jmse9030258
- Ильинов М.Д., Петров Д.Н., Карманский Д.А., Селихов А.А. Аспекты физического моделирования процессов структурных изменений образцов горных пород при термобарических условиях больших глубин // Горные науки и технологии. 2023. Т. 8. № 4. С. 290-302. DOI: 10.17073/2500-0632-2023-09-150
- Коршунов В.А., Павлович А.А., Бажуков А.А. Оценка сдвиговой прочности горных пород по трещинам на основе результатов испытаний образцов сферическими инденторами // Записки Горного института. 2023. Т. 262. С. 606-618. DOI: 10.31897/PMI.2023.16
- Verbilo P., Karasev M., Belyakov N., Iovlev G. Experimental and numerical research of the jointed rock mass anisotropy in three-dimensional stress field // The Mining-Geology-Petroleum Engineering Bulletin. 2022. Vol. 37. № 2. P. 109-122.DOI: 10.17794/rgn.2022.2.10
- Xiao-Ping Zhang, Louis Ngai Yuen Wong. Cracking Processes in Rock-Like Material Containing a Single Flaw Under Uniaxial Compression: A Numerical Study Based on Parallel Bonded-Particle Model Approach // Rock Mechanics and Rock Engineering. 2012. Vol. 45. Iss. 5. P. 711-737. DOI: 10.1007/s00603-011-0176-z
- Xiao-Ping Zhang, Louis Ngai Yuen Wong. Crack Initiation, Propagation and Coalescence in Rock-Like Material Containing Two Flaws: a Numerical Study Based on Bonded-Particle Model Approach // Rock Mechanics and Rock Engineering. 2013. Vol. 46. Iss. 5. P. 1001-1021. DOI: 10.1007/s00603-011-0176-z
- Ильинов М.Д., Карташов Ю.М., Карманский А.Т., Козлов В.А. Влияние нарушенности горных пород на их реологические свойства // Записки Горного института. 2010. Т. 185. С. 31-36.
- Ильинов М.Д., Карташов Ю.М. Ускоренный метод определения реологических свойств горных пород // Записки Горного института. 2011. Т. 190. С. 207-209.
- Davis R.O., Selvadurai A.P.S. Plasticity and Geomechanics. Cambridge University Press, 2002. 300 p. DOI: 10.1017/CBO9780511614958
- Куксенко В.С., Махмудов Х.В., Мансуров В.А. и др. Структурные изменения при деформации природных гетерогенных материалов // Физико-технические проблемы разработки полезных ископаемых. 2009. № 4. С. 55-59.
- Трушко В.Л., Протосеня А.Г. Перспективы развития геомеханики в условиях нового технологического уклада // Записки Горного института. 2019. Т. 236. С. 162-166. DOI: 10.31897/PMI.2019.2.162
- Грищенко А.И., Семенов А.С., Мельников Б.Е. Моделирование процессов деформирования и разрушения керна при его извлечении с больших глубин // Записки Горного института. 2021. Т. 248. С. 243-252. DOI: 10.31897/PMI.2021.2.8
- Рассказов И.Ю., Цирель С.В., Розанов А.О. и др. Использование данных сейсмоакустических наблюдений для определения характера развития очага разрушения породного массива // Физико-технические проблемы разработки полезных ископаемых. 2017. № 2. С. 29-37.
- Jie Li, Mingyang Wang, Kaiwen Xia et al. Time-dependent dilatancy for brittle rocks // Journal of Rock Mechanics and Geotechnical Engineering. 2017. Vol. 9. Iss. 6. P. 1054-1070. DOI: 10.1016/j.jrmge.2017.08.002
- LianYing Zhang, XianBiao Mao, AiHong Lu. Experimental study on the mechanical properties of rocks at high temperature // Science in China Series E: Technological Sciences. 2009. Vol. 52. Iss. 3. P. 641-646. DOI: 10.1007/s11431-009-0063-y
- Reches Z., Lockner D.A. Nucleation and growth of faults in brittle rocks // Journal of Geophysical Research: Solid Earth. 1994. Vol. 99. Iss. B9. P. 18159-18173. DOI: 10.1029/94JB00115
- Zang A., Wagner C., Stanchits S. et al. Fracture process zone in granite // Journal of Geophysical Research: Solid Earth. 2000. Vol. 105. Iss. B10. P. 23651-23661. DOI: 10.1029/2000JB900239
- Zang A., Wagner C.F., Dresen G. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure // Journal of Geophysical Research: Solid Earth. 1996. Vol. 101. Iss. B8. P. 17507-17521. DOI: 10.1029/96jb01189
- Baud P., Klein E., Wong T.-f. Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity // Journal of Structural Geology. 2004. Vol. 26. Iss. 4. P. 603-624. DOI: 10.1016/j.jsg.2003.09.002
- S.-H. Chang, C.-I. Lee. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission // International Journal of Rock Mechanics and Mining Sciences. 2004. Vol. 41. Iss. 7. P. 1069-1086. DOI: 10.1016/j.ijrmms.2004.04.006
- Карманский А.Т. Коллекторские свойства горных пород при изменении вида напряженного состояния // Записки Горного института. 2009. Т. 183. С. 289-292.
- Pollard D.D., Segall P. 8 – Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces / Fracture Mechanics of Rock. Academic Press, 1987. P. 277-349. DOI: 10.1016/B978-0-12-066266-1.50013-2
- Hofmann H., Babadagli T., Jeoung Seok Yoon et al. A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites // Engineering Fracture Mechanics. 2015. Vol. 147. P. 261-275. DOI: 10.1016/j.engfracmech.2015.09.008
- Пожиленко В.И., Гавриленко Б.В., Жиров Д.В., Жабин С.В. Геология рудных районов Мурманской области. Апатиты: Изд-во Кольского научного центра РАН, 2002. 359 с.
- Scholz C.H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes // Bulletin of the Seismological Society of America. 1968. Vol. 58. № 1. P. 399-415. DOI: 10.1785/BSSA0580010399
- Wyss M. Towards a Physical Understanding of the Earthquake Frequency Distribution // Geophysical Journal of the Royal Astronomical Society. 1973. Vol. 31. Iss. 4. P. 341-359. DOI: 10.1111/j.1365-246X.1973.tb06506.x
- Zuhair Hasan El-Isa. Frequency-Magnitude Distribution of Earthquakes / Earthquakes – Forecast, Prognosis and Earthquake Resistant Construction. IntechOpen, 2018. P. 87-107. DOI: 10.5772/intechopen.77294
- Zang A., Stanchits S., Dresen G. Acoustic Emission Controlled Triaxial Rock Fracture and Friction Tests / Proceedings of the International Conference on Structural Integrity and Fracture, 25-27 September 2002, Perth, Australia. A.A. Balkema Publishers, 2002. P. 289-296.
- Malén K., Bolín L. A Theoretical Estimate of Acoustic-Emission Stress Amplitudes // Physica Status Solidi (B). 1974. Vol. 61. № 2. P. 637-645. DOI: 10.1515/9783112502020-030
- Scholz C.H. Microfracturing and the inelastic deformation of rock in compression // Journal of Geophysical Research. 1968. Vol. 73. Iss. 4. P. 1417-1432. DOI: 10.1029/JB073i004p01417
- Griffith A.A. The Phenomena of Rupture and Flow in Solids // Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 1921. Vol. 221. Iss. 582-593. P. 163-198. DOI: 10.1098/rsta.1921.0006