Submit an Article
Become a reviewer

Search articles for by keywords:
rheological parameters

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-12-15
  • Date accepted
    2024-06-13
  • Date published
    2025-02-25

Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation

Article preview

The results of the study of the functioning of the developed thickening equipment as part of the stowing complex for the formation of a flow of high-concentration hydromixture are presented. To explain the operation of the hydrotransport system of the stowing complex, equipped with a thickener of the developed design, its basic diagram is presented. A mathematical model has been created that describes the mechanism of inertial sedimentation of a solid component of a hydraulic mixture in a working chamber equipped with hydrodynamic profiles. Interaction with the profile leads to flow stratification due to a change in the trajectory of movement and a decrease in speed. The interval of rational velocity of primary pulp entering the input of the working chamber of the inertial thickener is substantiated. The synthesis of solutions of the thickening process model is performed in the COMSOL Multiphysics and Ansys Fluent programs. This made it possible to eliminate physical contradictions in the operation of the equipment and justify the overall dimensions of its main elements, ensuring the implementation of the mechanism of inertial sedimentation of the slurry. It was found that the concentration of the thickened flow at the outlet branch pipe of the thickener working chamber is determined by the level of the primary hydraulic fluid velocity, the characteristic length of the section of interaction with the deflecting profile, and the ratio of the flow and attack angles. A nomogram of the dynamics of the change in the hydraulic fluid concentration in the section of the outlet branch pipe depending on the ratios of the overall dimensions of the deflecting profile of the working chamber was compiled. The results of the study allowed formulating recommendations for selecting the dimensions of the thickener's deflecting hydrodynamic profile to form a flow of hydraulic mixture with a concentration of about 50 % by weight. The developed equipment can be used in a stowage complex and will increase the range of supply of the stowage mixture. This is due to the fact that a flow of primary slurry with a low concentration, due to lower pressure losses, can be moved in a pipeline system over a greater distance than a flow with a high filler content. The use of a thickener at the final stage of transportation is intended to increase the concentration of the hydraulic mixture immediately before production.

How to cite: Volchikhina A.A., Vasilyeva M.A. Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation // Journal of Mining Institute. 2025. Vol. 271 . p. 168-180. EDN MDHQZT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-29
  • Date accepted
    2024-11-07
  • Date published
    2025-02-26

Well killing with absorption control

Article preview

The development of new fields with low-permeability reservoirs required the introduction of new production technologies, of which the most significant for well killing and underground repair were multi-ton hydraulic fracturing, the simultaneous operation of two or three development sites by one well grid, and an increase in the rate of fluid extraction. These global decisions in field development have led to the need to search for new effective materials and technologies for well killing. The article is devoted to the analysis of problems associated with the process of killing production wells in fields characterized by increased fracturing, both natural and artificial (due to hydraulic fracturing), with reduced reservoir pressure and a high gas factor. The relevance of the analysis is due to the increase in the number of development sites where complications arise when wells are killed. Particular attention is paid to technical solutions aimed at preserving the filtration and capacity properties of the bottomhole formation zone, preventing the absorption of process fluid, and blocking the manifestation of gas. The classification of block-packs used in killing is given, based on the nature of the process fluid. Suspension thickened water-salt solutions are considered, forming a waterproof crust on the surface of the rock, which prevents the penetration of water and aqueous solutions into the formation. This approach ensures the safety and efficiency of killing operations, especially when working with formations in which maintaining water saturation and preventing the ingress of the water phase are of critical importance. Modern trends in the development of technology are revealed, and promising areas for further improvement of well killing with absorption control are outlined.

How to cite: Saduakasov D.S., Zholbasarova A.T., Bayamirova R.U., Togasheva A.R., Tabylganov M.T., Sarbopeeva M.D., Kasanova A.G., Gusakov V.N., Telin A.G. Well killing with absorption control // Journal of Mining Institute. 2025. p. EDN SBXUTZ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-28
  • Date accepted
    2024-11-07
  • Date published
    2024-12-25

Methods of intensification of pipeline transportation of hydraulic mixtures when backfilling mined-out spaces

Article preview

The paper presents an analysis of the advantages and limitations of additional measures to intensify the transportation of the backfill hydraulic mixture flow. The results of the analysis of the conditions for using pumping equipment to move flows with different rheological properties are shown. Generalizations of the methods for influencing the internal resistance of backfill hydraulic mixtures by means of mechanical activation, as well as increasing fluidity due to the use of chemical additives are given. The article presents the results of studies confirming the feasibility of using pipes with polymer lining, which has proven its efficiency in pumping flows of hydraulic mixtures with different filler concentrations. An analytical model of hydraulic mixture movement in the pipeline of the stowage complex has been developed. The trends in pressure change required to ensure the movement of hydraulic mixture in pipelines of different diameters are exponential, provided that the flow properties are constant. The effect of particle size on the motion mode of the formed heterogeneous flow, as well as on the distribution of flow density over the cross-section, characterizing the stratification and change in the rheological properties of the backfill hydraulic mixture, is assessed. An analytical model of centralized migration of the dispersed phase of the hydraulic mixture flow is formulated, describing the effect of turbulent mixing of the flow on the behavior of solid particles. An assessment of the secondary dispersion of the solid fraction of the hydraulic mixture, which causes a change in the consistency of the flow, was performed. The studies of the influence of the coefficient of consistency of the flow revealed that overgrinding of the fractions of the filler of the hydraulic mixture contributes to an increase in the required pressure in the pipeline system.

How to cite: Vasilyeva M.A., Golik V.I., Zelentsova A.A. Methods of intensification of pipeline transportation of hydraulic mixtures when backfilling mined-out spaces // Journal of Mining Institute. 2024. p. EDN TJNVLR
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-12-27
  • Date published
    2024-04-25

Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure

Article preview

The selection of efficient drilling and blasting technology to achieve the required particle size distribution of blasted rock mass and reduce ore dilution is directly related to the accurate definition of rock mass properties. The zoning of the rock massif by its hardness, drillability and blastability does not consider the variability of the geological structure of the block for blasting, resulting in an overestimated specific consumption of explosives. The decision of this task is particularly urgent for enterprises developing deposits with a high degree of variability of geological structure, for example, at alluvial deposits. Explosives overconsumption causes non-optimal granulometric composition of the blasted rock mass for the given conditions and mining technology. It is required to define physical and mechanical properties of rocks at deposits with complex geological structure at each block prepared for blasting. The correlation between the physical and mechanical properties of these rocks and drilling parameters should be used for calculation. The relation determined by the developed method was verified in industrial conditions, and the granulometric composition of the blasted rock mass was measured by an indirect method based on excavator productivity. The results demonstrated an increase in excavation productivity, thus indicating the accuracy of given approach to the task of identifying the rocks of the blasted block.

How to cite: Vinogradov Y.I., Khokhlov S.V., Zigangirov R.R., Miftakhov A.A., Suvorov Y.I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure // Journal of Mining Institute. 2024. Vol. 266 . p. 231-245. EDN RUUFNM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-01-21
  • Date accepted
    2023-09-20
  • Date published
    2023-12-25

Adaptation of transient well test results

Article preview

Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.

How to cite: Martyushev D.A., Ponomareva I.N., Shen W. Adaptation of transient well test results // Journal of Mining Institute. 2023. Vol. 264 . p. 919-925. EDN VHGTUT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-15
  • Date accepted
    2022-09-12
  • Date published
    2023-08-28

Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings

Article preview

The issue of the influence of the concentration of the solid phase on the reduction of energy costs and specific energy consumption during pulp transportation is considered. The procedure for preparing slurry from the current enrichment tailings is shown. A scheme is given and the operation of a hydroficated unit for thickening and hydraulic transport of backfill mixtures is described. A diagram of the movement of solid particles in one of the units of the complex – a lamellar thickener is shown. The summary table shows the main design parameters and characteristics of the lamellar thickener. A general view of the laboratory setup used for experimental studies with slurry at various concentrations is given. An example of calculating productivity, density and specific load is presented. The dependence of the shear stress on the velocity gradient was determined for various pulp concentrations. Experimental studies of the process of thickening the production of slurry from the current enrichment tailings have been carried out. It was found that the geometric dimensions of the thickener depend on the concentration of the solid phase in the transported mixture. It is concluded that the flow rate of the slurry and the head loss are functions of the rheological characteristics of the viscoplastic slurry and can be calculated from the derived calculated dependencies.

How to cite: Alexandrov V.I., Vatlina A.M., Makharatkin P.N. Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings // Journal of Mining Institute. 2023. Vol. 262 . p. 541-551. DOI: 10.31897/PMI.2022.68
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-15
  • Date published
    2022-12-29

Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well

Article preview

Modern drilling fluids are non-linear viscous media with an initial shear stress. In classical scientific works on hydromechanical modeling of drilling fluids motion in pipes and annular channels the Shvedov – Bingham approximation and Ostwald – de Waale power-law model were used, which did not fully account for behavior of technological fluids in a wide range of shear rates. This article presents a numerical solution for a mathematical model of drilling fluid motion of the three-parameter Herschel – Bulkley rheological model in the annular space of the well. The Herschel – Bulkley model in the rheological equation takes into account the presence of initial shear stress and a tendency for viscosity to change with shear rate, which distinguishes it from the Ostwald – de Waale and Shvedov – Bingham models. The target function in solving the equation of motion is the velocity distribution in the radial direction of the upward flow of the flushing fluid. The analysis of obtained solution is based on the theory of velocity profile influence on quality of cuttings removal during wellbore cleaning. Due to peculiarities of mathematical statement of the task, which supposes necessity of differential equation of motion solution, Wolfram Mathematica computational software has been used as a calculation tool. The analysis of numerical solution allowed to draw conclusions about the possibility of its application in evaluation of velocity profile when drilling fluid moves in annular space of the well. The possibility for application of modified excess coefficient as a relative quantitative parameter for evaluation of velocity profile uniformity was substantiated.

How to cite: Nikitin V.I. Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well // Journal of Mining Institute. 2022. Vol. 258 . p. 964-975. DOI: 10.31897/PMI.2022.93
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-01
  • Date accepted
    2022-05-25
  • Date published
    2022-12-29

Study on the rheological properties of barite-free drilling mud with high density

Article preview

Improved drilling and reservoir penetration efficiency is directly related to the quality of the drilling mud used. The right choice of mud type and its components will preserve formation productivity, stability of the well walls and reduce the probability of other complications. Oil and gas operators use barite, less often siderite or hematite weighting agent as a weighting component in the composition of drilling muds for the conditions of increased pressure. But the use of these additives for the penetration of the productive formation leads to the reduction of filtration characteristics of the reservoir, as it is almost impossible to remove them from the pore channels. Therefore, barite-free drilling mud of increased density based on formic acid salts with the addition of carbonate weighting agent as an acid-soluble bridging agent is proposed. The results of experimental investigations on rheological parameters of barite-free solutions are given and the obtained data are analyzed. Based on the comparison of results it is recommended to use high-density drilling mud on the basis of formic acid salts (sodium and potassium formate) and with the addition of partially hydrolyzed polyacrylamide with molecular mass of 27 million.

How to cite: Leusheva E.L., Alikhanov N.T., Brovkina N.N. Study on the rheological properties of barite-free drilling mud with high density // Journal of Mining Institute. 2022. Vol. 258 . p. 976-985. DOI: 10.31897/PMI.2022.38
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-31
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field

Article preview

Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.

How to cite: Kochnev A.A., Kozyrev N.D., Krivoshchekov S.N. Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field // Journal of Mining Institute. 2022. Vol. 258 . p. 1026-1037. DOI: 10.31897/PMI.2022.102
Metallurgy and concentration
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Morphometric parameters of sulphide ores as a basis for selective ore dressing

Article preview

To assess the possibility of selective disintegration and reduction of overgrinding of hard-to-reproduce ores, optical microscopic and X-ray microtomographic studies were carried out and quantitative characteristics of morphological parameters of disseminated and rich cuprous ore samples from Norilsk-type Oktyabrsky deposit were identified. Among quantitative morphological parameters the most informative are area, perimeter, edge roughness, sphericity, elongation and average grain spacing for disseminated copper-nickel ores; area, perimeter, edge roughness and elongation for rich cuprous ores. The studied parameters are characterized by increased values and dispersion in ore zones, which is especially important for fine-grained ores, which are difficult to diagnose by optical methods. Three-dimensional modelling of the internal structure of sulphide mineralisation samples was carried out using computed X-ray microtomography, which allows observation of quantitative parameters of grains, aggregates and their distribution in the total rock volume and interrelationship with each other. The evaluation of rock pore space by computer microtomography made it possible to compare the results obtained with the strength characteristics of rocks and ores, including those on different types of crushers. The obtained quantitative characteristics of structural-textural parameters and analysis of grain size distribution of ore minerals allow us to evaluate the possibility of applying selective crushing at various stages of ore preparation

How to cite: Duryagina A.M., Talovina I.V., Lieberwirth H., Ilalova R.K. Morphometric parameters of sulphide ores as a basis for selective ore dressing // Journal of Mining Institute. 2022. Vol. 256 . p. 527-538. DOI: 10.31897/PMI.2022.76
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-27
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Application of resonance functions in estimating the parameters of interwell zones

Article preview

It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.

How to cite: Batalov S.А., Andreev V.Е., Mukhametshin V.V., Lobankov V.М., Kuleshova L.S. Application of resonance functions in estimating the parameters of interwell zones // Journal of Mining Institute. 2022. Vol. 257 . p. 755-763. DOI: 10.31897/PMI.2022.85
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-09-17
  • Date accepted
    2022-04-07
  • Date published
    2022-12-29

Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover

Article preview

Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.

How to cite: Mardashov D.V., Bondarenko А.V., Raupov I.R. Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover // Journal of Mining Institute. 2022. Vol. 258 . p. 881-894. DOI: 10.31897/PMI.2022.16
Geoecology and occupational health and safety
  • Date submitted
    2021-04-27
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Regularities of electrochemical cleaning of oil-contaminated soils

Article preview

Electrochemical cleaning of oil-contaminated soils is a promising area of environmental safety, as it can be easily organized even in locations remote from settlements. For this purpose, a power source and a system of electrodes are necessary as equipment. It is possible to use an electric generator if there are no power supply lines nearby. The material of electrodes affects the features of redox processes, which can affect the energy consumption and the degree of soil cleansing from oil or oil products. Therefore, the correct choice of electrode materials is one of the important tasks in the field of engineering electrochemical methods of purification. Changes in the main parameters (humidity, temperature, degree of acidity) in an oil-contaminated model soil, similar in composition to one of the oil fields, were investigated. Measurements of parameters when using graphite and metal electrodes were carried out at several fixed sections of the interelectrode space depending on the treatment time. The established patterns of parameter changes in the purification of oil-contaminated soils allow us to draw conclusions about the stages of the electrochemical process, its speed, and energy efficiency. The results obtained form a basis for designing industrial facilities for soil treatment.

How to cite: Shulaev N.S., Pryanichnikova V.V., Kadyrov R.R. Regularities of electrochemical cleaning of oil-contaminated soils // Journal of Mining Institute. 2021. Vol. 252 . p. 937-946. DOI: 10.31897/PMI.2021.6.15
Oil and gas
  • Date submitted
    2021-02-28
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation

Article preview

One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.

How to cite: Nikolaev A.K., Zaripova N.А. Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation // Journal of Mining Institute. 2021. Vol. 252 . p. 885-895. DOI: 10.31897/PMI.2021.6.10
Mining
  • Date submitted
    2020-12-16
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Features of the thermal regime formation in the downcast shafts in the cold period of the year

Article preview

In the cold period of the year, to ensure the required thermal regime in underground mine workings, the air supplied to the mine is heated using air handling systems. In future, the thermodynamic state of the prepared air flow when it is lowered along the mine shaft changes due to the influence of a number of factors. At the same time, the processes of heat and mass exchange between the incoming air and its environment are of particular interest. These processes directly depend on the initial parameters of the heated air, the downcast shaft depth and the presence of water flows into the mine shaft. Based on the obtained experimental data and theoretical studies, the analysis of the influence of various heat and mass transfer factors on the formation of microclimatic parameters of air in the downcast shafts of the Norilsk industrial district mines is carried out. It is shown that in the presence of external water flows from the flooded rocks behind the shaft lining, the microclimatic parameters of the air in the shaft are determined by the heat transfer from the incoming air flow to the underground water flowing down the downcast shaft lining. The research results made it possible to describe and explain the effect of lowering the air temperature entering the underground workings of deep mines

How to cite: Zaitsev A.V., Semin M.A., Parshakov O.S. Features of the thermal regime formation in the downcast shafts in the cold period of the year // Journal of Mining Institute. 2021. Vol. 250 . p. 562-568. DOI: 10.31897/PMI.2021.4.9
Mining
  • Date submitted
    2021-01-25
  • Date accepted
    2021-02-22
  • Date published
    2021-04-26

Conducting industrial explosions near gas pipelines

Article preview

The problem to ensure the safety of objects which are in the area of blasting operations, ensuring the destruction of hard rocks, remains relevant. The article presents the results of a large-scale experiment to determine the safe conditions for conducting drilling and blasting operations near the active gas pipeline. The simplest and most reliable way to ensure the safety of the protected object from seismic impact is to reduce the intensity of the seismic wave, which is achieved by changing the parameters of drilling and blasting operations. This requires research to determine the impact of blasting operations on the parameters of seismic waves and the development of methods for measuring these parameters. The paper presents a detailed analysis of the seismic blast wave impact on the displacement of the ground and the model gas pipeline. The features of seismic monitoring during blasting operations near the active gas pipeline are shown. The seismic coefficients and attenuation coefficient of seismic waves are determined. It is proved that the readings of the seismic receivers on the surface and in the depth of the massive differ by two or more times.

How to cite: khokhlov S.V., Sokolov S.T., Vinogradov Y.I., Frenkel I.B. Conducting industrial explosions near gas pipelines // Journal of Mining Institute. 2021. Vol. 247 . p. 48-56. DOI: 10.31897/PMI.2021.1.6
Oil and gas
  • Date submitted
    2020-05-21
  • Date accepted
    2020-10-05
  • Date published
    2020-11-24

Method of calculating pneumatic compensators for plunger pumps with submersible drive

Article preview

One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .

How to cite: Timashev E.O. Method of calculating pneumatic compensators for plunger pumps with submersible drive // Journal of Mining Institute. 2020. Vol. 245 . p. 582-590. DOI: 10.31897/PMI.2020.5.10
Geoecology and occupational health and safety
  • Date submitted
    2020-06-14
  • Date accepted
    2020-06-14
  • Date published
    2020-06-30

Geochemical approach in assessing the technogenic impact on soils

Article preview

The soil assessment was carried out in the technogenically-affected area of Irkutsk Oblast with the geochemical approach as a key geoecological method using physical and chemical techniques of analysis and ecodiagnostics. Diagnostic signs of the disturbed natural properties of the soil were revealed up to a depth of 40 cm in the profile based on macro- and micromorphometric parameters. The content of heavy metals (HM) – Pb, Zn, Hg, and Cu with an excess of standards was determined, and empirical HM – pH correlations were obtained by statistical clustering of the data array. The contributions of additional factors affecting the chemical element distribution in the soil layer were investigated. Significant soil contamination with sulfates and the possibility of implementing the ion-exchange of HM andfor element immobilization were revealed. It was shown that reactions with sulfates and the influence of pH, HM exchange processes involving mobile K and P can determine the nature of the described chemical element distribution in the multi-factor-contaminated technogenic soil. However, the effectiveness of such types of interaction is different for each metal and also depends on the quantitative ratio of substances and soil characteristics, even under a minor change in pH. Two-parameter correlations of HM distribution in sulfate-contaminated soils confirmed the different degrees of involvement of chemical elements in these types of interactions. The results obtained and the identified factors are of applied significance and can be used as the basis for geoecological differentiation of the contaminated soil, as well as for determining local geochemical fields in the technogenesis zone. Areas of advanced research are related to three-dimensional modeling for a more complete study of the cause-and-effect relationships of geochemical parameters.

How to cite: Sarapulova G.I. Geochemical approach in assessing the technogenic impact on soils // Journal of Mining Institute. 2020. Vol. 243 . p. 388-392. DOI: 10.31897/PMI.2020.3.388
Oil and gas
  • Date submitted
    2020-05-26
  • Date accepted
    2020-06-10
  • Date published
    2020-06-30

Theoretical analysis of frozen wall dynamics during transition to ice holding stage

Article preview

Series of calculations for the artificial freezing of the rock mass during construction of mineshafts for the conditions of a potash mine in development was carried out. Numerical solution was obtained through the finite element method using ANSYS software package. Numerical dependencies of frozen wall thickness on time in the ice growing stage and ice holding stage are obtained for two layers of the rock mass with different thermophysical properties. External and internal ice wall boundaries were calculated in two ways: by the actual freezing temperature of pore water and by the temperature of –8 °С, at which laboratory measurements of frozen rocks' strength were carried out. Normal operation mode of the freezing station, as well as the emergency mode, associated with the failure of one of the freezing columns, are considered. Dependence of a decrease in frozen wall thickness in the ice holding stage on the duration of the ice growing stage was studied. It was determined that in emergency operation mode of the freezing system, frozen wall thickness by the –8 °C isotherm can decrease by more than 1.5 m. In this case frozen wall thickness by the isotherm of actual freezing of water almost always maintains positive dynamics. It is shown that when analyzing frozen wall thickness using the isotherm of actual freezing of pore water, it is not possible to assess the danger of emergency situations associated with the failure of freezing columns.

How to cite: Semin M.A., Bogomyagkov A.V., Levin L.Y. Theoretical analysis of frozen wall dynamics during transition to ice holding stage // Journal of Mining Institute. 2020. Vol. 243 . p. 319-328. DOI: 10.31897/PMI.2020.3.319
Geoecology and occupational health and safety
  • Date submitted
    2019-02-01
  • Date accepted
    2019-09-16
  • Date published
    2020-02-25

Priority parameters of physical processes in a rock mass when determining the safety of radioactive waste disposal

Article preview

Consideration of geodynamic, hydrogeochemical, erosion and other quantitative characteristics describing evolutionary processes in a rock mass is carried out when choosing a geological formation for the disposal of radioactive waste. However, the role of various process parameters is not equal for safety ensuring and additional percentages of measurement accuracy are far from always being of fundamental importance. This makes it necessary to identify various types of indicators of the geological environment that determine the safety of radioactive waste disposal for their detailed study in the conditions of the burial site. An approach is proposed to determine the priority indicators of physical processes in the rock mass that determine the safety of disposal of various types of radio active waste and require increased attention (accuracy, frequency of measurements) when determining in - situ conditions. To identify such factors, we used the sensitivity analysis method that is a system change in the limits of variable values during securty modeling in order to assess their impact on the final result and determine the role of various physical processes in ensuring safety.

How to cite: Gupalo V.S. Priority parameters of physical processes in a rock mass when determining the safety of radioactive waste disposal // Journal of Mining Institute. 2020. Vol. 241 . p. 118-124. DOI: 10.31897/PMI.2020.1.118
Metallurgy and concentration
  • Date submitted
    2018-01-02
  • Date accepted
    2018-03-08
  • Date published
    2018-06-22

Noncontact laser control of electric-physical parameters of semiconductor layers

Article preview

Non-contact non-destructive laser-interferometric methods for measuring several electrophysical parameters of semiconductor and dielectric layers are proposed. They are the lifetime of charge carriers for electrons and holes separately; parameters of recombination centers, namely their concentration and capture cross-sections; bulk volume lifetime and rate of surface recombination, as well as the diffusion length of charge carriers. The methods are based on the interference-absorption interaction in a semiconductor of two laser radiations with different wavelengths. Short-wave injection radiation generates additional charge carriers in the material, which leads to a change in its optical constants at the wavelength of the other – long-wavelength probing laser radiation – and to modulation of this radiation as it passes through the sample of the studied material. The means for implementing the proposed methods and methods for processing the modulation signal for determining the parameters of the investigated samples are developed. The methods have been successfully tested on samples of such materials as germanium, silicon, indium antimonide and cadmium-mercury-tellurium alloy. It is shown that the methods can be used both in scientific research and electronic industry.

How to cite: Fedortsov A.B., Ivanov A.S. Noncontact laser control of electric-physical parameters of semiconductor layers // Journal of Mining Institute. 2018. Vol. 231 . p. 299-306. DOI: 10.25515/PMI.2018.3.299
Geoecology and occupational health and safety
  • Date submitted
    2017-12-27
  • Date accepted
    2018-03-22
  • Date published
    2018-06-22

Mathematical model of heat exchange processes for heat ptotective cooling suit of a rescuer

Article preview

Fires are followed by the range of factors hazardous for human health; a radiant thermal stream accompanied by the high temperature of the environment is one of these factors. For protection of firemen special protective clothing from heat impact and the insulation type clothing are used. The paper demonstrates that the concept of action of such clothing is based on the passive heat protection owing to the use of materials with low conducting capacity or high specific heat. The time of effective protection of a suit is not considerable which reduces the duration of work under the unfavorable climatic conditions drastically, increases the work labor input, leads to the hyperthermia. One of the ways focused on the improvement of the heat protective clothing is a design of suits with cooling, which is stated in the paper. The paper shows that the developed heat protective suits on the basis of water-ice cooling elements are not widely used due to considerable costs. A more reasonable idea refers to the design of heat protective suits with cooling by using running water as the most available coolant circulating along polyvinylchloride pipes arranged between the layers of a suit.

How to cite: Alabev V.R., Zavyalov G.V. Mathematical model of heat exchange processes for heat ptotective cooling suit of a rescuer // Journal of Mining Institute. 2018. Vol. 231 . p. 326-332. DOI: 10.25515/PMI.2018.3.326
Electromechanics and mechanical engineering
  • Date submitted
    2016-11-17
  • Date accepted
    2017-01-12
  • Date published
    2017-04-14

Research on regimes of limonite ore hyrdotransport for the conditions of Perdo Soto Alba plant

Article preview

The paper examines regular flow patterns of high-concentrated limonite pulp with significant content of finest grains. Engineering procedures have been developed to calculate basic parameters of limonite ore hydrotransport in turbulent and structured regimes. Trustworthiness of scientific statements, conclusions and recommendations is justified by theoretical research, establishment of analytical dependences, results of laboratory and industrial experiments. Practical regularities of behavior have been identified for the coefficient of hydraulic resistance, depending on pulp density in the range 35-45 % in case of pulp flow in structured regime, as well as regularity of pressure losses in case of pulp flow in horizontal and inclined pipelines in turbulent regime.

How to cite: Pupo R.I., Breff A.T. Research on regimes of limonite ore hyrdotransport for the conditions of Perdo Soto Alba plant // Journal of Mining Institute. 2017. Vol. 224 . p. 240-246. DOI: 10.18454/PMI.2017.2.240
Mining
  • Date submitted
    2015-12-27
  • Date accepted
    2016-02-26
  • Date published
    2016-12-23

Simulation of rock deformation behavior

Article preview

A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

How to cite: Rudaev Y.I., Kitaeva D.A., Mamadalieva M.A. Simulation of rock deformation behavior // Journal of Mining Institute. 2016. Vol. 222 . p. 816-822. DOI: 10.18454/PMI.2016.6.816
Mining
  • Date submitted
    2014-12-10
  • Date accepted
    2015-02-20
  • Date published
    2015-12-25

Opencast mine parameters sensitivity analysis at preliminary study of a mining project

Article preview

The article describes sensitivity analysis, aimed at variables dependence detection: to what extent open cast mine ultimate efficiency or performance will be affected when one of the key input variables is changed. The stronger the dependence effect, the higher the project implementation risk. The sensitivity analysis objective is demonstrated – principle factors identification – critical variables, capable of having a serious influence on the project implementation results, and impact verification of progressive (single) factorial changes. Sensitivity analysis in its content is a single-factor analysis. Output, as a basic performance indicator of an open cast mine, characterizes mine development intensity and is determined by mining-engineering and economic factors. It is proved that the impact degree from various parameters on the open cast mine output is characterized by elasticity ratio. The project indicators sensitivity analysis, which was carried out, allowed to establish the impact degree that various parameters have on the open cast mine output, which takes place in a high-angle ore deposit, characterized by elasticity ratio.

How to cite: Fomin S.I., Bazarova E.I. Opencast mine parameters sensitivity analysis at preliminary study of a mining project // Journal of Mining Institute. 2015. Vol. 216 . p. 76-81.