Submit an Article
Become a reviewer
Oleg S. Parshakov
Oleg S. Parshakov
researcher, Ph.D.
Mining Institute of the Ural Branch of the Russian Academy of Sciences
researcher, Ph.D.
Mining Institute of the Ural Branch of the Russian Academy of Sciences
Perm
Russia
69
Total cited
4
Hirsch index

Articles

Mining
  • Date submitted
    2020-12-16
  • Date accepted
    2021-07-27
  • Date published
    2021-09-29

Features of the thermal regime formation in the downcast shafts in the cold period of the year

Article preview

In the cold period of the year, to ensure the required thermal regime in underground mine workings, the air supplied to the mine is heated using air handling systems. In future, the thermodynamic state of the prepared air flow when it is lowered along the mine shaft changes due to the influence of a number of factors. At the same time, the processes of heat and mass exchange between the incoming air and its environment are of particular interest. These processes directly depend on the initial parameters of the heated air, the downcast shaft depth and the presence of water flows into the mine shaft. Based on the obtained experimental data and theoretical studies, the analysis of the influence of various heat and mass transfer factors on the formation of microclimatic parameters of air in the downcast shafts of the Norilsk industrial district mines is carried out. It is shown that in the presence of external water flows from the flooded rocks behind the shaft lining, the microclimatic parameters of the air in the shaft are determined by the heat transfer from the incoming air flow to the underground water flowing down the downcast shaft lining. The research results made it possible to describe and explain the effect of lowering the air temperature entering the underground workings of deep mines

How to cite: Zaitsev A.V., Semin M.A., Parshakov O.S. Features of the thermal regime formation in the downcast shafts in the cold period of the year // Journal of Mining Institute. 2021. Vol. 250. p. 562-568. DOI: 10.31897/PMI.2021.4.9
Mining
  • Date submitted
    2019-01-11
  • Date accepted
    2019-03-17
  • Date published
    2019-06-25

Improving Methods of Frozen Wall State Prediction for Mine Shafts under Construction Using Distributed Temperature Measurements in Test Wells

Article preview

Development of mineral deposits under complex geological and hydrogeological conditions is often associated with the need to utilize specific approaches to mine shaft construction. The most reliable and universally applicable method of shaft sinking is artificial rock freezing – creation of a frozen wall around the designed mine shaft. Protected by this artificial construction, further mining operations take place. Notably, mining operations are permitted only after a closed-loop frozen section of specified thickness is formed. Beside that, on-line monitoring over the state of frozen rock mass must be organized. The practice of mine construction under complex hydrogeological conditions by means of artificial freezing demonstrates that modern technologies of point-by-point and distributed temperature measurements in test wells do not detect actual frozen wall parameters. Neither do current theoretical models and calculation methods of rock mass thermal behavior under artificial freezing provide an adequate forecast of frozen wall characteristics, if the input data has poor accuracy. The study proposes a monitoring system, which combines test measurements and theoretical calculations of frozen wall parameters. This approach allows to compare experimentally obtained and theoretically calculated rock mass temperatures in test wells and to assess the difference. Basing on this temperature difference, parameters of the mathematical model get adjusted by stating an inverse Stefan problem, its regularization and subsequent numerical solution.

How to cite: Levin L.Y., Semin M.A., Parshakov O.S. Improving Methods of Frozen Wall State Prediction for Mine Shafts under Construction Using Distributed Temperature Measurements in Test Wells // Journal of Mining Institute. 2019. Vol. 237. p. 268. DOI: 10.31897/PMI.2019.3.274