-
Date submitted2024-03-11
-
Date accepted2024-11-07
-
Date published2025-04-25
Geochemical characteristics of weathering crusts on the Dzhezhimparma Ridge and the Nemskaya Upland (South Timan)
Numerous local varieties of weathering crusts are known in the South Timan. They differ in their position in the section, type of weathering products, substrates, and occurrence. The aim of the research is to identify patterns in the distribution of rock-forming, rare and rare earth elements and the composition of clay minerals in clay formations of the weathering crusts. The main task is to describe the occurrence and geochemical features that enable determining the genetic type and formation conditions of weathering crusts. The paper presents the results of a study of the distribution of petrogenic, rare earth, rare elements, and clay minerals in weathering crust of different ages, genetic types and occurrence conditions on the Dzhezhimparma Ridge and the Nemskaya Upland in the South Timan. We found that hydromica-kaolinite-type weathering crust is developed after the Late Riphean Dzhezhim Fm. rocks in the basement-cover contact zone on the Dzhezhimparma Upland, and the layer of fine-grained rock at the base of the Devonian section previously considered a weathering crust was formed as a result of mechanical destruction of the Devonian sandstones during movement in the thrust zone. In the Vadyavozh quarry located on the Nemskaya Upland, we studied and described the formations of Mesozoic-Cenozoic areal and linear weathering crusts after the Late Riphean Dzhezhim Fm. rocks. We found that micaceous siltstones in the siltstone-sandstone strata of the Dzhezhim Fm. are associated with the Riphean stage of crust formation and are composed of weathering crust material redeposited in the epicontinental basin.
-
Date submitted2024-05-30
-
Date accepted2024-10-14
-
Date published2024-11-12
Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths
The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.
-
Date submitted2024-04-24
-
Date accepted2024-09-24
-
Date published2024-11-12
Study and justification of the combination of beneficiation processes for obtaining flake graphite from technogenic carbon-containing dusts
The most important task of modern production development is to provide the mineral and raw materials sector of the economy with resources included in the list of strategic raw materials, including flake graphite. In addition to natural raw materials, the source of its obtaining can be metallurgical production wastes not involved in processing. Development of metallurgical dust beneficiation technology will solve the problem of obtaining high-purity flake graphite with a crystal structure close to ideal and in demand in the production of high-tech materials. It will allow creating a renewable raw material base of graphite and utilising metallurgical production wastes. The research included the study of dust beneficiation by coarseness, magnetic and flotation methods, the influence of dust disintegration processes on beneficiation indicators. Based on the established technological properties of the components of dusts, magnetic, flotation and gravity beneficiation methods can be applied for their separation in different sequence. It is shown that dusts from different sites have different enrichability by these methods, and it should be taken into account when developing a complex technology of their processing. The degree of beneficiation increases in a row of dusts from the blast furnace shop (BF) – electric steel smelting shop (ESS) – oxygen-converter shop (OCS). The method of grinding has a significant influence on the separation indicators – at dry grinding in a centrifugal-impact mill with subsequent pneumatic classification the quality of graphite concentrates increases by 22.7 % of carbon for BF dust and by 13.48 % of carbon for ESS dust. OCS dust beneficiation indicators are high at coarse grinding with steel medium – mass fraction of carbon 96.1 %.
-
Date submitted2023-09-29
-
Date accepted2023-10-25
-
Date published2024-08-26
Laboratory studies of transformation of porosity and permeability and chemical composition of terrigenous reservoir rocks at exposure to hydrogen (using the example of the Bobrikovskii formations in the oil field in the northeast Volga-Ural oil and gas province)
The article describes the methodology for laboratory studies of reservoir rock exposure to hydrogen. The stages of sample research and the instruments used in the experiments are considered. A comparative analysis of the results of studies on porosity and permeability of core samples was performed. It was shown that after exposure to hydrogen, the porosity decreased by 4.6 %, and the permeability by 7.9 %. The analysis of correlation dependencies demonstrated a typical change in the relationship of these characteristics: after the samples exposure to hydrogen the scatter of the values increased and the correlation coefficient decreased, which indicates a change in the structure of the void space. Based on the research results, it was concluded that the decrease in porosity and permeability of the core samples occurred due to their minor compaction under the action of effective stresses. The chemical analysis of the rock showed no major difference in the composition of the basic oxides before and after exposure to hydrogen, which points to the chemical resistance of the studied formation to hydrogen. The experimental results showed that the horizon under consideration can be a storage of the hydrogen-methane mixture.
-
Date submitted2023-05-21
-
Date accepted2024-05-02
-
Date published2024-08-26
Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province
The study of high-carbon formations was instigated both by the decreasing raw material base of oil as a result of its extraction, and by the progress in development of low-permeability shale strata, primarily in the USA, Australia, and China. The most valuable formations occur in traditional hydrocarbon production areas – the West Siberian, Volga-Ural and Timan-Pechora, North Pre-Caucasian and Lena-Tunguska oil and gas provinces. Specific features of the Late Devonian-Early Carboniferous high-carbon formation occurring in the eastern marginal part of the East European Platform are: heterogeneous section due to intense progradation of the carbonate platform from west to east; succession of lithofacies environments that determined the unevenness of the primary accumulation and secondary distribution of organic matter (OM); possible migration or preservation in the source strata during the subsidence stages of the moving parts of bitumides, which determined the prospects for oil and gas potential. The distribution pattern of the present OM content was investigated depending on lithofacies conditions and lithological composition of rocks in the “Domanik type” Upper Devonian-Tournaisian deposits in the Timan-Pechora Province (TPP), its transformation degree to bring it to the initial content of organic carbon and further estimation of the share of stored “mobile oil” in oil and gas source formation. The study was based on the analysis of the data set on organic carbon content in core samples and natural exposures in the Ukhta Region in the Domanik-Tournaisian part of the section including more than 5,000 determinations presented in reports and publications of VNIGRI and VNIGNI and supplemented by pyrolytic and bituminological analyses associated with the results of microtomographic, macro- and lithological studies and descriptions of thin sections made at the Saint Petersburg Mining University. For each tectonic zone of the TPP within the investigated high-carbon intervals, the content of total volumes of organic carbon was determined. The data obtained allow estimating the residual mass of mobile bitumoids in a low-permeability matrix of the high-carbon formation.
-
Date submitted2023-08-14
-
Date accepted2023-12-27
-
Date published2024-12-25
Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons
In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.
-
Date submitted2022-09-26
-
Date accepted2023-09-20
-
Date published2024-04-25
Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer
The peculiarity of the geological structure of carbonate reservoirs is their complex permeability and porosity characteristics, reflecting the simultaneous presence of cavities variety (fractures, caverns, pores). Loss of circulation during penetration of fractured rock intervals significantly increases well construction time due to lack of efficient plugging isolation compositions. The main disadvantages of traditional compositions are high sensitivity to dilution in the process of their injection into the absorption zone, as well as insufficient structural strength to prevent the isolation composition from spreading during the induction period. For efficient isolation of catastrophic absorption zones in conditions of high opening of absorption channels a new cross-linking plugging isolation composition has been developed, which allows to exclude disadvantages of traditional isolation compositions. Application of the composition will allow to reduce the injection volume of the isolation composition and the time of isolation works due to its resistance to dilution and movement of formation water in the absorption interval.
-
Date submitted2022-12-01
-
Date accepted2023-01-19
-
Date published2023-12-25
Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis
The mineralogical and geochemical features of diamond-bearing tourmaline crystals (schorl-uvite series) from garnet-clinopyroxene rocks of the Kumdy-Kol deposit (Northern Kazakhstan) have been studied in detail. The formation of the main rock-forming minerals (garnet + K-bearing clinopyroxene) occurred in the diamond stability field at 4-6 GPa and 950-1000 °C. Crystallization of K-bearing clinopyroxene at these parameters is possible in the presence of an ultra-potassic fluid or melt formed because of crustal material melting in subduction zones. Tourmaline crystals (up to 1 cm) containing diamond inclusions perform veins crosscutting high-pressure associations. The composition of individual zones varies from schorl to uvite within both a single grain and the sample as a whole. The potassium content in this tourmaline does not exceed 0.1 wt.% K2O, and the isotopic composition of boron δ11B varies from –10 to –15.5 ‰, which significantly differs from the previously established isotopic composition of boron in maruyamaite crystals (δ11B 7.7 ‰ in the core and –1.2 ‰ in the rim) of the same deposit. Analysis of the obtained data on δ11B in the tourmalines from the diamond-grade metamorphic rocks within the Kumdy-Kol deposit suggests the existence of two boron sources that resulted in crystallization of K-bearing tourmaline crystals (maruyamaite-dravite series) and potassium-free tourmalines of the schorl-uvite series.
-
Date submitted2022-10-10
-
Date accepted2023-01-19
-
Date published2023-12-25
Assessment of the possibility of using leucoxene-quartz concentrate as raw material for production of aluminium and magnesium titanates
Leucoxene-quartz concentrate is a large-tonnage by-product of development of the Timan oil-titanium field (oil-saturated sandstones) which is not commercially used at present. High content of titanium compounds (to 50 % by weight) and lack of industrial, cost-effective, and safe technologies for its processing determine a high relevance of the work. Conventional processing technologies allow increasing the concentration of TiO2, but they are only a preparation for complex and hazardous selective chlorination. The process of pyrometallurgical conversion of leucoxene-quartz concentrate into aluminium and magnesium titanates was investigated. It was ascertained that the temperature of solid-phase reaction in Al2O3-TiO2-SiO2 system necessary for the synthesis of aluminium titanate (Al2TiO5) is 1,558 °С, and for MgO-TiO2-SiO2 system – 1,372 °С. Scaling up the process made it possible to synthesize a significant number of samples of titanate-containing products, the phase composition of which was studied by X-ray phase analysis. Two main phases were identified in the products: 30 % aluminium/magnesium titanate and 40 % silicon dioxide. In products of pyrometallurgical processing in the presence of aluminium, phases of pseudobrookite (3.5 %) and titanite (0.5 %) were also found. It was ascertained that in magnesium-containing system the formation of three magnesium titanates is possible: MgTiO3 – 25, Mg2TiO4 – 35, MgTi2O5 – 40 %. Experiments on sulphuric acid leaching of samples demonstrated a higher degree of titanium compounds extraction during sulphuric acid processing. An integrated conceptual scheme for processing leucoxene-quartz concentrate to produce a wide range of potential products (coagulants, catalysts, materials for ceramic industry) was proposed.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-11-03
Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit)
Technological mineralogy of titanium ores is the basis for assessing their complexity. It enables, from a unified standpoint, to trace the entire course of changes in mineral matter through operating procedures, including beneficiation, processing, and obtaining target industrial products. The study targets are Pizhemskoye ilmenite-leucoxene sandstones, which are distinguished by a complex polymineral composition. Along with the main ore components, there are other metals with different speciation (isomorphic admixture, independent mineral phases). The optimal set of mineralogical analysis methods for the predictive assessment of their further use is substantiated exemplified by titanium ores of the Pizhemskoye deposit, which are complex, noted for a variable content of iron oxides and contain rare earth metals. Examinations by X-ray phase analysis and scanning electron microscopy confirm that the main titanium phases of sandstones are pseudorutile and a polymineral aggregate, “leucoxene”. Considering the granulometric peculiarities of the magnetic and non-magnetic fractions of the gravity concentrate, the prospects of technologies for processing titanium raw materials are discussed. Along with the problems of obtaining high-quality raw materials, the transformations of mineral phases as a result of extreme impacts and their physicochemical properties as a consequence of isomorphic substitution of a part of Ti atoms with natural modifier agents (Fe and V) in the synthesis of titanium oxide nanostructures for industrial applications are considered (photocatalytic nanoreactor).
-
Date submitted2021-02-12
-
Date accepted2022-07-26
-
Date published2022-11-10
Manifestation of incompatibility of marine residual fuels: a method for determining compatibility, studying composition of fuels and sediment
- Authors:
- Radel R. Sultanbekov
- Andrey M. Schipachev
The results of studying the problem of active sediment formation when mixing residual fuels, caused by manifestation of incompatibility, are presented. A laboratory method has been developed for determining the compatibility and stability of fuels allowing identification of a quantitative characteristic of sediment formation activity. Laboratory studies were performed, and incompatible fuel components were identified. Tests were made to determine the quality indicators of samples and group individual composition of fuels. Results on the content of total and inorganic carbon in the obtained sediments were determined using Shimadzu TOC-V SSM 5000A. Chemical composition was determined and calculated on LECO CHN-628 analyser. Group composition of hydrocarbon fuels contained in the sediment was studied by gas chromato-mass spectrometry on GCMS-QP2010 Ultra Shimadzu. To obtain additional information on the structural group composition of fuel sediment, IR spectrometry was performed on IR-Fourier spectrometer IRAffinity-1. X-ray diffraction analysis of sediment samples was made using X-ray diffractometer XRD-7000 Shimadzu; interplanar distances d002 and d100 as well as Lс and Lа crystallite sizes served as the evaluation criteria. Microstructural analysis of total sediment was performed by scanning electron microscopy. The results of the research confirmed that the content of normal alkanes in the fuel mixture mainly affects sediment formation. Recommendations were drawn on preserving the quality of fuels and reducing sediment formation during storage and transportation.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-07-13
Mullite production: phase transformations of kaolinite, thermodynamics of the process
The growing demand for mullite raw materials, which meet industrial requirements originates the search for new and alternative sources, as well as efficient technologies for obtaining the target products (nanocomposites). The article suggests a method for obtaining mullite from kaolinite experimentally (Vezhayu-Vorykvinsky deposit, Russia). Structural kaolinite transformations (Al-Si-O-Me system), mineral phases transformations, and thermodynamics of the process have been studied. Based on the estimation of the thermodynamics of the reactions, the preferable reaction of mullite formation was determined. The article shows, that formation of the target product, mullite nanocomposite, has several intermediate phases (metakaolinite, pseudomullite). The transformations of the initial kaolinite structure include the removal of structural water and separation of the silica-oxygen tetrahedral and alumina-oxygen octahedral layers, the decomposition into free oxides, breaking of bonds between the silica-oxygen tetrahedrons and the partial increase in the coordination number of aluminium ions, the formation of mullite and cristobalite from free oxides. The proposed approach controls the ratio of Al 2 O 3 and SiO 2 phases at certain stages, which will further improve the mechanical and other properties of the matrix of the obtained raw materials for the target prototypes of industrial products.
-
Date submitted2021-09-17
-
Date accepted2022-04-07
-
Date published2022-12-29
Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover
Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.
-
Date submitted2021-10-14
-
Date accepted2022-04-07
-
Date published2022-04-29
The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow
The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.
-
Date submitted2021-08-05
-
Date accepted2021-11-30
-
Date published2021-12-27
Morozkinskoye gold deposit (southern Yakutia): age and ore sources
The paper presents the results of the comprehensive isotope geochemical (Re-Os, Pb and δ 34 S) study of sulfide mineralization of the Morozkinskoye deposit. The ore zones of the deposit are localized in the syenite massif of Mount Rudnaya, which is located within the Central Aldan ore region (southern Yakutia). Gold mineralization is represented by vein-disseminated or vein type mineralization and is manifested in acidic low-temperature metasomatites – beresites (Qz-Ser-Ank-Py). For the first time we obtained an age estimate of the gold mineralization ~ 129 ± 3 Ma, which the synchronism of the hydrothermal ore process in the beresites, which formed the Morozkinskoye deposit, and magmatic crystallization of the syenites of Mount Rudnaya (~130 Ma). The osmium initial isotopic composition of the studied sulfides indicates a mixed mantle-crustal source of sulfide mineralization. New lead isotopic data of syenites indicate the predominance of mantle lead and an insignificant role of the lower – crust lead, while the isotopic composition of pyrite denotes the presence of the upper crustal material in the ore genesis. The sulfide δ 34 S values vary from –2.3 to +0.6 ‰ and indicate a predominantly magmatic source of sulfur in the ores.
-
Date submitted2021-03-11
-
Date accepted2021-07-27
-
Date published2021-10-21
Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highlyparaffinic oil by electric submersible pumps from multiformation deposits
Production of highly solidifying abnormal oils (with a paraffin content of over 30 % by mass) in the Far North is complicated by the intensive formation of asphalt-resin-paraffin deposits (ARPD) in the bottomhole zone of the productive formation, well and surface equipment. Existing methods and technologies for countering the formation of organic deposits in well equipment have many advantages. However, their application in the production of highly paraffinic oil does not fully prevent the formation of ARPD in the tubing string. This leads to a significant reduction in oil production, reduction of turnaround and intertreatment periods of production wells operation, an increase in specific operating expenses for paraffin removal. Results of theoretical and laboratory investigations presented in the article show that one of the promising ways to improve the operational efficiency of wells equipped with electric submersible pumps during extraction of highly paraffinic oil from multiformation deposits is the application of a new integrated technology based on the joint production of highly solidifying abnormal oil with oil, characterized by a lower paraffin content and manifestation of structural and mechanical properties, in conjunction with the regulation of the parameters for the electric submersible pump. Results of numerical modeling using the PIPESIM steady-state multiphase flow simulator, physical, chemical and rheological investigations show that with a decrease of highly paraffinic oil from the productive formation D2ef in a blend with Stary Oskol oil from the Kyrtaelskoye field, a decrease in the mass content of paraffin in the blend and the temperature of its saturation with paraffin, depth and intensity of the organic deposits formation in the tubing string, pour point, as well as the improvement of the rheological properties of the investigated structured dispersed systems is observed. Article describes a promising assembly of well equipment for the single tubing separate production of highly paraffinic oil from multiformation deposits of the Timan-Pechora province, providing separation of the perforation zones in two productive formations using a packer-anchor system at simultaneous-separate operation of the formations by a double electric submersible pump unit.
-
Date submitted2021-02-09
-
Date accepted2021-07-27
-
Date published2021-10-21
Development of an algorithm for determining the technological parameters of acid composition injection during treatment of the near-bottomhole zone, taking into account economic efficiency
Relevance of the research is due to the low proportion of successful hydrochloric acid treatments of near-bottomhole zones of carbonate reservoirs in the Perm region caused by insufficiently careful design and implementation of measures to stimulate oil production. Within the framework of this article, the development of a program is presented, which is based on an algorithm that allows determining the volume and rate of injection for an acid composition into a productive formation corresponding to the maximum economic efficiency during hydrochloric acid treatment. Essence of the proposed algorithm is to find the greatest profit from measures to increase oil recovery, depending on the cost of its implementation and income from additionally produced oil. Operation of the algorithm is carried out on the principle of enumerating the values of the volume and rate of injection for the acid composition and their fixation when the maximum difference between income and costs, corresponding to the given technological parameters of injection, is reached. The methodology is based on Dupuis's investigations on the filtration of fluids in the formation and the results of the experiments by Duckord and Lenormand on the study of changes in the additional filtration resistance in the near-well zone of the formation when it is treated with an acid composition. When analyzing and including these investigations into the algorithm, it is noted that the developed technique takes into account a large number of factors, including the lithological and mineralogical composition of rocks, technological parameters of the injection of a working agent and its properties, well design, filtration properties of the formation, properties of well products. The article provides an algorithm that can be implemented without difficulty using any programming language, for example, Pascal. Selection of the optimal values for the volume and rate of injection is presented in this paper, using the example of a production well at the Chaikinskoye oil field, located within the Perm region. Introduction of the developed algorithm into the practice of petroleum engineering will allow competent and effective approach to the design of hydrochloric acid treatments in carbonate reservoirs without a significant investment of time and additional funds.
-
Date submitted2020-06-16
-
Date accepted2021-03-29
-
Date published2021-09-20
Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench
- Authors:
- Igor A. Alenichev
- Ruslan A. Rakhmanov
Minimizing the discharge of blasted rock mass into the developed space of the pit is a very relevant area for study, as it allows to increase the processability of work and reduce the cost of mining. The article presents the results of experimental industrial explosions, during which the study of this issue was conducted. The main purpose of the work was to establish the key factors affecting the volume of rock mass discharge to the pit haulage berm. During the analysis of the world experience of research on this topic, the key factors affecting the formation of collapse and discharge – natural and technological – are identified. The method of conducting experiments and collecting data for analyzing the influence of technological parameters of location, charging and initiation of wells on the volume of rock mass discharge is described. It is established that the main discharge to the pit haulage berm is formed by the volume of rock mass limited by the prism of the slope angle. With a sufficient rock mass displacement from the edge of the bench crest towards the center of the block, only the wells of the 1st and 2nd rows participate in the discharge formation. Empirical dependences of the total volume of rock mass discharge on the length of the block along the bench crest, the specific consumption of explosives, the size of a rock piece P 50 and the rate of rock breaking are obtained. The obtained results can be used to design the parameters of the drilling and blasting operations (DBO), as well as to predict and evaluate the possible consequences of a mass explosion in similar mining and geological conditions.
-
Date submitted2020-05-05
-
Date accepted2020-10-05
-
Date published2020-11-24
Assessment of the Influence of Water Saturation and Capillary Pressure Gradients on Size Formation of Two-Phase Filtration Zone in Compressed Low-Permeable Reservoir
The paper examines the influence of capillary pressure and water saturation ratio gradients on the size of the two-phase filtration zone during flooding of a low-permeable reservoir. Variations of water saturation ratio s in the zone of two-phase filtration are associated with the pressure variation of water injected into the reservoir; moreover the law of variation of water saturation ratio s ( r , t ) must correspond to the variation of injection pressure, i.e. it must be described by the same functions, as the functions of water pressure variation, but be subject to its own boundary conditions. The paper considers five options of s ( r , t ) dependency on time and coordinates. In order to estimate the influence of formation and fluid compressibility, the authors examine Rapoport – Lis model for incompressible media with a violated lower limit for Darcy’s law application and a time-dependent radius of oil displacement by water. When the lower limit for Darcy’s law application is violated, the radius of the displacement front depends on the value of capillary pressure gradient and the assignment of s function. It is shown that displacement front radii contain coefficients that carry information about physical properties of the reservoir and the displacement fluid. A comparison of two-phase filtration radii for incompressible and compressible reservoirs is performed. The influence of capillary pressure gradient and functional dependencies of water saturation ratio on oil displacement in low-permeable reservoirs is assessed. It is identified that capillary pressure gradient has practically no effect on the size of the two-phase filtration zone and the share of water in the arbitrary point of the formation, whereas the variation of water saturation ratio and reservoir compressibility exert a significant influence thereupon.
-
Date submitted2020-05-13
-
Date accepted2020-06-24
-
Date published2020-10-08
Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development
Modern trends in the global energy market linked to the Sustainable Development Goals often lead to the adoption of political decisions with little basis in fact. Stepping up the development of renewable energy sources is an economically questionable but necessary step in terms of its social and ecological effects. However, subsequent development of hydrogen infrastructure is, at the very least, a dangerous initiative. In connection with mentioned above, an attempt to examine hydrogen by conducting an integral assessment of its characteristics has been made in this article. As a result of the research conducted, the following conclusions concerning the potential of the widespread implementation of hydrogen in the power generation sector have been made: as a chemical element, it harms steel structures, which significantly impedes the selection of suitable materials; its physical and volume characteristics decrease the general efficiency of the energy system compared to similar hydrocarbon solutions; the hydrogen economy does not have the necessary foundation in terms of both physical infrastructure and market regulation mechanisms; the emergence of widely available hydrogen poses a danger for society due to its high combustibility. Following the results of the study, it was concluded that the existing pilot hydrogen projects are positive yet not scalable solutions for the power generation sector due to the lack of available technologies to construct large-scale and geographically distributed infrastructure and adequate international system of industry regulation. Thus, under current conditions, the risks of implementing such projects considerably exceed their potential ecological benefits.
-
Date submitted2019-06-06
-
Date accepted2019-08-09
-
Date published2020-04-24
Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield
The paper presents the analysis of studies of the enrichment of sulfide and oxidized ores in Yakutia deposits. The ore of the deposit is a mixture of primary, mixed and oxidized ores. The main useful component of the studied ore samples is gold with a content of 1.5 to 2.8 g/t, the silver content is low – 5-17 g/t. Ore minerals are represented by sulfides, among which pyrite predominates. The total sulfide content does not exceed 3-5 %. The presence in the ore of free and associated gold with a grain size from fractions of a micron to 1.5 mm. Gold is represented by nuggets in intergrowth with sulfides and also forms independent inclusions. Ores are classified as easily cyanidable. It was found that the content of amalgamable gold is 10-49, the share of cyanidable gold ranges from 66.67-91, the share of refractory gold is 9.0-33.33 %, which in absolute amount equals to 0.24-0.8 g/t. The extraction of gold in gravitation concentrate varies depending on the gold content in the ore and the yield of concentrate and for ores with a gold content of 1.5-2.8 g/t from 40 to 60 %. The direct cyanidation of all studied ore samples established the possibility of extracting gold into solution up to 86.7-92.9 %, the gold content in cyanidation cakes is 0.2-0.3 g/t. Investigations of the gravitation concentrate by the method of intensive cyanidation showed that with an initial gold content of ~ 500 g/t, up to 98.9 % is extracted into the solution. The gold content in intensive cyanide cakes will be 6-15 g/t. A set of studies carried out by the authors of the article at various institutes showed that it is advisable to process ore from the deposit using cyanidation technology with preliminary gravitational extraction of gold.
-
Date submitted2019-03-31
-
Date accepted2019-08-25
-
Date published2020-02-25
Cascade frequency converters control features
The structures of systems with high-voltage cascade frequency converters containing multi-winding transformers and low-voltage low-power converters connected in series at each output phase of the load are considered. Low-voltage blocks contain three-phase diode or active rectifiers, DC capacitor filters, single-phase stand-alone voltage inverters and block disconnecting devices in partial modes (in case of failure when part of the blocks are disconnected). The possibilities of operation of cascade converters are determined, equations for correcting tasks to units in partial modes are given, tables of correction of tasks with estimates of achievable load characteristics are proposed. The results of experiments on the model of a powerful installation with a cascade frequency converter are presented, confirming the possibility of ensuring the symmetry of the load currents when disconnecting part of the blocks and the asymmetry of the circuit.
-
Date submitted2019-07-11
-
Date accepted2019-08-25
-
Date published2019-12-24
Improving the efficiency of using resource base of liquid hydrocarbons in Jurassic deposits of Western Siberia
Under conditions of the same type of oil deposits with hard-to-recover reserves in Jurassic terrigenous reservoirs of the West Siberian oil and gas province, a study was made about the influence of the geological structure features of objects and water flooding technologies on the response degree of production wells to water injection. Response degree of the wells was determined by analyzing the time series of production rates and injection volumes of injection wells with the calculation of inter-correlation function (ICF) values. It was believed that with ICF values in a given injection period of more than 0.5, production well responds to the injection. Factors that have a prevailing effect on water flooding success have been identified. Among them: effective oil-saturated thickness of the formation in production wells; relative amplitude of the self polarization of the formation in both production and injection wells; grittiness coefficient of the formation in injection wells; monthly volume of water injection and distance between wells. Methodological approach is proposed based on the application of the proposed empirical parameter of water flooding success, which involves the use of indirect data in conditions of limited information about the processes occurring in the formation at justification and selection of production wells for transferring them to injection during focal flooding; drilling of additional production and injection wells – compaction of the well grid; shutdown of injection and production wells; use of a transit wells stock; use of cyclic, non-stationary flooding in order to change the direction of filtration flows; determining the design of dual-purpose L-shaped wells (determining length of the horizontal part); limitation of flow rate in highly flooded wells with a high degree of interaction; determination of decompression zones (without injection of indicators), stagnant zones for drilling sidetracks, improving the location of production and injection wells, transferring wells from other horizons; choosing the purpose of the wells during implementation of the selective water flooding system in order to increase the efficiency of using the resource base of liquid hydrocarbons.
-
Date submitted2019-07-07
-
Date accepted2019-09-13
-
Date published2019-12-24
Installation for experimental research of multiphase electromechanical systems
- Authors:
- V. M. Tereshkin
- D. A. Grishin
- I. A. Makulov
The subject of this study is an installation for experimental research designed to study the characteristics and control algorithms of multiphase motors with the number of working phases from 3 to 8, connected by a star, a triangle, or in another way, allowing phase currents to flow, creating a rotating electromagnetic field. The installation consists of two separate independent units: a controller, or a human-machine control interface, and a power inverter module (converter). The controller is connected to the converter by a two-wire half-duplex interface (RS485) via the Modbus RTU communication protocol. The installation also includes synchronous motors with the number of phases 3, 5, 7. Using the developed installation for experimental research, it is possible to carry out experimental studies of multiphase motors when implementing various control algorithms for a converter that implements pulse-width vector modulation. The time required to implement control algorithms is minimal. According to the results of the experiments, it is possible to carry out a comparative analysis of multiphase motors in terms of energy efficiency, in terms of vibration of electromagnetic origin, in dynamic parameters. An experimental assessment of the load of the converter keys is possible. The created installation is an effective tool for checking the reliability of the results of theoretical studies of electromechanical systems based on multiphase motors.
-
Date submitted2019-05-02
-
Date accepted2019-07-09
-
Date published2019-10-23
Effect of Temperature on Solid-state Hydride Metal Synthesis According to Thermodynamic Modeling
Thermodynamic modeling of the reduction of copper dichloride in the media of various gaseous hydrides (ammonia, monosilane, methane) in the temperature range 273-1000 K was carried out. Calculations show that in narrower temperature ranges corresponding to the reactions of solid-state hydride synthesis (SHS) of metal sub- stances metal formation is usually supported by theoretical propositions. As a result of thermodynamic modeling, a principal result was obtained on the suppression of competing processes of nitriding, siliconizing and carbonization of metal under SHS conditions, which is important for metallurgical production. This additionally substantiates the correctness of previous experimental studies of SHS metals with modified surface and improved properties. By mod- eling, it was found that the reduction of solid copper dichloride to metal in ammonia or methane occurs stepwise (se- quentially, according to the Baykov rule) through the intermediate stages of the formation of a compound of low- valent copper – copper (I)chloride.