-
Date submitted2024-03-20
-
Date accepted2024-11-07
-
Date published2025-02-27
Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation
The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values of pressure drawdown and changes in stress-strain properties depending on the area of mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.
-
Date submitted2023-06-25
-
Date accepted2024-11-07
-
Date published2025-02-25
Study of wormhole channel formation resulting from hydrochloric acid treatment in complex-type reservoirs using filtration and X-ray computed tomography methods
- Authors:
- Andrei A. Аbrosimov
The primary function of hydrochloric acid treatment (HAT) is to create the maximum number of high-conductivity channels in the near-wellbore zone of the reservoir to restore its permeability and enhance hydraulic connectivity between the undisturbed part of the formation and the well. The objective of this study is to physically model HAT on core samples from the Orenburg oil and gas condensate field and to research the impact of such treatment on the structure of the pore space of rocks related to complex-type reservoirs. The complexity of the rock's pore space and the low permeability of the formations are distinguishing features of the study object. For this reason, HAT is a widely applied method for production intensification, necessitating the verification of acid injection rates, where the success criterion is the formation of high-conductivity filtration channels (wormholes) in the near-wellbore zone. These channels significantly expand the drainage area of wells, thereby bringing additional reservoir sections into development. The study examined the characteristics of filtration channel development resulting from acid treatment. Their structure was characterized and analyzed using X-ray computed tomography. The complex study confirmed the accuracy of the selected injection rate and provided practical recommendations for enhancing the efficiency of HAT.
-
Date submitted2022-09-30
-
Date accepted2024-11-07
-
Date published2025-02-25
Carbon dioxide corrosion inhibitors: current state of research and development
Among the methods of corrosion control in the oil and gas production industry the leading place belongs to inhibitor protection, since there is no need for technological and technical changes in the existing equipment. The combination of high variability of inhibitor composition with changing conditions of its application and low capital investments makes it an indispensable reagent at oil and gas fields. The main classes of compounds used as active bases of carbonic acid corrosion inhibitors for the protection of oil and gas equipment are described. Classical organic active bases containing heteroatoms (oxygen, sulfur, nitrogen) are examined. Special attention was paid to alkylimidazolines and other nitrogen-containing compounds as the most frequently used as active bases of carbonic acid corrosion inhibitors in Russia and abroad. A wide range of possibilities to achieve the desired properties of corrosion inhibitors by varying the substitutes has been demonstrated. Nowadays, in addition to the traditional requirements for corrosion inhibitors, their safety for the environment is equally important. The information on prospective research and development aimed at improving the environmental characteristics of the reagents used is given. Plant extracts, synthetic and biological polymers involved in traditional corrosion inhibitors or used as new independent compounds are considered. It is shown that the effectiveness of corrosion inhibitors significantly depends on the pH of the medium, temperature, partial pressure of СО2, flow rate, and other factors.
-
Date submitted2023-06-21
-
Date accepted2023-10-25
-
Date published2024-08-26
Specific action of collector from phosphoric acid alkyl esters class in flotation of apatite-nepheline ores
Increasing amount of apatite-nepheline ores with complex mineral composition involved in processing, growing content of the associated minerals in ore which are similar in their floatability to apatite lead to the necessity of using highly selective collectors. Non-frothing flotation method gave a comparative assessment of floatability of pure minerals and demonstrated a high selectivity of the action of phosphoric acid esters in relation to apatite. The effect of four reagent modes differing in the number of selective synthetic collectors was studied using the example of flotation of an apatite-nepheline ore sample containing 17.27 % apatite and 40.18 % nepheline. Mineralogical analysis of crushed ore showed that it contained two apatite varieties – coarse-grained free and finer poikilitic as inclusions in rock-forming minerals. Free apatite opens and occurs as open grains even in coarse-grained (+0.16 mm) grades. Poikilitic apatite occurs as intergrowths with different minerals, mainly with nepheline and its alteration products (natrolite, spreustein, sodalite, etc.), and pyroxene. Optical microscopy demonstrated that a growing share of reagent from the phosphoric acid oxyethylated esters class in the composition of the collector mixture allows improving the quality of the produced apatite concentrates by reducing the number of apatite intergrowths with nepheline and pyroxenes in the concentrates. In the concentrate obtained in the most selective reagent mode, the intergrowths are characterized by a 50/50 and higher ratio in favour of apatite. Concentrates of lower quality comprised intergrowths with lower apatite content, to 20/80 or less.
-
Date submitted2024-04-10
-
Date accepted2024-06-03
-
Date published2024-07-19
Combined method for processing spent acid etching solution obtained during manufacturing of titanium products
Possessing high strength, low density and significant chemical resistance, titanium has found wide application in various fields of the national economy – the chemical industry, aviation and rocket technology, mechanical engineering, medicine, etc. The production of titanium products is hampered by a fairly strong oxide film covering its surface. Removal of the oxide film from the surface of titanium workpieces is carried out by etching in solutions of mineral acids of various compositions. A spent acid etching solution (SAES) is formed, containing titanium salt and the remainder of unreacted acids. Almost all etching solutions contain HF and one of the strong acids. This is H2SO4, HCl or HNO3. Thus, the SAES includes ions of titanium, fluorine or chlorine, orsulfate, or nitrate. SAES is quite toxic and must be diluted or cleaned several times before being discharged into a reservoir. Most of the methods used to extract impurities contained in SAES lead to a decrease in their content. As a result of such purification, there is a loss of substances contained in SAES in significant quantities and of interest for further use. The work presents experimental results obtained from the combined processing of SAES containing titanium fluoride, hydrofluoric and hydrochloric acids. At the first stage, SAES is treated with sodium hydroxide. The resulting titanium hydroxide precipitate is filtered off. At the second stage, the filtrate containing sodium fluoride and chloride is processed in a membrane electrolyzer. In this case, not only the extraction of sodium salts from the filtrate occurs, but also the production of sodium hydroxide and a mixture of hydrofluoric and hydrochloric acids. Sodium hydroxide can be used for processing SAES, and a mixture of acids for etching titanium workpieces.
-
Date submitted2024-04-11
-
Date accepted2024-06-03
-
Date published2024-07-04
Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals)
According to the results of the anti-rating of regions with extreme pollution of watercourses in the Sverdlovsk region, the largest number of polluted rivers has been recorded in recent years – more than a quarter of all high and extremely high pollution. One of the sources of pollution of natural water bodies in the Middle Urals are closed and flooded copper-pyrite mines, where acidic mine drainage continue to form and unload to the surface. Several of them have organized collection and a two-stage acidic drainage purification system, including neutralization with lime milk and settling in a clarifier pond. Despite the identical schemes, different indicators of pollutants are recorded during discharge into water bodies. The aim of the work is to evaluate the effectiveness of the applied acid mine drainage purification system and identify the parameters affecting the quality of treated mine water. Laboratory studies were performed using methods of flame emission spectrometry, flame atomic absorption, atomic absorption spectrometry, mass spectrometry with ionization in inductively coupled plasma, potentiometric, etc. It has been established that the existing mine drainage purification system at the Degtyarskii mine makes it possible to significantly reduce the concentrations of most toxic components of mine waters to almost standard values. At the Levikhinskii mine, the multiplicity of exceeding the maximum permissible concentrations reaches hundreds and thousands of times. To achieve a higher degree of purification, it is necessary that the duration of passive purification is sufficient for the reactant to interact with acidic waters. However, to ensure this possibility, it will require the creation of a cascade of ponds with an area of several thousand hectares. If the current two-stage system is quite effective for the Degtyarskii mine, then for Levikhinskii it is necessary to switch to the use of more modern systems, including three stages of purification.
-
Date submitted2024-05-06
-
Date accepted2024-06-14
-
Date published2024-07-04
Natural carbon matrices based on brown coal, humic acids and humine extracted from it for purification of aqueous solutions from low molecular weight organic impurities
Heterogeneous systems including natural carbon matrices in the solid phase and aqueous solutions of low molecular weight organic compounds with positive and negative variations from ideality in the liquid phase are considered. The technical characterization of the considered supramolecular ensembles on the basis of brown coal of the Kara-Keche deposit (Kyrgyzstan), humic acids and humine extracted from it is given. Functional analysis of the samples was carried out using FTIR spectroscopy. The morphology of the surface of the considered carbon matrices has been investigated, in different points of which the local microelement composition has been established. An X-ray phase analysis of Kara-Keche brown coal and humic acids and humine extracted from it was carried out. The isothermal adsorption of bipolar molecules of glycine and urea, neutral D-glucose from aqueous solutions on solid carbon sorbents has been studied. An assumption has been made about the adsorption of low molecular weight organic compounds from aqueous solutions on humine and Kara-Keche coal in irregularities and pores of the carbon matrix of sorbents, for humic acids – on surface reaction centers. Due to its developed pore structure and resistance to acids and alkalis, humine from Kara-Keche coal is recommended for the purification of industrial wastewater from low molecular weight organic ecotoxicants.
-
Date submitted2024-05-02
-
Date accepted2024-06-03
-
Date published2024-07-04
Iron ore tailings as a raw material for Fe-Al coagulant production
The paper presents the results of experimental research into the recovery of Fe-Al coagulant from iron ore tailings (IOTs). The variables investigated in the laboratory tests included sulphuric acid concentration, temperature, leaching time, solid/liquid phase ratio (S:L) and the presence of stirring. The experiment determined the composition of the coagulant and the solid residue after leaching. The maximum iron content in the solution after leaching was obtained using 40 % H2SO4 at a temperature of 100 °C (or with stirring at 75 °C) and a contact time of 60 minutes. In this case, the iron yield was at the level of 25 % of the total content in the iron ore tailings. Chemical analysis of the solution obtained after leaching showed Fe and Al sulphate contents of 11 and 2 % respectively. In the next step, the efficiency of the coagulant was evaluated on model solutions of colour. The experimental results showed that the coagulant obtained from the iron ore tailings can be used for wastewater treatment in a wide pH range from 4 to 12 pH units. The solid residue after leaching is a fine-grained powder rich in silica, which can potentially be used as an artificial raw material in the construction industry. The research carried out in this thesis has shown that the extraction of coagulants from iron ore tailings can be considered as a way to extend the production chain of iron ore mining and to minimise the amount of tailings to be stored in tailing ponds. The technical solution presented in this work allows to comprehensively solve the problem of environmental protection by creating new target products for wastewater treatment from IOTs.
-
Date submitted2024-04-25
-
Date accepted2024-06-13
-
Date published2024-07-11
Evaluation of the effectiveness of neutralization and purification of acidic waters from metals with ash when using alternative fuels from municipal waste
- Authors:
- Polina A. Kharko
- Aleksandr S. Danilov
The problem of pollution of natural water objects with heavy metals is extremely relevant for the areas where industrial enterprises are located. Unauthorized discharge of contaminated wastewater, inefficient operation of sewage treatment plants, as well as leakage of drainage waters from man-made massifs lead to changes in the hydrological system affecting living objects. The article studies the composition of ash from the combustion of alternative fuels from municipal waste, and also considers the possibility of using it to neutralize sulfuric acid drainage waters and extract metal ions (Cu, Cd, Fe, Mn, Zn) from them. It has been established that the efficiency of water purification from metals depends on the pH value achieved during the purification process. The pH value is regulated by the dose of the introduced ash, the contact time and depends on the initial concentration of metal ions and sulfates in the solution. Studies on the neutralization and purification of a model solution of sulfuric acid drainage waters of a tailings farm of known composition have shown that in order to achieve a pH of 8-9, optimal for precipitation of metal hydroxides Cu, Cd, Fe, Mn, Zn and Al washed out of ash, and water purification with an efficiency of 96.60 to 99.99 %, it is necessary to add 15 g/l of ash and stir the suspension continuously for 35 minutes. It was revealed that exposure to ash with sulfuric acid waters leads to the transition of water-soluble forms of metals into insoluble ones and their “cementation” with calcium sulfate. The amount of Zn and Fe ions washed out of the ash decreases by 82 and 77 %, Al, Cd, Cu, Mn – by 25 %. This reduces the toxicity of ash, which is proved by a decrease in the toxic multiplicity of dilution of the water extract by 14 times.
-
Date submitted2023-04-11
-
Date accepted2023-10-25
-
Date published2024-07-04
Acid mine water treatment using neutralizer with adsorbent material
One of the biggest issues in the mining sector is due to acid mine drainage, especially in those abandoned mining operations and active ones that fail to adequately control the quality of their water discharge. The removal degree of copper, iron, lead, and zinc dissolved metals in acid mine drainage was investigated by applying different proportions of mixtures based on neutralizing reagent hydrated lime at 67 % calcium oxide (CaO), with adsorbent material – natural sodium bentonite, compared to the application of neutralizing reagent without mixing, commonly used in the neutralization of acid mining drainage. The obtained results show that the removal degree of dissolved metals in acid mine drainage when treated with a mixture of neutralizing reagent and adsorbent material in a certain proportion, reaches discharge quality, complying with the environmental standard (Maximum Permissible Limit), at a lower pH than when neutralizing material is applied without mixing, registering a net decrease in the consumption unit of neutralizing agent express on 1 kg/m3 of acid mine drainage. Furthermore, the sludge produced in the treatment with a mixture of the neutralizing reagent with adsorbent material has better characteristics than common sludge without bentonite, since it is more suitable for use as cover material, reducing the surface infiltration degree of water into the applied deposit.
-
Date submitted2023-04-11
-
Date accepted2023-09-20
-
Date published2023-10-27
Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability
- Authors:
- Regina E. Dashko
- Angelina G. Karpenko
The Alexander Column as a compositional center of the architectural ensemble of Palace Square in Saint Petersburg, Russia, has always been a matter of concern for both the public and specialists due to progressive deterioration of its granite shaft caused by crack formation. The article examines previous studies related to the inspection and restoration of the column's shaft and other parts above ground level, as well as reasons for crack initiation and propagation in the column. An analysis was performed on the anomalies in the Fennoscandian Shield and the structural-tectonic conditions at the Montferrand quarry site, revealing the presence of faults and circular features within the studied area. The research considers N.Hast's measurements of excess tectonic stresses in anomaly zones (southeastern Finland), which acted horizontally and resulted in the development of tensile cracks within the granite massif and later in the column’s shaft after its installation. The most dangerous type of deformation for the Alexander Column is its tilt in the northeast direction, recorded in 1937 and 2000. The article analyzes the construction features of the column's foundations and additional underground elements, as well as soil and groundwater characteristics based on archival data. The contamination history of the underground space is taken into account, and an analogy-based method is used to assess the engineering-geological and hydrogeological conditions of the underground load-bearing structures within the placement zone of the Alexander Column and the New Hermitage buildings. The results of visual observations on the nature of deterioration and deformation of the pavement around the monument, as well as its pedestal, indicating the development of uneven settlement of the foundation, are presented. The article concludes with general recommendations for organizing and implementing comprehensive monitoring to forecast the deformation dynamics of the Alexander Column.
-
Date submitted2022-07-10
-
Date accepted2023-06-20
-
Date published2024-02-29
Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline
A mathematical model of the in-line control of the insulation resistance state for cathodically polarized main pipelines according to electrometry data is considered. The relevance of the work is caused by the opportunity to create in-line internal isolation defects indicators of the main pipelines for transported liquids that are good conductors and expand the functionality of monitoring and controlling cathodic protection systems of the main pipelines. Features of the mathematical model are: consideration of the electric conductivity of transported liquid influence on electric field distribution; consideration of the influence of external and internal insulating coating resistance; use of the electric field of an in-line diagnostic probe for quality control of internal insulation. Practical significance consists in the development of modeling methods for control subsystems of main pipeline protection against corrosion and the development of special mathematical and algorithmic support systems for monitoring and controlling the operating modes of the cathodic protection station of main pipelines.
-
Date submitted2022-10-23
-
Date accepted2023-02-13
-
Date published2023-12-25
Sorption purification of acid storage facility water from iron and titanium on organic polymeric materials
Obtaining and production of metals from natural raw materials causes a large amount of liquid, solid, and gaseous wastes of various hazard classes that have a negative impact on the environment. In the production of titanium dioxide from ilmenite concentrate, hydrolytic sulphuric acid is formed, which includes various metal cations, their main part is iron (III) and titanium (IV) cations. Hydrolytic acid waste is sent to acid storage facilities, which have a high environmental load. The article describes the technology of ion exchange wastewater treatment of acid storage facility from iron (III) and titanium (IV) cations, which form compounds with sulphate ions and components of organic waste in acidic environments. These compounds are subjected to dispersion and dust loss during the evaporation of a water technogenic facility, especially in summer season. Sorption of complex iron (III) cations [FeSO4]+ and titanyl cations TiO2+ from sulphuric acid solutions on cation exchange resins KU-2-8, Puromet MTS9580, and Puromet MTS9560 was studied. Sorption isotherms were obtained both for individual [FeSO4]+ and TiO2+ cations and in the joint presence. The values of the equilibrium constants at a temperature of 298 K and the changes in the Gibbs energy are estimated. The capacitive characteristics of the sorbent were determined for individual cations and in the joint presence.
-
Date submitted2022-11-04
-
Date accepted2023-03-03
-
Date published2023-04-25
Efficiency of acid sulphate soils reclamation in coal mining areas
During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.
-
Date submitted2022-10-19
-
Date accepted2023-02-14
-
Date published2023-04-25
Electric steelmaking dust as a raw material for coagulant production
The paper describes the issues associated with waste generated during steel production and processing, in particular the dust from electric arc furnaces (EAF). An effective solution for the disposal of such waste is its involvement in processing to obtain valuable products. This paper studies the physical and chemical properties of EAF dust produced during the smelting of metallized pellets and captured by the dust and gas cleaning system of the steel-smelting shop at the Oskol Electrometallurgical Combine, Belgorod Region. The results obtained in the study of the chemical and disperse compositions of dust, the microstructure of the surface made it possible to propose the use of dust as a raw material for coagulant production. The conditions of acid-thermal treatment of dust are determined, contributing to the partial dissolution of iron (II), (III), and aluminium compounds, which ensure the coagulation processes during wastewater treatment. Model solutions show high efficiency (> 95 %) of water treatment from heavy metal ions by modified EAF dust.
-
Date submitted2022-03-25
-
Date accepted2022-09-06
-
Date published2022-12-29
Autoclave modeling of corrosion processes occurring in a gas pipeline during transportation of an unprepared multiphase medium containing CO2
The problem of selecting a method for ensuring the reliability of the unprepared fluid transport facilities of an unprepared fluid in the presence of carbon dioxide is considered. Carbon dioxide corrosion is one of the dangerous types of damage to field and main pipelines. It has been shown that dynamic autoclave tests should be carried out during staged laboratory tests in order to determine the intensity of carbon dioxide corrosion and to select the optimal method of protection. A hypothesis about the imperfection of the existing generally accepted approaches to dynamic corrosion testing has been put forward and confirmed. A test procedure based on the use of an autoclave with an overhead stirrer, developed using elements of mathematical modeling, is proposed. The flows created in the autoclave provide corrosive wear of the sample surface similar to the internal surfaces elements wear of the pipelines piping of gas condensate wells. The autoclave makes it possible to simulate the effect of the organic phase on the flow rate and the nature of corrosion damage to the metal surface, as well as the effect of the stirrer rotation speed and, accordingly, the shear stress of the cross section on the corrosion rate in the presence/absence of a corrosion inhibitor. The given results of staged tests make it possible to judge the high efficiency of the developed test procedure.
-
Date submitted2022-05-10
-
Date accepted2022-09-06
-
Date published2022-11-03
Flotation separation of titanite concentrate from apatite-nepheline-titanite ores of anomalous zones of the Khibiny deposits
Titanium raw materials are widely used for the synthesis of various functional materials – sorbents of radionuclides and rare earth elements, various additives, filler pigments, etc. Since most of titanium concentrates are imported, in line with the import substitution program, production of titanite concentrate from apatite-nepheline ores of the Khibiny deposits is a promising trend for supplying national industry with titanium raw materials. The article presents the results of laboratory studies of flotation separation of titanite concentrate from apatite-nepheline-titanite ores extracted from the upper ore horizon of the Koashvinskoye deposit, where titanite-enriched ores are concentrated. Recovery of titanite concentrate was accomplished using two reagent modes – a mixture of alkyl hydroxamic and carboxylic acids with the addition of distilled tall oil and a mixture of tall oils with the addition of polyalkyl benzene sulfonic acids. The results of the research showed that the first flotation mode, which allows a selective recovery of titanite into the concentrate (titanite content in the concentrate was 93.5 %) is the most efficient. It was shown that flotation separation of titanite concentrate is preferable compared to the chemical method based on sulfuric acid leaching.
-
Date submitted2022-02-22
-
Date accepted2022-05-11
-
Date published2022-11-03
Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate
- Authors:
- Valentin A. Chanturiya
Based on a package of modern analysis methods, the influence of various acids and energy effects on the morphology, elemental composition, structural and chemical transformations of the mineral surface, and the efficiency of eudialyte concentrate leaching was studied. The mechanism and the optimal conditions and specific features of the destruction of eudialyte and rock minerals and the extraction of zirconium and REE under the influence of various acids, powerful nanosecond pulses, dielectric barrier discharge, electrochemical processing, mechanochemical activation and ultrasound were revealed. The mechanism of formation and the optimal conditions for the dispersion of silica gel, depending on the methods and parameters of energy effects, was theoretically and experimentally substantiated. A combined three-stage circuit of nitric acid leaching of eudialyte concentrate with ultrasonic treatment of the suspension, providing 97.1 % extraction of zirconium and 94.5 % REE, were scientifically substantiated and tested. The conditions for the selective deposition of zirconium and REE were theoretically and experimentally substantiated.
-
Date submitted2021-12-16
-
Date accepted2022-04-07
-
Date published2022-07-13
The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis
- Authors:
- Regina E. Dashko
- Georgiy A. Lokhmatikov
The article reviews the issues concerned with correctness of the engineering-geological and hydrogeological assessment of the Upper Kotlin clays, which serve as the foundation or host medium for facilities of various applications. It is claimed that the Upper Kotlin clays should be regarded as a fissured-block medium and, consequently, their assessment as an absolutely impermeablestratum should be totally excluded. Presence of a high-pressure Vendian aquifer in the lower part of the geological profile of the Vendian sediments causes inflow of these saline waters through the fissured clay strata, which promotes upheaval of tunnels as well as corrosion of their lining. The nature of the corrosion processes is defined not only by the chemical composition and physical and chemical features of these waters, but also by the biochemical factor, i.e. the availability of a rich microbial community. For the first time ever, the effect of saline water inflow into the Vendian complex on negative transformation of the clay blocks was studied. Experimental results revealed a decrease in the clay shear resistance caused by transformation of the structural bonds and microbial activity with the clay’s physical state being unchanged. Typification of the Upper Kotlin clay section has been performed for the region of Saint Petersburg in terms of the complexity of surface and underground building conditions. Fissuring of the bedclays, the possibility of confined groundwater inflow through the fissured strata and the consequent reduction of the block strength as well as the active corrosion of underground load-bearing structures must be taken into account in designing unique and typical surface and underground facilities and have to be incorporated into the normative documents.
-
Date submitted2021-04-30
-
Date accepted2021-11-30
-
Date published2021-12-27
Methodology for testing pipeline steels for resistance to grooving corrosion
- Authors:
- Viktor I. Bolobov
- Grigoriy G. Popov
The methodology for testing pipeline steels is suggested on the assumption that for the destruction of pipes in field oil pipelines by the mechanism of grooving corrosion the simultaneous fulfillment of such conditions as the occurrence of scratches on the lower generatrix of the pipe, eventually growing into a channel in the form of a groove, emulsion enrichment with oxygen, presence of pipe wall metal in a stressed state, presence of chlorine-ion in the oil-water emulsion is required. Tests are suggested to be carried out in 3 % aqueous solution of NaCl with continuous aeration by air on bent plates 150×15×3 mm, made of the analyzed steel, the middle part of which is under the action of residual stresses σ res , close to the level of maximum equivalent stresses σ eqv in the wall of the oil pipeline, with the presence of a cut on this part on the inner side of the plate as an initiator of additional mechanical stresses. Using the value of the modulus of normal elasticity of the analyzed steel, the degree of residual strain of the elastic-plastic body from this material, corresponding to the value σ res ≈ σ eqv is calculated, based on which the plates are bent to the required deflection angle, after which the cut is applied to them. After keeping the plates in the corrosive medium for each of them the increase in depth of the cut as a result of corrosion of the walls by the corrosive medium is analyzed, from which the rate of steel K by the mechanism of grooving corrosion is calculated taking into account the duration of tests. Corrosion rate values for two pipe steel grades determined by the suggested procedure are given. The comparison of K values obtained leads to the conclusion about the higher resistance to grooving corrosion of 09G2S steel.
-
Date submitted2021-06-24
-
Date accepted2021-10-18
-
Date published2021-12-16
Modeling the acid treatment of a polymictic reservoir
- Authors:
- Mars M. Khasanov
- Andrey А. Maltcev
Acid treatment of wells program is directly related to oil production efficiency. Investigations aimed at improving the efficiency of acid treatment in a terrigenous reservoir have mainly reviewed the changing and adapting the reagents to minimize bridging caused by acid-rock interaction. Under real conditions, application of new and unique acid compositions is a complex process from an organizational point of view and is therefore not widely used as compared with conventional compositions based on a mixture of hydrochloric and hydrofluoric acids. The paper is based on an approach to improve acid treatment efficiency through optimal design based on near-bottomhole zone treatment simulation. The aspects for practical application of the developed acid treatment simulator for terrigenous reservoirs based on a numerical model of hydrodynamic, physical and chemical processes in a porous medium on an unstructured PEBI-grid are described. The basic uncertainties of the model are identified and analyzed. Influence of empirical parameters within the system of equations on the calculation results and modeling of the mineralogical composition of rocks are considered. Algorithm for static modelling of near-bottomhole zone for acid treatment modelling is described, as well as an approach to optimizing the design of near-bottomhole zone treatment based on adapting the results of rock tests in the model. Using experimental data, the necessity of accounting for influence of secondary and tertiary reactions on the results of modeling physical and chemical processes during acid treatment of terrigenous reservoirs was proved. The distinctive features of West Siberian objects (polymictic reservoirs) with respect to the efficiency of near-bottomhole zone treatment with clay acid have been investigated. Series of calculations to determine the optimum volume of acid injection has been carried out. Experience of previously conducted measures under the considered conditions has been analyzed and recommendations to improve the efficiency of acid treatment have been given.
-
Date submitted2021-02-09
-
Date accepted2021-07-27
-
Date published2021-10-21
Development of an algorithm for determining the technological parameters of acid composition injection during treatment of the near-bottomhole zone, taking into account economic efficiency
Relevance of the research is due to the low proportion of successful hydrochloric acid treatments of near-bottomhole zones of carbonate reservoirs in the Perm region caused by insufficiently careful design and implementation of measures to stimulate oil production. Within the framework of this article, the development of a program is presented, which is based on an algorithm that allows determining the volume and rate of injection for an acid composition into a productive formation corresponding to the maximum economic efficiency during hydrochloric acid treatment. Essence of the proposed algorithm is to find the greatest profit from measures to increase oil recovery, depending on the cost of its implementation and income from additionally produced oil. Operation of the algorithm is carried out on the principle of enumerating the values of the volume and rate of injection for the acid composition and their fixation when the maximum difference between income and costs, corresponding to the given technological parameters of injection, is reached. The methodology is based on Dupuis's investigations on the filtration of fluids in the formation and the results of the experiments by Duckord and Lenormand on the study of changes in the additional filtration resistance in the near-well zone of the formation when it is treated with an acid composition. When analyzing and including these investigations into the algorithm, it is noted that the developed technique takes into account a large number of factors, including the lithological and mineralogical composition of rocks, technological parameters of the injection of a working agent and its properties, well design, filtration properties of the formation, properties of well products. The article provides an algorithm that can be implemented without difficulty using any programming language, for example, Pascal. Selection of the optimal values for the volume and rate of injection is presented in this paper, using the example of a production well at the Chaikinskoye oil field, located within the Perm region. Introduction of the developed algorithm into the practice of petroleum engineering will allow competent and effective approach to the design of hydrochloric acid treatments in carbonate reservoirs without a significant investment of time and additional funds.
-
Date submitted2021-04-15
-
Date accepted2021-07-27
-
Date published2021-10-21
Analysis of the application and impact of carbon dioxide media on the corrosion state of oil and gas facilities
Products of several currently operated production facilities (Bovanenkovskoye, Urengoyskoye oil and gas condensate fields, etc.) contain an increased amount of corrosive CO 2 . Effect of CO 2 on the corrosion of steel infrastructure facilities is determined by the conditions of its use. Carbon dioxide has a potentially wide range of applications at oil and gas facilities for solving technological problems (during production, transportation, storage, etc.). Each of the aggregate states of CO 2 (gas, liquid and supercritical) is used and affects the corrosion state of oil and gas facilities. Article analyzes the results of simulation tests and evaluates the corrosion effect of CO 2 on typical steels (carbon, low-alloy and alloyed) used at field facilities. The main factors influencing the intensity of carbonic acid corrosion processes in the main conditions of hydrocarbon production with CO 2 , storage and its use for various technological purposes are revealed. Development of carbon dioxide corrosion is accompanied and characterized by the localization of corrosion and the formation of defects (pitting, pits, etc.). Even alloyed steels are not always resistant in the presence of moisture and increased partial pressures of CO 2 , especially in the presence of additional factors of corrosive influence (temperature, aggressive impurities in gas, etc.).
-
Date submitted2021-03-10
-
Date accepted2021-05-21
-
Date published2021-09-20
Influence of heat treatment on the microstructure of steel coils of a heating tube furnace
- Authors:
- Vladimir Yu. Bazhin
- Bashar Issa
Transportation and refining of heavy metal-bearing oil are associated with the problems of localized destruction of metal structures and elements due to corrosion. In the process of equipment operation, it was revealed that premature failure of steel coils of heating tube furnaces at oil refineries and petrochemical plants was associated with insufficient strength and corrosion resistance of the steelwork. The study of the effect that structure and phase composition of 15KH5M-alloy steel elements of heating furnaces at oil refineries have on the corrosion properties, associated with mass loss and localized destructions in the process of heat treatment, allows to develop protective measures and determine heating modes with a rate-limiting step of oxidation. The rate of various corrosion types of 15KH5M steel is used as an indicator to assess the effectiveness of the applied modes of coil heat treatment in order to increase their corrosion resistance and improve their operational characteristics. Conducted experiments on heat treatment of certain steel coil sections allowed to determine rational heating modes for the studied coils, which made it possible to reduce their mass loss and increase corrosion resistance of working surfaces in the process of operation. Proposed heat treatment of steel coils at specified intervals of their operation in the tube furnaces creates conditions for their stable performance and affects the degree of industrial and environmental safety, as well as reduces material costs associated with the repair and replacement of individual assemblies and parts of tube furnaces.
-
Date submitted2021-01-21
-
Date accepted2021-02-24
-
Date published2021-04-26
Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district)
- Authors:
- Regina E. Dashko
- Ivan S. Romanov
The underground space of the Kupol deposit is analyzed as a multicomponent system – rocks, underground water, microbiota, gases (including the mine atmosphere) and supporting structures – metal support and shotcrete (as an additional type of barring) and also stowing materials. The complex of host rocks is highly disintegrated due to active tectonic and volcanic activity in the Cretaceous period. The thickness of sub-permafrost reaches 250-300 m. In 2014, they were found to contain cryopegs with abnormal mineralization and pH, which led to the destruction of metal supports and the caving formation. The underground waters of the sub-permafrost aquifer are chemically chloride-sulfate sodium-calcium with a mineralization of 3-5 g/dm 3 . According to microbiological analysis, they contain anaerobic and aerobic forms of microorganisms, including micromycetes, bacteria and actinomycetes. The activity of microorganisms is accompanied by the generation of hydrogen sulfide and carbon dioxide. The main types of corrosion – chemical (sulfate and carbon dioxide), electrochemical and biocorrosion are considered. The most hazardous is the biocorrosion associated with the active functioning of the microbiota. Forecasting and systematization of mining and geological processes are carried out taking into account the presence of two zones in depth – sub-permafrost and below the bottom of the sub-permafrost, where mining operations are currently underdone. The importance of assessing the underground space as a multicomponent environment in predicting mining and geological processes is shown, which can serve as the basis for creating and developing specialized monitoring complex in difficult engineering and geological conditions of the deposit under consideration.