Behaviour of cerium (III) phosphate in a carbonate-alkaline medium
Abstract
The article investigates the behaviour of rare earth metals in carbonate-alkaline systems. The results of experimental studies on rare earth element extraction from phosphogypsum, a large-tonnage industrial waste forming in production of phosphoric acid are presented. Using the liquid phase leaching method, it was possible to extract more than 53 % of rare earth elements from old phosphogypsum and more than 69 % from fresh phosphogypsum due to solid phase treatment with a 4 mol/l potassium carbonate solution at temperature 90 °C. The behaviour of model cerium (III) phosphate in a carbonate-alkaline medium is characterized: a solubility isotherm is obtained as well as the dependences of the degree of cerium extraction into solution on temperature, carbonate ion concentration, interphase ratio, stirring intensity, and pH. The ability of soluble rare earth element complexes to precipitate over time was established, which was confirmed using cerium and neodymium as an example. Within 240 h after the end of the experiment, approximately 25 % of cerium and 17 % of neodymium were precipitated from the liquid phase. A similar property was recorded in representatives of the light group and was not noted in elements of the heavy group. The ability to self-precipitate in future can serve as a basis for developing an alternative approach to separating rare earth metals into groups after extraction in a carbonate ion medium. Also, based on the analysis of experimental data, the mechanism of cerium (III) phosphate dissolution in a carbonate-alkaline medium was characterized. An assumption was made that rare earth metal phosphates dissolve sequentially passing into an insoluble carbonate and then into a soluble carbonate complex.
References
- Tominc S., Ducman V., Wisniewski W. et al. Recovery of Phosphorus and Metals from the Ash of Sewage Sludge, Municipal Solid Waste, or Wood Biomass: A Review and Proposals for Further Use // Materials. 2023. Vol. 16. Iss. 21. № 6948. DOI: 10.3390/ma16216948
- Saidakhmetov P., Piyanzina I., Faskhutdinova A. et al. Ab Initio Magnetic Properties Simulation of Nanoparticles Based on Rare Earth Trifluorides REF3 (RE = Tb, Dy, Ho) // Crystals. 2023. Vol. 13. Iss. 10. № 1487. DOI: 10.3390/cryst13101487
- Ormerod J., Karati A., Baghel A.P.S. et al. Sourcing, Refining and Recycling of Rare-Earth Magnets // Sustainability. 2023. Vol. 15. Iss. 20. № 14901. DOI: 10.3390/su152014901
- Pathapati S.V.S.H., Free M.L., Sarswat P.K. A Comparative Study on Recent Developments for Individual Rare Earth Elements Separation // Processes. 2023. Vol. 11. Iss. 7. № 2070. DOI: 10.3390/pr11072070
- Yunping Ji, Ming-Xing Zhang, Huiping Ren. Roles of Lanthanum and Cerium in Grain Refinement of Steels during Solidi-fication // Metals. 2018. Vol. 8. Iss. 11. № 884. DOI: 10.3390/met8110884
- Dzhevaga N., Lobacheva O. Reduction in Technogenic Burden on the Environment by Flotation Recovery of Rare Earth Elements from Diluted Industrial Solutions // Applied Sciences. 2021. Vol. 11. Iss. 16. № 7452. DOI: 10.3390/app11167452
- Petrova T.A., Rudzisha E., Alekseenko A.V. et al. Rehabilitation of Disturbed Lands with Industrial Wastewater Sludge // Minerals. 2022. Vol. 12. Iss. 3. № 376. DOI: 10.3390/min12030376
- Chernysh Y., Yakhnenko O., Chubur V., Roubík H. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects // Applied Sciences. 2021. Vol. 11. Iss. 4. № 1575. DOI: 10.3390/app11041575
- Mukaba J.-L., Eze C.P., Pereao O., Petrik L.F. Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques // Minerals. 2021. Vol. 11. Iss. 10. № 1051. DOI: 10.3390/min11101051
- Xiaosheng Yang, Makkonen H.T., Pakkanen L. Rare Earth Occurrences in Streams of Processing a Phosphate Ore // Minerals. 2019. Vol. 9. Iss. 5. № 262. DOI: 10.3390/min9050262
- Cheremisina O., Ponomareva M., Sergeev V. et al. Extraction of Rare Earth Metals by Solid-Phase Extractants from Phosphoric Acid Solution // Metals. 2021. Vol. 11. Iss. 6. № 991. DOI: 10.3390/met11060991
- Митрофанова Г.В., Черноусенко Е.В., Компанченко А.А., Калугин А.И. Особенности действия реагента-собирателя из класса алкиловых эфиров фосфорной кислоты при флотации апатит-нефелиновых руд // Записки Горного института. 2024. Т. 268. С. 637-645.
- Bin Xu, Aodong Gao, Zhouxiang Chen et al. Mechanical Properties and Optimal Mix Design of Phosphogypsum Cement Mineral Admixture Foam Light Soil // Coatings. 2023. Vol. 13. Iss. 11. № 1861. DOI: 10.3390/coatings13111861
- Kaczorowska M.A. The Latest Achievements of Liquid Membranes for Rare Earth Elements Recovery from Aqueous Solutions – A Mini Review // Membranes. 2023. Vol. 13. Iss. 10. № 839. DOI: 10.3390/membranes13100839
- Lobacheva O.L. Ion Flotation of Ytterbium Water-Salt Systems – An Innovative Aspect of the Modern Industry // Water. 2021. Vol. 13. Iss. 24. № 3493. DOI: 10.3390/w13243493
- Brückner L., Elwert T., Schirmer T. Extraction of Rare Earth Elements from Phospho-Gypsum: Concentrate Digestion, Leaching, and Purification // Metals. 2020. Vol. 10. Iss. 1. № 131. DOI: 10.3390/met10010131
- Lütke S.F., Oliveira M.L.S., Waechter S.R. et al. Leaching of rare earth elements from phosphogypsum // Chemosphere. 2022. Vol. 301. № 134661. DOI: 10.1016/j.chemosphere.2022.134661
- Virolainen S., Repo E., Sainio T. Recovering rare earth elements from phosphogypsum using a resin-in-leach process: Se-lection of resin, leaching agent, and eluent // Hydrometallurgy. 2019. Vol. 189. № 105125. DOI: 10.1016/j.hydromet.2019.105125
- Соколов И.В., Антипин Ю.Г., Рожков А.А., Соломеин Ю.М. Экогеотехнология добычи бедных руд с созданием условий для попутной утилизации отходов горного производства // Записки Горного института. 2023. Т. 260. С. 289-296. DOI: 10.31897/PMI.2023.21
- Пашкевич М.А., Алексеенко А.В., Нуреев Р.Р. Формирование экологического ущерба при складировании суль-фидсодержащих отходов обогащения полезных ископаемых // Записки Горного института. 2023. Т. 260. С. 155-167. DOI: 10.31897/PMI.2023.32
- Ochiai A., Utsunomiya S. Crystal Chemistry and Stability of Hydrated Rare-Earth Phosphates Formed at Room Tempera-ture // Minerals. 2017. Vol. 7. Iss. 5. № 84. DOI: 10.3390/min7050084
- Castro L., Blázquez M.L., González F., Muñoz J.A. Bioleaching of Phosphate Minerals Using Aspergillus niger: Recovery of Copper and Rare Earth Elements // Metals. 2020. Vol. 10. Iss. 7. № 978. DOI: 10.3390/met10070978
- Srivastava S., Pandey N.K. Low-Cost Hydrothermally Synthesized Multifunctional Rare Earth Metal Yttrium Cerium Oxide // Materials Proceedings. 2023. Vol. 14. Iss. 1. № 26. DOI: 10.3390/IOCN2023-14542
- Луцкий Д.С., Игнатович А.С. Исследование гидрометаллургического извлечения меди и рения при переработке медных некондиционных концентратов // Записки Горного института. 2021. Т. 251. С. 723-729. DOI: 10.31897/PMI.2021.5.11
- Ferri D., Grenthe I., Hietanen S. et al. Studies on Metal Carbonate Equilibria. 5. The Cerium(III) Carbonate Complexes in Aqueous Perchlorate Media // Acta Chemica Scandinavica. 1983. Vol. 37a. P. 359-365. DOI: 10.3891/acta.chem.scand.37a-0359
- Yu-Ran Luo, Byrne R. Carbonate complexation of yttrium and the rare earth elements in natural waters // Geochimica et Cosmochimica Acta. 2004. Vol. 68. Iss. 4. P. 691-699. DOI: 10.1016/S0016-7037(03)00495-2
- Lee J.H., Byrne R.H. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions // Geochimica et Cosmochimica Acta. 1993. Vol. 57. Iss. 2. P. 295-302. DOI: 10.1016/0016-7037(93)90432-V
- Wood S.A. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters // Chemical Geology. 1990. Vol. 82. P. 159-186. DOI: 10.1016/0009-2541(90)90080-Q
- Pyagai I., Zubkova O., Babykin R. et al. Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum // Materials. 2022. Vol. 15. Iss. 12. № 4335. DOI: 10.3390/ma15124335
- Chan-Ung Kang, Sang-Woo Ji, Hwanju Jo. Recycling of Industrial Waste Gypsum Using Mineral Carbonation // Sustainability. 2022. Vol. 14. Iss. 8. № 4436. DOI: 10.3390/su14084436
- Cheremisina O., Sergeev V., Ponomareva M. et al. Kinetics Study of Solvent and Solid-Phase Extraction of Rare Earth Metals with Di-2-Ethylhexylphosphoric Acid // Metals. 2020. Vol. 10. Iss. 5. № 687. DOI: 10.3390/met10050687
- Amirshahi S., Jorjani E. Preliminary Flowsheet Development for Mixed Rare Earth Elements Production from Apatite Leaching Aqueous Solution Using Biosorption and Precipitation // Minerals. 2023. Vol. 13. Iss. 7. № 909. DOI: 10.3390/min13070909
- Chuting Zhang, Chaoyang Chen, Zhibin Li, Andy H. Shen. Chemical Composition and Spectroscopic Characteristics of Alexandrite Effect Apatite from the Akzhailyau Mountains of Kazakhstan // Minerals. 2023. Vol. 13. Iss. 9. № 1139. DOI: 10.3390/min13091139
- Biying Lai, Bo Xu, Yi Zhao. U–Pb Dating, Gemology, and Chemical Composition of Apatite from Dara-e-Pech, Afghani-stan // Crystals. 2024. Vol. 14. Iss. 1. № 34. DOI: 10.3390/cryst14010034
- Litvinova T., Kashurin R., Zhadovskiy I., Gerasev S. The Kinetic Aspects of the Dissolution of Slightly Soluble Lanthanoid Carbonates // Metals. 2021. Vol. 11. № 1793. DOI: 10.3390/met11111793
- Lee J.H., Byrne R.H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships // Geochimica et Cosmochimica Acta. 1992. Vol. 56. Iss. 3. P. 1127-1137. DOI: 10.1016/0016-7037(92)90050-S