Submit an Article
Become a reviewer
Artem V. Sobenin
Artem V. Sobenin
Researcher
Institute of Mining of the Ural Branch of RAS
Researcher
Institute of Mining of the Ural Branch of RAS
Ekaterinburg
Russia

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-01-31
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Rationale for a possibility of using humic preparations production waste for wastewater purification from metals (Cd2+, Zn2+, Mg2+, Cu2+) aimed at developing efficient measures on environmental rehabilitation

Article preview

Results of studying optimal conditions and parameters for afterpurification of underspoil waters from metal ions using humic acids production waste are presented with a view to develop the efficient measures on environmental rehabilitation of ecosystems disturbed by the development of copper pyrite deposits. The influence of contact time and waste dosage on the purification process was analysed, changes in the pH of wastewater and its impact on the growth and development of plants were studied. The key factors were identified allowing to achieve the efficiency of the purification process – the optimal contact time in the range from 120 to 180 min and waste dosage of 10 g/l. The study showed that the use of waste resulted in a neutral pH value of 7.03 compared to the initial pH value of 5.95. It was ascertained that the use of iron-magnesium production waste in combination with waste from humic preparations production made it possible to achieve the MPC of commercial fishing importance (with the exception of magnesium). Wastewater after the afterpurification process with high magnesium concentrations did not have a stimulating effect on the growth and development of Lepidium sativum L. plants. From biotesting results it can also be stated that there is no negative impact on the growth and development of Lepidium sativum L. The results obtained indicate a potentiality of using afterpurified wastewater for watering plants in the process of initiating the environmental rehabilitation of the disturbed ecosystems.

How to cite: Antoninova N.Y., Sobenin A.V., Usmanov A.I., Gorbunov A.A. Rationale for a possibility of using humic preparations production waste for wastewater purification from metals (Cd2+, Zn2+, Mg2+, Cu2+) aimed at developing efficient measures on environmental rehabilitation // Journal of Mining Institute. 2024. Vol. 267. p. 421-432. EDN NYTBJH
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-28
  • Date accepted
    2023-03-02
  • Online publication date
    2023-03-23
  • Date published
    2023-04-25

Assessment of the possibility of using iron-magnesium production waste for wastewater treatment from heavy metals (Cd2+, Zn2+, Co2+, Cu2+)

Article preview

Relevant problems associated with treatment of industrial wastewater from heavy metal ions are considered. Due to industrial development, the amount of wastewater increases as well as the risks of heavy metals getting into surface and groundwater, accumulating in water bodies and becoming aggressive environmental pollutants, which affect the animal and human organisms. To assess the possibility of extracting metal ions (Cd 2+ , Zn 2+ , Co 2+ , Cu 2+ ) from industrial wastewater and their further treatment, studies were carried out on redistribution of heavy metals in the “wastewater – waste” system using iron-magnesium production waste. Samples of the investigated waste weighing 0.1; 0.2; 0.5; 1; 1.5; 2 g were taken for wastewater volume of 50 ml per each subsample. Contact time varied from 5 to 180 min, waste fraction was 1 mm. The interaction process showed that the waste efficiently removes metal ions (Cd 2+ , Zn 2+ , Co 2+ , Cu 2+ ) from industrial wastewater. The efficiency of removing a pollutant from the solution depends on the weight of the waste subsample, initial concentration of metal ions, and contact time.

How to cite: Antoninova N.Y., Sobenin A.V., Usmanov A.I., Shepel K.V. Assessment of the possibility of using iron-magnesium production waste for wastewater treatment from heavy metals (Cd2+, Zn2+, Co2+, Cu2+) // Journal of Mining Institute. 2023. Vol. 260. p. 257-265. DOI: 10.31897/PMI.2023.34