Submit an Article
Become a reviewer
Vol 267
Pages:
433-443
Download volume:

Iron ore tailings as a raw material for Fe-Al coagulant production

Authors:
Vera A. Matveeva1
Maria A. Chukaeva2
Aleksandra I. Semenova3
About authors
  • 1 — Ph.D. Director of the Research Center Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 2 — Ph.D. Senior Researcher Empress Catherine II Saint Petersburg Mining University ▪ Orcid
  • 3 — Assistant Lecturer Montanuniversity ▪ Orcid
Date submitted:
2024-05-02
Date accepted:
2024-06-03
Date published:
2024-07-04

Abstract

The paper presents the results of experimental research into the recovery of Fe-Al coagulant from iron ore tailings (IOTs). The variables investigated in the laboratory tests included sulphuric acid concentration, temperature, leaching time, solid/liquid phase ratio (S:L) and the presence of stirring. The experiment determined the composition of the coagulant and the solid residue after leaching. The maximum iron content in the solution after leaching was obtained using 40 % H 2 SO 4 at a temperature of 100 °C (or with stirring at 75 °C) and a contact time of 60 minutes. In this case, the iron yield was at the level of 25 % of the total content in the iron ore tailings. Chemical analysis of the solution obtained after leaching showed Fe and Al sulphate contents of 11 and 2 % respectively. In the next step, the efficiency of the coagulant was evaluated on model solutions of colour. The experimental results showed that the coagulant obtained from the iron ore tailings can be used for wastewater treatment in a wide pH range from 4 to 12 pH units. The solid residue after leaching is a fine-grained powder rich in silica, which can potentially be used as an artificial raw material in the construction industry. The research carried out in this thesis has shown that the extraction of coagulants from iron ore tailings can be considered as a way to extend the production chain of iron ore mining and to minimise the amount of tailings to be stored in tailing ponds. The technical solution presented in this work allows to comprehensively solve the problem of environmental protection by creating new target products for wastewater treatment from IOTs.

Keywords:
coagulant waste disposal wastewater treatment iron ore tailings acid leaching sulfuric acid
Go to volume 267

References

  1. Petrova T.A., Rudzisha E., Alekseenko A.V. et al. Rehabilitation of Disturbed Lands with Industrial Wastewater Sludge // Minerals. 2022. Vol. 12. Iss. 3. № 376. DOI: 10.3390/min12030376
  2. Пашкевич М.А., Куликова Ю.А. Мониторинг и оценка негативного воздействия техногенных массивов минерально-сырьевого комплекса // Горный информационно-аналитический бюллетень. 2023. № 9-1. С. 231-247. DOI: 10.25018/0236_1493_2023_91_0_231
  3. Плохов А.С., Харько П.А., Пашкевич М.А. Исследование влияния хвостового хозяйства медно-колчеданного месторождения на поверхностные воды // Горный информационно-аналитический бюллетень. 2021. № 4. С. 57-68. DOI: 10.25018/0236_1493_2021_4_0_57
  4. Нуреев Р.Р., Пашкевич М.А., Харько П.А. Оценка воздействия отходов обогащения медных руд на поверхностные и подземные воды // Геология и геофизика Юга России. 2022. Т. 12. № 4. С. 169-179. DOI: 10.46698/VNC.2022.37.95.013
  5. Kuskov V.B., Lvov V.V., Yushina T.I. Increasing the recovery ratio of iron ores in the course of preparation and processing // CIS Iron and Steel Review. 2021. № 21. P. 4-8. DOI: 10.17580/cisisr.2021.01.01
  6. Pan Hu, Yihe Zhang, Yurui Zhou et al. Preparation and effectiveness of slow-release silicon fertilizer by sintering with iron ore tailings // Environmental Progress & Sustainable Energy. 2018. Vol. 37. Iss. 3. P. 1011-1019. DOI: 10.1002/ep.12776
  7. Ming Lei, Lin Tang, Huihui Du et al. Safety assessment and application of iron and manganese ore tailings for the remediation of As-contaminated soil // Process Safety and Environmental Protection. 2019. Vol. 125. P. 334-341. DOI: 10.1016/j.psep.2019.01.011
  8. Bing Rao, Likun Gao, Huixin Dai et al. An Efficient and Sustainable Approach for Preparing Silicon Fertilizer by Using Crystalline Silica from Ore // JOM. 2019. Vol. 71. Iss. 11. P. 3915-3922. DOI: 10.1007/s11837-019-03630-5
  9. Puiatti G.A., Elerate E.M., de Carvalho J.P. et al. Reuse of iron ore tailings as an efficient adsorbent to remove dyes from aqueous solution // Environmental Technology. 2024. Vol. 45. Iss. 12. P. 2308-2319. DOI: 10.1080/09593330.2021.2011427
  10. Almeida V.O., Schneider I.A.H. Production of a ferric chloride coagulant by leaching an iron ore tailing // Minerals Engineering. 2020. Vol. 156. № 106511. DOI: 10.1016/j.mineng.2020.106511
  11. Xiaoyu Han, Yaping Wang, Na Zhang et al. Facile synthesis of mesoporous silica derived from iron ore tailings for efficient adsorption of methylene blue // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. Vol. 617. № 126391. DOI: 10.1016/j.colsurfa.2021.126391
  12. Li Luo, Yimin Zhang, Shenxu Bao, Tiejun Chen. Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production // Advances in Materials Science and Engineering. 2016. Vol. 2016. № 1596047. DOI: 10.1155/2016/1596047
  13. Geng Yao, Qiang Wang, Zhiming Wang et al. Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement // Powder Technology. 2020. Vol. 360. P. 863-871. DOI: 10.1016/j.powtec.2019.11.002
  14. Xiaoyan Huang, Ravi Ranade, Victor C. Li. Feasibility Study of Developing Green ECC Using Iron Ore Tailings Powder as Cement Replacement // Journal of Materials in Civil Engineering. 2013. Vol. 25. Iss. 7. P. 923-931. DOI: 10.1061/(ASCE)MT.1943-5533.0000674
  15. Jiangshan Zhao, Kun Ni, Youpo Su, Yunxing Shi. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties // Construction and Building Materials. 2021. Vol. 286. № 122968. DOI: 10.1016/j.conbuildmat.2021.122968
  16. Li Gong, Xuelei Gong, Ying Liang et al. Experimental Study and Microscopic Analysis on Frost Resistance of Iron Ore Tailings Recycled Aggregate Concrete // Advances in Materials Science and Engineering. 2022. Vol. 2022. № 8932229. DOI: 10.1155/2022/8932229
  17. Xingdong Lv, Yuqiang Lin, Xia Chen et al. Environmental impact, durability performance, and interfacial transition zone of iron ore tailings utilized as dam concrete aggregates // Journal of Cleaner Production. 2021. Vol. 292. № 126068. DOI: 10.1016/j.jclepro.2021.126068
  18. Hongjian Lu, Chongchong Qi, Qiusong Chen et al. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits // Journal of Cleaner Production. 2018. Vol. 188. P. 601-612. DOI: 10.1016/j.jclepro.2018.04.041
  19. Daiqiang Deng, Guodong Cao, Youxuan Zhang. Experimental Study on the Fine Iron Ore Tailing Containing Gypsum as Backfill Material // Advances in Materials Science and Engineering. 2021. Vol. 2021. № 5576768. DOI: 10.1155/2021/5576768
  20. Barati S., Shourijeh P.T., Samani N., Asadi S. Stabilization of iron ore tailings with cement and bentonite: a case study on Golgohar mine // Bulletin of Engineering Geology and the Environment. 2020. Vol. 79. Iss. 8. P. 4151-4166. DOI: 10.1007/s10064-020-01843-6
  21. Apaza Apaza F.R., Guimarães Rodrigues A.C., Vivoni A.M., Schroder R. Evaluation of the performance of iron ore waste as potential recycled aggregate for micro-surfacing type cold asphalt mixtures // Construction and Building Materials. 2021. Vol. 266. Part B. № 121020. DOI: 10.1016/j.conbuildmat.2020.121020
  22. Ziyao Wei, Yanshun Jia, Shaoquan Wang et al. Utilization of iron ore tailing as an alternative mineral filler in asphalt mastic: High-temperature performance and environmental aspects // Journal of Cleaner Production. 2022. Vol. 335. № 130318. DOI: 10.1016/j.jclepro.2021.130318
  23. Зубкова О.С., Алексеева А.И., Залилова М.М. Исследования совместного применения углеродсодержащих и алюминийсодержащих соединений для очистки сточных вод // Известия высших учебных заведений. Серия «Химия и химическая технология». 2020. Т. 63. Вып. 4. С. 86-91 (in English). DOI: 10.6060/ivkkt.20206304.6131
  24. Sahu O.P., Chaudhari P.K. Review on Chemical treatment of Industrial Waste Water // Journal of Applied Sciences and Environmental Management. 2013. Vol. 17. № 2. P. 241-257. DOI: 10.4314/jasem.v17i2.8
  25. Narasimhaiah J., Venkatesh S., Suresh S.B., Annapurna B.P. Study on Substitution of Iron Ore Tailings as Fine Aggregates in Concrete // Gradiva Review Journal. 2021. Vol. 7. Iss. 8. P. 76-89. DOI: 10.37897.GRJ.2021.V7I8.21.297
  26. Thejas H.K., Hossiney N. Alkali-activated bricks made with mining waste iron ore tailings // Case Studies in Construction Materials. 2022. Vol. 16. № e00973. DOI: 10.1016/j.cscm.2022.e00973
  27. Changquan Zhang, Suqin Li. Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method // Journal of Material Cycles and Waste Management. 2018. Vol. 20. Iss. 3. P. 1605-1614. DOI: 10.1007/s10163-018-0724-7
  28. Свергузова С.В., Сапронова Ж.А., Зубкова О.С. и др. Пыль электросталеплавильного производства как сырье для получения коагулянта // Записки Горного института. 2023. Т. 260. С. 279-288. DOI: 10.31897/PMI.2023.23
  29. Shuo Yang, Wang Li, Hongjie Zhang et al. Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor // Separation and Purification Technology. 2019. Vol. 209. P. 238-245. DOI: 10.1016/J.SEPPUR.2018.07.049
  30. Sahu J.N., Kapelyushin Y., Mishra D.P. et al. Utilization of ferrous slags as coagulants, filters, adsorbents, neutralizers/stabilizers, catalysts, additives, and bed materials for water and wastewater treatment: A review // Chemosphere. 2023. Vol. 325. № 138201. DOI: 10.1016/j.chemosphere.2023.138201
  31. Danilov A.S., Matveeva V.A., Korelskiy D.S., Horttanainen M. Backfill of a Mined-Out Gold Ore Deposit with the Cemented Rubber-Cord and Waste Rock Paste: Environmental Changes in Aqueous Media // Journal of Ecological Engineering. 2021. Vol. 22. Iss. 7. P. 190-203. DOI: 10.12911/22998993/138870
  32. Pashkevich M.A., Petrova T.A. Recyclability of Ore Beneficiation Wastes at the Lomonosov Deposit // Journal of Ecological Engineering. 2019. Vol. 20. Iss. 2. P. 27-33. DOI: 10.12911/22998993/94919
  33. Pharoe B.K., Evdokimov A.N., Gembitskaya I.M., Bushuyev Y.Y. Mineralogy, geochemistry and genesis of the post-Gondwana supergene manganese deposit of the Carletonville-Ventersdorp area, North West Province, South Africa // Ore Geology Reviews. 2020. Vol. 120. № 103372. DOI: 10.1016/j.oregeorev.2020.103372
  34. Lei Tao, Langlang Wang, Kanghuai Yang et al. Leaching of iron from copper tailings by sulfuric acid: behavior, kinetics and mechanism // RSC Advances. 2021. Vol. 11. Iss. 10. P. 5741-5752. DOI: 10.1039/D0RA08865J
  35. Gongyue Dong, Guangyan Tian, Linlin Gong et al. Mesoporous zinc silicate composites derived from iron ore tailings for highly efficient dye removal: Structure and morphology evolution // Microporous and Mesoporous Materials. 2020. Vol. 305. № 110352. DOI: 10.1016/j.micromeso.2020.110352
  36. Патент № 2818198 РФ. Способ получения коагулянта / В.А.Матвеева, А.И.Семенова, М.А.Чукаева, Ю.Д.Смирнов. Опубл. 25.04.2024. Бюл. № 12.
  37. Chuansheng Xiong, Weihua Li, Linhua Jiang et al. Use of grounded iron ore tailings (GIOTs) and BaCO3 to improve sulfate resistance of pastes // Construction and Building Materials. 2017. Vol. 150. P. 66-76. DOI: 10.1016/j.conbuildmat.2017.05.209
  38. Zhong-xi Tian, Zeng-hui Zhao, Chun-quan Dai, Shu-jie Liu. Experimental Study on the Properties of Concrete Mixed with Iron Ore Tailings // Advances in Materials Science and Engineering. 2016. Vol. 2016. № 8606505. DOI: 10.1155/2016/8606505
  39. Ali Umara Shettima, Yusof Ahmad, Mohd Warid Hussin et al. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand // E3S Web of Conferences. 2018. Vol. 34. 9 p. DOI: 10.1051/e3sconf/20183401003

Similar articles

Comprehensive utilization of urban wastewater sludge with production of technogenic soil
2024 Marina V. Bykova, Dmitrii M. Malyukhin, Dmitrii O. Nagornov, Arina A. Duka
Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems
2024 Ivan P. Sverchkov, Vladimir G. Povarov
Acid mine water treatment using neutralizer with adsorbent material
2024 Pablo Espinoza Tumialán, Nelida Tantavilca Martinez, Clara Barreto Hinostroza, Del Piero R. Arana Ruedas
Rationale for a possibility of using humic preparations production waste for wastewater purification from metals (Cd2+, Zn2+, Mg2+, Cu2+) aimed at developing efficient measures on environmental rehabilitation
2024 Natalya Yu. Antoninova, Artem V. Sobenin, Albert I. Usmanov, Aleksey A. Gorbunov
Preparation and use of complex titanium-containing coagulant from quartz-leucoxene concentrate
2024 Evgeniy N. Kuzin
Organotin pollutants in emerging coastal-marine sediments of the Kaliningrad shelf, Baltic Sea
2024 Zoya A. Zhakovskaya, Galina I. Kukhareva, Polina V. Bash, Daria V. Ryabchuk, Alexander Yu. Sergeev