-
Date submitted2024-03-22
-
Date accepted2024-09-24
-
Date published2025-02-25
Behaviour of cerium (III) phosphate in a carbonate-alkaline medium
- Authors:
- Tatyana E. Litvinova
- Stepan A. Gerasev
The article investigates the behaviour of rare earth metals in carbonate-alkaline systems. The results of experimental studies on rare earth element extraction from phosphogypsum, a large-tonnage industrial waste forming in production of phosphoric acid are presented. Using the liquid phase leaching method, it was possible to extract more than 53 % of rare earth elements from old phosphogypsum and more than 69 % from fresh phosphogypsum due to solid phase treatment with a 4 mol/l potassium carbonate solution at temperature 90 °C. The behaviour of model cerium (III) phosphate in a carbonate-alkaline medium is characterized: a solubility isotherm is obtained as well as the dependences of the degree of cerium extraction into solution on temperature, carbonate ion concentration, interphase ratio, stirring intensity, and pH. The ability of soluble rare earth element complexes to precipitate over time was established, which was confirmed using cerium and neodymium as an example. Within 240 h after the end of the experiment, approximately 25 % of cerium and 17 % of neodymium were precipitated from the liquid phase. A similar property was recorded in representatives of the light group and was not noted in elements of the heavy group. The ability to self-precipitate in future can serve as a basis for developing an alternative approach to separating rare earth metals into groups after extraction in a carbonate ion medium. Also, based on the analysis of experimental data, the mechanism of cerium (III) phosphate dissolution in a carbonate-alkaline medium was characterized. An assumption was made that rare earth metal phosphates dissolve sequentially passing into an insoluble carbonate and then into a soluble carbonate complex.
-
Date submitted2024-05-17
-
Date accepted2024-10-14
-
Date published2024-11-12
Black shales – an unconventional source of noble metals and rhenium
The content of noble metals and rhenium in the Lower Paleozoic black shales of the eastern Baltic paleobasin in Russia was estimated. Shales are enriched in platinoids (PGM to 0.12 g/t) and rhenium (to 1.54 g/t). The main accessory elements of noble metals and Re are U, V, Mo, Cu, and Ni. Black shales consist of organic (9-26 rel.%), clay (40-60 rel.%), and silt-sandy (25-50 rel.%) components and a nodule complex (2-5 rel.%) (carbonate, sulfide, phosphate and silicate nodules). Noble metals occur sporadically in the silt-sandy admixture as native forms and intermetallics: Aunat, Au-Ag, Au-Cu, Au-(Cu)-Hg, Au-Hg, Ag-Cu, Pt-Fe. Micromineral phases of noble metals were found in diagenetic sulfides: Aunat, chalcopyrite with Au admixture, pyrite with platinoid admixture. Clay fraction is 10-fold enriched in noble metals as compared to shale – to 0.28 g/t Au, 0.55 g/t Pt, 1.05 g/t Pd, and 1.56 g/t Re. Organic matter sorbs noble metals to a limited extent but accumulates rhenium. Pore space of black shales contains a colloidal salt component (submicron fraction) which is represented by particles smaller than 1,000 nm. The share of submicron fraction in black shales is 0.1-6 wt.%. The submicron fraction contains on average: PGM – 14 g/t, Au – 0.85 g/t, and Re – 4.62 g/t. The geochemical resource of noble metals (Au, Pt, Pd), Re and the accessory elements (U, V, Mo, Cu, and Ni) for black shales as a whole and their submicron fraction was estimated. Black shales are recommended as an integrated source of raw materials.
-
Date submitted2024-01-31
-
Date accepted2024-06-03
-
Date published2024-07-04
Rationale for a possibility of using humic preparations production waste for wastewater purification from metals (Cd2+, Zn2+, Mg2+, Cu2+) aimed at developing efficient measures on environmental rehabilitation
Results of studying optimal conditions and parameters for afterpurification of underspoil waters from metal ions using humic acids production waste are presented with a view to develop the efficient measures on environmental rehabilitation of ecosystems disturbed by the development of copper pyrite deposits. The influence of contact time and waste dosage on the purification process was analysed, changes in the pH of wastewater and its impact on the growth and development of plants were studied. The key factors were identified allowing to achieve the efficiency of the purification process – the optimal contact time in the range from 120 to 180 min and waste dosage of 10 g/l. The study showed that the use of waste resulted in a neutral pH value of 7.03 compared to the initial pH value of 5.95. It was ascertained that the use of iron-magnesium production waste in combination with waste from humic preparations production made it possible to achieve the MPC of commercial fishing importance (with the exception of magnesium). Wastewater after the afterpurification process with high magnesium concentrations did not have a stimulating effect on the growth and development of Lepidium sativum L. plants. From biotesting results it can also be stated that there is no negative impact on the growth and development of Lepidium sativum L. The results obtained indicate a potentiality of using afterpurified wastewater for watering plants in the process of initiating the environmental rehabilitation of the disturbed ecosystems.
-
Date submitted2024-04-09
-
Date accepted2024-06-03
-
Date published2024-07-04
Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies
Nature-like technologies are being introduced into many human activities including mining wastewater treatment. This work is based on long-term studies of the Sibay copper-zinc-pyrite deposit development. It is dedicated to assessment of geochemical barriers effectiveness in Cu, Zn, Cd removal from water of the Karagayly River (receiving quarry and dump drainage water). The research is based on the elements’ content and forms in water and bottom sediments, pH values etc. Four types of hydrogeochemical environment (formed due to changes in the water use over the past 20 years) were distinguished using discriminant analysis. The mechanisms of barriers formation and destruction were described. Statistical modeling of the metals’ precipitation was performed by multivariate regression analysis. Cu is adsorbed by recently formed Fe hydroxides, and, to a lesser extent, precipitates with sulfates as water pH increases. Antagonism to Mn hydroxides has been demonstrated, due to different physicochemical conditions for their precipitation. Zn enters solid phase mainly with sulfates, this element also forms its own mineral phases. The second mechanism is adsorption by recently formed Mn hydroxides, which corresponds to the idea of similar conditions for the precipitation of metal hydroxides. Cd behavior reflects conditions intermediate between these of Cu and Zn. Contribution of both mechanisms (related to Fe hydroxides and aqueous sulfates) is equal. Antagonism to Mn is absent. According to the assessment results using of nature-like technologies in situ in watercourses, canals and other water drainage systems is promising. Developed statistical models can be used for needs of experimental studies and artificial geochemical barriers engineering.
-
Date submitted2024-04-25
-
Date accepted2024-06-13
-
Date published2024-07-11
Evaluation of the effectiveness of neutralization and purification of acidic waters from metals with ash when using alternative fuels from municipal waste
- Authors:
- Polina A. Kharko
- Aleksandr S. Danilov
The problem of pollution of natural water objects with heavy metals is extremely relevant for the areas where industrial enterprises are located. Unauthorized discharge of contaminated wastewater, inefficient operation of sewage treatment plants, as well as leakage of drainage waters from man-made massifs lead to changes in the hydrological system affecting living objects. The article studies the composition of ash from the combustion of alternative fuels from municipal waste, and also considers the possibility of using it to neutralize sulfuric acid drainage waters and extract metal ions (Cu, Cd, Fe, Mn, Zn) from them. It has been established that the efficiency of water purification from metals depends on the pH value achieved during the purification process. The pH value is regulated by the dose of the introduced ash, the contact time and depends on the initial concentration of metal ions and sulfates in the solution. Studies on the neutralization and purification of a model solution of sulfuric acid drainage waters of a tailings farm of known composition have shown that in order to achieve a pH of 8-9, optimal for precipitation of metal hydroxides Cu, Cd, Fe, Mn, Zn and Al washed out of ash, and water purification with an efficiency of 96.60 to 99.99 %, it is necessary to add 15 g/l of ash and stir the suspension continuously for 35 minutes. It was revealed that exposure to ash with sulfuric acid waters leads to the transition of water-soluble forms of metals into insoluble ones and their “cementation” with calcium sulfate. The amount of Zn and Fe ions washed out of the ash decreases by 82 and 77 %, Al, Cd, Cu, Mn – by 25 %. This reduces the toxicity of ash, which is proved by a decrease in the toxic multiplicity of dilution of the water extract by 14 times.
-
Date submitted2023-11-02
-
Date accepted2024-03-05
-
Date published2024-08-26
The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon
Based on the isotopic-geochemical analyses of zircons from granites of the Belokurikhinsky massif in the Gorny Altai using the U-Pb method, the ages of three intrusion phases have been determined for the first time: the age of the first phase refers to the time interval of 255-250 Ma, the second and the third phases have similar ages of about 250 Ma. The formation time of the Belokurikhinsky massif is estimated as not exceeding 5-8 Ma. The δ18O values for zircons from granites of the second and the third intrusion phases average around 11.5-12.0 ‰, indicating a significant contribution of a crustal component in the formation of the parent melts for granites of these phases. The crystallization temperature values of the zircons by the Ti-in-zircon thermometer for three phases range from 820 to 800 °C. The P-T crystallization parameters of titanite from the first phase, determined using a titanite thermobarometer, average around 770 °C and 2.7 kbar. The zircons from the first phase mostly exhibits geochemical characteristics of typical magmatic zircons. The zircons from the second and the third intrusion phases either may be unaltered magmatic zircons or enriched in incompatible elements (LREE, Th, U, Ti, Ca, etc.) due to fluid influence, resembling hydrothermal-metasomatic type zircons in terms of their geochemical characteristics. A number of zircon grains from the second and the third phases of granites demonstrate anomalous geochemical characteristics – the REE distribution spectra atypical for zircons (including “bird's wing” type spectra with oppositely tilted of light and heavy REE distribution profiles), as well as significantly higher contents of certain trace elements compared to other varieties. Such an enriched zircon composition and wide variations in the incompatible element content are due to non-equilibrium conditions of zircon crystallization and evolution of the fluid-saturated melt composition during the final stages of the massif formation.
-
Date submitted2023-04-11
-
Date accepted2023-10-25
-
Date published2024-07-04
Acid mine water treatment using neutralizer with adsorbent material
One of the biggest issues in the mining sector is due to acid mine drainage, especially in those abandoned mining operations and active ones that fail to adequately control the quality of their water discharge. The removal degree of copper, iron, lead, and zinc dissolved metals in acid mine drainage was investigated by applying different proportions of mixtures based on neutralizing reagent hydrated lime at 67 % calcium oxide (CaO), with adsorbent material – natural sodium bentonite, compared to the application of neutralizing reagent without mixing, commonly used in the neutralization of acid mining drainage. The obtained results show that the removal degree of dissolved metals in acid mine drainage when treated with a mixture of neutralizing reagent and adsorbent material in a certain proportion, reaches discharge quality, complying with the environmental standard (Maximum Permissible Limit), at a lower pH than when neutralizing material is applied without mixing, registering a net decrease in the consumption unit of neutralizing agent express on 1 kg/m3 of acid mine drainage. Furthermore, the sludge produced in the treatment with a mixture of the neutralizing reagent with adsorbent material has better characteristics than common sludge without bentonite, since it is more suitable for use as cover material, reducing the surface infiltration degree of water into the applied deposit.
-
Date submitted2023-04-29
-
Date accepted2023-10-11
-
Date published2023-10-27
Pink-violet diamonds from the Lomonosov mine: morphology, spectroscopy, nature of colour
The article presents the results of the first comprehensive study of mineralogical and spectroscopic (IR, PL, EPR) characteristics of diamonds from the Lomonosov mine (Arkhangelskaya pipe) with a unique pink, pink-violet colour. It is shown that all crystals belong to the IaA type, with a total nitrogen content in the range of 500-1500 ppm, with a low degree of aggregation. The colour is heterogeneous, concentrated in narrow twin layers. It is presumably caused by the previously described M2 centres. The colour shade is affected by the content of P1 paramagnetic centres (C-defect). A positive correlation is observed between the colour saturation and the intensity of W7 paramagnetic centres. A convergent model of the formation of pink diamonds is assumed, according to which the determining factors are the ratio and concentration of structural impurities in the diamond, its thermal history, and conditions of plastic deformation, and not the origin of the diamond and the petrochemical properties of its host rocks.
-
Date submitted2021-04-15
-
Date accepted2022-09-06
-
Date published2023-10-27
Gold-rare metal and associated mineralization in the western part of Bolshevik Island, Severnaya Zemlya archipelago
The presented studies are aimed to determine the formation patterns of the gold-rare metal mineralization within one of the most inaccessible Arctic islands of the Russian Federation, Bolshevik Island of the Severnaya Zemlya archipela-go. The relevance of the work is determined by the high probability of discovering a significant in terms of metal reserves deposit, which is proved by many researchers on the example of known large deposits to be a typical feature of sites with gold-rare metal formation. Obviously, only the possibility of discovering and subsequent development of a deposit of a highly liquid type of mineral, gold, can ensure the profitability of mining production on Severnaya Zemlya. It is established that the main geological, mineralogical, and geochemical features of the gold-rare metal mineralization in the Kropotkinsko-Nikitinskaya metallogenic zone of Bolshevik Island correspond to that of similar ore sites in Russia and the world. The occurrences of other formation types revealed in this metallogenic zone suggest a certain zoning in their distribution: mineralization is located in the apical parts of granitoids and in the nearest halo of hornfelses. At a distance, with an exit from the hornfelsed zone, there are occurrences of a cassiterite-sulphide formation with elevated gold and silver content at the top of the ore column, together with an increased amount of polymetallic ores. Occurrences of gold-quartz and gold-sulphide-quartz formations are localized in fault zones, as a rule, farther from granitoids. The total vertical range of gold mineralization exceeds 300 m. The assignment of all types of mineralization in the Kropotkinsko-Nikitinskaya metallogenic zone of Bolshevik Island to a single hydrothermal process is emphasized by the similar isotope composition of lead galena from heterogeneous occurrences, which determines the age of all mineralization at 200-300 Ma.
-
Date submitted2022-12-03
-
Date accepted2023-02-03
-
Date published2023-08-28
Garnetites from Marun-Keu eclogite complex (Polar Urals): geochemistry and the problem of genesis
- Authors:
- Laysan I. Salimgaraeva
- Alexei V. Berezin
A comprehensive mineralogical and geochemical characterization (XRF, ICP-MS, SEM-EDS, SIMS methods) of garnetites and their protoliths from the Marun-Keu complex (Polar Urals), one of the key objects in understanding the evolution of the Uralian Orogen, is presented. Garnetites and their protoliths from the Marun-Keu complex, Polar Urals, a key locality for understanding the evolution of the Uralian Orogen, are described mineralogically and geochemically using XRF, ICP-MS, SEM-EDS and SIMS methods. Ultramafic (in most cases) and mafic rocks are understood as protoliths for garnetites. A general trend for garnetites is an increase in total REE concentration relative to that of their protoliths. All the analyzed garnetites display a considerable decrease in Cr, Ni and Co. V concentration in the garnetites is also lower than that of the protoliths, though not so markedly. Garnets from garnetites evolving after peridotites generally exhibit elevated (relative to garnets from garnetites evolving after mafic rocks, such as porphyrites) Prp and lowered Alm content, which seems to be due to high Mg concentration in the protolith. In garnetites after peridotites a garnet exhibiting an uncommon non-differentiated REE spectrum with a considerable positive Eu-anomaly was found, which could be due to the inheritance of a REE spectrum by garnet from a precursor mineral, in this case plagioclase. Slyudyanaya Gorka garnetites were probably formed from mafic and ultramafic rocks in oceanic crust, which migrated to higher levels of the section under the influence of the crustal fluid flowing along fracturing zones.
-
Date submitted2022-08-22
-
Date accepted2023-02-02
-
Date published2023-08-28
Wodginite as an indicator mineral of tantalum-bearing pegmatites and granites
- Authors:
- Viktor I. Alekseev
In the composition of tantalum-niobates, the tin-bearing wodginite group minerals (WGM) were found: wod-ginite, titanowodginite, ferrowodginite, ferrotitanowodginite, lithiowodginite, tantalowodginite, “wolframowodginite”. We reviewed the worldwide research on WGM and created a database of 698 analyses from 55 sources including the author's data. WGM are associated with Li-F pegmatites and Li-F granites. Wodginite is the most prevalent mineral, occurring in 86.6 % of pegmatites and 78.3 % of granites. The occurrence of WGM in granites and pegmatites differs. For instance, titanowodginite and “wolframowodginite” occur three times more frequently in granites than in pegmatites, whereas lithiowodginite and tantalowodginite do not appear in granites at all. The difference between WGM in granites and pegmatites is in finer grain size, higher content of Sn, Nb, Ti, W, and Sc; lower content of Fe 3+ , Ta, Zr, Hf; higher ratio of Mn/(Mn + Fe); and lower ratio of Zr/Hf. The evolutionary series of WGM in pegmatites are as follows: ferrowodginite → ferrotitanowodginite → titanowodginite → “wolframowodginite” → wodginite → tantalowodginite; in granites: ferrowodginite → ferrotitanowodginite → “wolframowodginite” → wodginite → titanowodginite. WGM can serve as indicators of tantalum-bearing pegmatites and granites. In Russia the promising sources of tantalum are deposits of the Far Eastern belt of Li-F granites containing wodginite.
-
Date submitted2022-11-02
-
Date accepted2023-03-02
-
Date published2023-04-25
Environmental damage from the storage of sulfide ore tailings
The mining industry is one of the most challenging in ensuring environmental safety. During the last century, the Karabash Copper Smelting Plant was processing sulfide ores and depositing the tailings into storage facilities that now occupy an area of more than 50 hectares. To date, abandoned tailings are a significant source of natural water, air, and soil pollution in the Karabash city district. The article comprehensively examines the environmental impact of the Karabashmed copper smelter, one of the oldest metallurgical enterprises in Russia. The effects of seepage from the two Karabashmed tailings facilities on water resources were assessed. We revealed that even outside the area of the direct impact of processing waste, the pH of natural water decreases to values 4-5. Further downstream, the infiltration water from the tailings pond No. 4 reduces the pH of river water to 3.0-3.5. The presented results of environmental engineering surveys are derived from sampling water and bottom sediments of the Ryzhiy Stream and the Sak-Elga River, sample preparation, and quantitative chemical analysis. The study revealed significant exceedances of the maximum permissible concentrations for a number of chemical elements in the impact zone of the copper ore processing tailings.
-
Date submitted2022-10-28
-
Date accepted2023-03-02
-
Date published2023-04-25
Assessment of the possibility of using iron-magnesium production waste for wastewater treatment from heavy metals (Cd2+, Zn2+, Co2+, Cu2+)
Relevant problems associated with treatment of industrial wastewater from heavy metal ions are considered. Due to industrial development, the amount of wastewater increases as well as the risks of heavy metals getting into surface and groundwater, accumulating in water bodies and becoming aggressive environmental pollutants, which affect the animal and human organisms. To assess the possibility of extracting metal ions (Cd 2+ , Zn 2+ , Co 2+ , Cu 2+ ) from industrial wastewater and their further treatment, studies were carried out on redistribution of heavy metals in the “wastewater – waste” system using iron-magnesium production waste. Samples of the investigated waste weighing 0.1; 0.2; 0.5; 1; 1.5; 2 g were taken for wastewater volume of 50 ml per each subsample. Contact time varied from 5 to 180 min, waste fraction was 1 mm. The interaction process showed that the waste efficiently removes metal ions (Cd 2+ , Zn 2+ , Co 2+ , Cu 2+ ) from industrial wastewater. The efficiency of removing a pollutant from the solution depends on the weight of the waste subsample, initial concentration of metal ions, and contact time.
-
Date submitted2022-06-27
-
Date accepted2022-09-09
-
Date published2022-11-03
Study of the composition and properties of the beneficiation tailings of currently produced loparite ores
The increase in demand for rare earth metals and the depletion of natural resources inevitably causes the need to search for alternative unconventional sources of rare metal raw materials. The article presents the results of a study of the composition and properties of the beneficiation tailings of currently produced loparite ores. Sieve, mineralogical, chemical, and radionuclide analyses were carried out. The average content of loparite in tailings was determined. Using scanning electron microscopy, minerals-concentrators of rare earth elements in the loparite ore beneficiation tailings were diagnosed. The distribution of valuable components and thorium in the tailings was determined depending on the particle size class. The radium-thorium nature of radioactivity was established, the values of the effective specific activity of the samples were calculated. We concluded that it is necessary to develop an integrated technology for processing the beneficiation tailings of loparite ore, due to the complex and heterogeneous mineral and chemical composition of the tailings material.
-
Date submitted2022-04-18
-
Date accepted2022-05-25
-
Date published2022-07-26
U-Pb (SHRIMP-RG) age of zircon from rare-metal (Li, Cs) pegmatites of the Okhmylk deposit of the Kolmozero-Voron’ya greenstone belt (northeast of the Fennoscandian shield)
The results of isotopic and geochronological study of zircon from rare-metal pegmatites of the Okhmylk deposit are presented. There were no reliable data on the age of lepidolite-spodumene-pollucite pegmatites of this and the other deposits spatially located within the Archean Kolmozero-Voron’ya greenstone belt. The earlier estimates of the pegmatite age indicate a broad time range from 2.7 to 1.8 Ga. Zircon in the studied pegmatites is characterized by inner heterogeneity, where core and rim zones are distinguished. Minor changes are observed in the core zones, they have a spotted structure and contain numerous uranium oxide inclusions. According to X-ray diffraction analysis, zircon crystallinity is preserved completely in these areas. Complete recrystallization with modification of the original U-Pb isotopic system occurred in the zircon rims. New U-Pb (zircon) isotopic and geochronological data of 2607±9 Ma reflect the time of crystallization of pegmatite veins in the Okhmylk deposit. Isotopic data with ages of ~1.7-1.6 Ga indicate later hydrothermal alteration. The obtained results testify to the Neo-Archean age of the formation of the Okhmylk deposit 2.65-2.60 Ga, reflecting the global age of pegmatite formation and associated the world's largest rare-metal pegmatite deposits.
-
Date submitted2022-04-13
-
Date accepted2022-06-15
-
Date published2022-07-26
Thermal history of diamond from Arkhangelskaya and Karpinsky-I kimberlite pipes
This work studies and compares the main morphological, structural, and mineralogical features of 350 diamond crystals from the Karpinsky-I and 300 crystals of the Arkhangelskaya kimberlite pipes. The share of crystals of octahedral habit together with individual crystals of transitional forms with sheaf-like and splintery striation is higher in the Arkhangelskaya pipe and makes 15 %. The share of cuboids and tetrahexahedroids is higher in the Karpinsky-I pipe and stands at 14 %. The share of dodecahedroids in the Arkhangelskaya and Karpinsky-I pipes are 60 % and 50 %, respectively. The indicator role of the nitrogen-vacancy N3 center active in absorption and luminescence is shown. Crystals with the N3 absorption system have predominantly octahedral habit or dissolution forms derived from the octahedra. Their thermal history is the most complex. Absorption bands of the lowest-temperature hydrogen-containing defects (3050, 3144, 3154, 3188, 3310 cm −1 , 1388, 1407, 1432, 1456, 1465, 1503, 1551, 1563 cm −1 ), are typical for crystals without N3 system, where in the absorption spectra nitrogen is in the form of low-temperature A and C defects. The above mentioned bands are registered in the spectra of 16 % and 42 % of crystals from the Arkhangelskaya and Karpinsky-I pipes, respectively. The diamond of the studied deposits is unique in the minimum temperature (duration) of natural annealing. Based on a set of features, three populations of crystals were distinguished, differing in growth conditions, post-growth, and thermal histories. The established regularities prove the multi-stage formation of diamond deposits in the north of the East European Platform and significant differences from the diamonds of the Western Cisurals. The results suggest the possibility of the existence of primary deposits dominated by diamonds from one of the identified populations.
-
Date submitted2022-03-21
-
Date accepted2022-06-15
-
Date published2022-07-26
Ti-Fe-Cr spinels in layered (stratified) complexes of the western slope of the Southern Urals: species diversity and formation conditions
- Authors:
- Sergey G. Kovalev
- Sergey S. Kovalev
Materials on geochemistry and ore Fe-Ti-Cr mineralization of rocks composing layered (stratified) bodies of the western slope of the Southern Urals are presented. A detailed analysis showed similarity in the redistribution of REE, noble metals, and Fe-Ti-Cr mineralization of practically all parameters in rocks of the Misaelga and Kusin-Kopan complexes. It has been established that the parameters of metamorphism, which influenced components redistribution in Fe-Ti-Cr minerals of the layered complexes, correspond to Misaelga – T = <550-750 °С, P = 0.1-2.8 kbar, Kusin-Kopan – T = <550-630 °С, P = 0.3-0.7 kbar, and Shuidinsky complexes – T = <550-760 °С, P = 0.5-2.5 kbar. The result of modelling the melt crystallization process showed that the Kusin-Kopan complex is an intrusive body with an ultramafic horizon in the idealized cross-section. Due to collisional processes, the lower part of the intrusion has been detached from the upper part. The proposed structure of the Kusin-Kopan complex sharply increases its prospects for such types of minerals as platinum group minerals + sulphide copper-nickel mine-ralization and/or chromites.
-
Date submitted2022-03-03
-
Date accepted2022-04-27
-
Date published2022-07-26
Peculiarities of rare-metal mineralization and genetic relationship of mineral associations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt)
- Authors:
- Mikhail P. Popov
The paper presents features of the location and composition, as well as a generalization of data on the age of rare-metal mineralization developed at the deposits and occurrences of rare metals and gemstones in the eastern rim of Murzinsko-Aduysky anticlinorium, within the Ural Emerald Belt, which is a classic ore and mineralogical object and has been studied for almost two hundred years. With a significant number and variety of prospecting, research and scientific works devoted mainly to emerald-bearing mica complexes and beryl mineralization, as well as rare-metal pegmatites, scientific literature has so far lacked generalizations on the formation of numerous mineral associations and ore formations that represents a uniform genetic process in this ore district. The aim of the work is a comprehensive geological-mineralogical analysis of mineral associations of the eastern rim of Murzinsko-Aduysky anticlinorium and studying their age, formation conditions and characteristic features to determine the possibility of expanding and using the mineral resource base of the Urals through developing new prognostic and prospecting criteria for rare-metal and gemstone ore formations and creating the new devices for promising objects prospecting
-
Date submitted2022-02-26
-
Date accepted2022-04-27
-
Date published2022-07-26
Type intrusive series of the Far East belt of lithium-fluoric granites and its ore content
- Authors:
- Viktor I. Alekseev
The evolution and ore content of granitoid magmatism in the Far East belt of lithium-fluoric granites lying in the Russian sector of the Pacific ore belt have been studied. Correlation of intrusive series in the Novosibirsk-Chukotka, Yana-Kolyma and Sikhote-Alin granitoid provinces of the studied region allowed to establish the unity of composition, evolution, and ore content of the Late Mesozoic granitoid magmatism. On this basis, a model of the type potentially ore-bearing intrusive series of the Far East belt of lithium-fluoric granites has been developed: complexes of diorite-granodiorite and granite formations → complexes of monzonite-syenite and granite-granosyenite formations → complexes of leucogranite and alaskite formations → complexes of rare-metal lithium-fluoric granite formation. The main petrological trend in granitoid evolution is increasing silicic acidity, alkalinity, and rare-metal-tin specialization along with decreasing size and number of intrusions. At the end of the intrusive series, small complexes of rare-metal lithium-fluoric granites form. The main metallogenic trend in granitoid evolution is an increasing ore-generating potential of intrusive complexes with their growing differentiation. Ore-bearing rare-metal-granite magmatism of the Russian Far East developed in the Late Cretaceous and determined the formation of large tungsten-tin deposits with associated rare metals: Ta, Nb, Li, Cs, Rb, In in areas with completed intrusive series. Incompleteness of granitoid series of the Pacific ore belt should be considered as a potential sign of blind rare-metal-tin mineralization. The Far East belt of lithium-fluoric granites extends to the Chinese and Alaskan sectors of the Pacific belt, which allows the model of the type ore-bearing intrusive series to be used in the territories adjacent to Russia.
-
Date submitted2020-08-20
-
Date accepted2021-11-30
-
Date published2021-12-27
Indicator role of rare and rare-earth elements of the Northwest manganese ore occurrence (South Africa) in the genetic model of supergene manganese deposits
- Authors:
- Aleksandr N. Evdokimov
- Benedict L. Pharoe
The authors analyzed the content of a number of rare and rare-earth elements in the rocks of the Northwest manganese ore occurrence, confined to the Neoarchean dolomites of the Malmani series of the Transvaal Basin. 30 samples of manganese ores and host rocks were analyzed by ICP-MS and XRF methods. Average values of Post-Archean Australian Shale (PAAS) were used as the geochemical standard for data calculation and normalization. The concentrations of elements normalized on PAAS reveal the LREE anomaly in manganese ores. Positive Ce and negative Y–anomalies indicate the hydro-genetical type of sedimentation of ore minerals from manganese-bearing aqueous solutions. This is consistent with the ratios of the elements: Ce and Y SN /Ho SN , Ce and Nd, Fe – Mn – (Co + Ni + Cu) × 10. A clear correlation between the contents of rare-earth elements in manganese nodules and the underlying Malmani dolomites indicates their close genetic relationship. Negative Ce and positive Y–anomalies in manganese wad minerals indicate differences in the conditions of their formation. The manganese wad formed earlier than the rest of the ore with the active participation of microorganisms.
-
Date submitted2021-06-17
-
Date accepted2021-10-18
-
Date published2021-12-16
Dissolution kinetics of rare earth metal phosphates in carbonate solutions of alkali metals
- Authors:
- Tatyana E. Litvinova
- Ivan L. Oleynik
Treatment of apatite raw materials is associated with the formation of large-tonnage waste – phosphogypsum. The content of rare earth metals in such waste reaches 1 %, which makes it possible to consider it a technogenic source for obtaining rare earth metals and their compounds. Up to the present moment, there are neither processing plants, nor an efficient process flow to handle phosphogypsum dumps. It is rational to use a way that involves extraction of valuable components and overall reduction of phosphogypsum dumps. Such process flow is available with carbonate conversion of phosphogypsum to alkali metal or ammonium sulfate and calcium carbonate upon the condition of associated extraction of rare earth metal (REM) compounds. Associated extraction of REM compounds becomes possible since they form strong and stable complexes with hard bases according to Pearson, which among other things include carbonate, phosphate and sulfate anions. Formation of lanthanide complexes with inorganic oxygen-containing anions is facilitated by the formation of high-energy Ln-O bonds. The study focuses on the dissolution of lanthanide phosphates in carbonate media. It was established that formation of REM carbonate complexes from their phosphates is a spontaneous endothermic process and that formation of lanthanide carbonates and hydroxides serves as thermodynamic limitation of dissolution. A shift in equilibrium towards the formation of carbonate complexes is achieved by increasing the temperature to 90-100 °C and providing an excess of carbonate. The limiting stage of REM phosphate dissolution in carbonate media is external diffusion. This is indicated by increasing rate of the process with an intensification of stirring, first order of the reaction and the value of activation energy for phosphate dissolution from 27 to 60 kJ/mol. A combination of physical and chemical parameters of the process allowed to develop an engineering solution for associated REM extraction during carbonate conversion of phosphogypsum, which included a 4-5 h conversion of phosphogypsum at temperature of 90-110 °C by an alkali metal or ammonium carbonate solution with a concentration of 2-3 mol/l. As a result, a solution with alkali metal (ammonium) sulfate is obtained, which contains REMs in the form of carbonate complexes and calcium carbonate. The rate of REM extraction into the solution reaches no less than 93 %. Rare earth metals are separated from the mother liquor by precipitation or sorption on anion exchange resins, while the excess of alkali metal or ammonium carbonate is returned to the start of the process.
-
Date submitted2021-03-05
-
Date accepted2021-09-07
-
Date published2021-12-16
Utilization of sewage sludge as an ameliorant for reclamation of technogenically disturbed lands
- Authors:
- Tatyana A. Petrova
- Edelina Rudzisha
When rehabilitating technogenically disturbed lands of mining facilities, fertilizers and ameliorants are to be applied due to the lack of organic matter and nutrients required for the restoration of the soil and vegetation layer. The use of unconventional fertilizers (ameliorants) based on sewage sludge is one of the actual directions of land reclamation at mining sites. The purpose of the work is to summarize and analyze up-to-date information on the effectiveness of the use of sewage sludge for the reclamation of technogenically disturbed lands of mining and processing industries. The analysis is based on a review of recent studies aimed at assessing the impact of introduced sediment on soils, plant communities, and rehabilitated areas. The introduction of sewage sludge has a positive effect on the physical and chemical parameters of the soil (optimizes density and aggregation), saturates it with nutrients, i.e. N, P, K, Ca, Mg, and Na, thus improving plant growth indicators. However, it may contain a number of heavy metals and pathogens; therefore, studies of each sediment and conditions of reclaimed areas are necessary.
-
Date submitted2020-05-14
-
Date accepted2020-10-05
-
Date published2020-11-24
Fahlbands of the Keret archipelago, White Sea: the composition of rocks and minerals, ore mineralization
This paper presents a complex mineralogical and geochemical characteristic (based on SEM-EDS, ICP-MS analysis) of the fahlband rocks of the Kiv-Guba-Kartesh occurrence within the White Sea mobile belt (WSMB ). The term “fahlband” first appeared in the silver mines of Kongsberg in the 17th century. Now fahlbands are interlayers or lenses with sulfide impregnation, located in the host, usually metamorphic rock. The level of sulfide content in the rock exceed the typical accessory values, but at the same time be insufficient for massive ores . Fahlbands are weathered in a different way than the host rocks, so they are easily distinguished in outcrops due to their rusty-brown color. The studied rocks are amphibolites, differing from each other in garnet content and silicification degree. Ore mineralization is represented mainly by pyrrhotite and pyrite, and pyrrhotite grains are often replaced along the periphery by iron oxides and hydroxides, followed by pyrite overgrowth. At the same time, the rock contains practically unaltered pyrrhotite grains of irregular shape with fine exsolution structures composed of pentlandite, and individual pyrite grains with an increased Ni content (up to 5.4 wt.%). A relatively common mineral is chalcopyrite, which forms small grains, often trapped by pyrrhotite. We have also found single submicron sobolevskite and hedleyite grains. The REE composition of the fahlband rocks suggests that they are related to Archean metabasalts of the Seryakskaya and Loukhsko-Pisemskaya structures of the WSMB, rather than with metagabbroids and metaultrabasites common in the study area.
-
Date submitted2020-01-27
-
Date accepted2020-05-22
-
Date published2020-10-08
Sorption of rare earth coordination compounds
Rare earth elements (REEs) are valuable and strategically important in many high-technology areas, such as laser technology, pharmacy and metallurgy. The main methods of REE recovery are precipitation, extraction and sorption, in particular ion exchange using various sorbents, which allow to perform selective recovery and removal of associated components, as well as to separate rare earth metals with similar chemical properties. The paper examines recovery of ytterbium in the form of coordination compounds with Trilon B on weakly basic anion exchange resin D-403 from nitrate solutions. In order to estimate thermodynamic sorption parameters of ytterbium anionic complexes, ion exchange process was carried out from model solutions under constant ionic strength specified by NaNO 3 , optimal liquid to solid ratio, pH level, temperatures 298 and 343 K by variable concentrations method. Description of thermodynamic equilibrium was made using mass action law formulated for ion exchange equation and mathematically converted to linear form. Values of equilibrium constants, Gibbs free energy, enthalpy and entropy of the sorption process have been calculated. Basing on calculated values of Gibbs energy, a sorption series of complex REE ions with Trilon B was obtained over anion exchange resin D-403 from nitrate solutions at temperature 298 K. Sorption characteristics of anion exchange resin have been estimated: total capacity, limiting sorption of complex ions, total dynamic capacity and breakthrough dynamic capacity.
-
Date submitted2020-04-15
-
Date accepted2020-05-13
-
Date published2020-10-08
Processing of platinum group metal ores in Russia and South Africa: current state and prospects
- Authors:
- Tatyana N. Aleksandrova
- Cyril О’Connor
The presented study is devoted to a comparative review of the mineral raw material base of platinum group metals (PGMs) and technologies of their processing in South Africa and Russia, the largest PGM producers. Mineralogical and geochemical classification and industrial value of iron-platinum and platinum-bearing deposits are presented in this work. The paper also reviews types of PGM ore body occurrences, ore processing methods (with a special focus on flotation processes), as well as difficulties encountered by enterprises at the processing stage, as they increase recovery of the valuable components. Data on mineralogical features of PGM deposits, including the distribution of elements in the ores, are provided. The main lines of research on mineralogical features and processing of raw materials of various genesis are identified and validated. Sulfide deposits are found to be of the highest industrial value in both countries. Such unconventional PGM sources, as black shale, dunites, chromite, low-sulfide, chromium and titanomagnetite ores, anthropogenic raw materials, etc. are considered. The main lines of research that would bring into processing non-conventional metal sources are substantiated. Analysis of new processing and metallurgical methods of PGM recovery from non-conventional and industrial raw materials is conducted; the review of existing processing technologies for platinum-bearing raw materials is carried out. Technologies that utilize modern equipment for ultrafine grinding are considered, as well as existing reagents for flotation recovery; evaluation of their selectivity in relation to platinum minerals is presented. Basing on the analysis of main technological processes of PGM ore treatment, the most efficient schemes are identified, i.e.,gravity and flotation treatment with subsequent metallurgical processing.