Effect of Temperature on Solid-state Hydride Metal Synthesis According to Thermodynamic Modeling
- 1 — Saint-Petersburg State Institute of Technology
- 2 — Saint-Petersburg Mining University
- 3 — Saint-Petersburg Mining University
- 4 — Saint-Petersburg Mining University
- 5 — Belarusian State Technological University
- 6 — LUT-University
Abstract
Thermodynamic modeling of the reduction of copper dichloride in the media of various gaseous hydrides (ammonia, monosilane, methane) in the temperature range 273-1000 K was carried out. Calculations show that in narrower temperature ranges corresponding to the reactions of solid-state hydride synthesis (SHS) of metal sub- stances metal formation is usually supported by theoretical propositions. As a result of thermodynamic modeling, a principal result was obtained on the suppression of competing processes of nitriding, siliconizing and carbonization of metal under SHS conditions, which is important for metallurgical production. This additionally substantiates the correctness of previous experimental studies of SHS metals with modified surface and improved properties. By mod- eling, it was found that the reduction of solid copper dichloride to metal in ammonia or methane occurs stepwise (se- quentially, according to the Baykov rule) through the intermediate stages of the formation of a compound of low- valent copper – copper (I) chloride.
References
- Makhova L.V. Solid State Hydride Synthesis and Structural-Chemical Features of Si-C-Containing Metallic Substances: Avtoref. dis. … kand. khim. nauk. St. Petersburg: Izd-vo SPbGU, 1992, p. 20 (in Russian).
- Sizyakov V.M., Bazhin V.Yu., Brichkin V.N., Petrov G.V. Non-ferrous metallurgy. St. Petersburg: Sankt-Peterburgskii gornyi universitet, 2015, p. 392 (in Russian).
- Nazarova E.A. The effect of adsorption of ammonium and organosilicon compounds on the tribochemical properties of metals (Al, Cu, Ni): Avtoref. dis. … kand. khim. nauk. St. Petersburg: SPbGTI (TU), 2016, p. 20 (in Russian).
- Popel' S.I., Sotnikov A.I., Boronenkov V.N. Theory of Metallurgical Processes. Moscov: Metallurgiya, 1986, p. 463 (in Russian).
- Slobodov A.A., Ralis R.V., Uspenskii A.B. et al. Development of quality criteria for systems and thermodynamic databases for the study of multicomponent physicochemical natural and technological systems. Izvestiya SPbGTI (TU). 2015. N 31 (57), p. 8- 12 (in Russian).
- Slobodov A.A., Zarembo V.I. A unified approach to the problems (formulation and solution) of the calculation of physico- chemical equilibria. VI Vses. shk.-sem. «Primenenie matematicheskikh metodov dlya opisaniya i izucheniya fiziko-khimicheskikh ravnovesii». Novosibirsk: INKh SO AN SSSR. 1989. Vol. 1, p. 59-60 (in Russian).
- Syrkov A.G. Nanotechnology and nanomaterials. The role of nonequilibrium processes. St. Petersburg: Izd-vo Politekhn. un-ta, 2016, p. 194 (in Russian).
- Trepnel B. Chemical sorption. Moscow: Izd-vo inostrannoi literatury, 1958, p. 326 (in Russian).
- Pshchelko N.S., Syrkov A.G., Vakhreneva T.G. et al. Electrophysical and chemical-physical micro- and nanotechnologies for enhancing the adhesion of components in a metal-dielectric system. Rossiiskie nanotekhnologii. 2009. Vol. 4. N 11-12, p. 42-47 (in Russian).
- Dubois L.H., Zegarsky B.R. The activated adsorption of silane on nickel. Surface Science. 1988. Vol. 204. N. 1, p. 113-115.
- Ralys R.V., Uspenskiy A.A., Slobodov A.A. Deriving properties of low-volatile substances from isothermal evaporation curves. Journal of Non-Equilibrium Thermodynamics. 2016. Vol. 41. N 1, p. 3-11.
- Syrkov A.G. Novel ways and fundamentals of metals nanotechnology. Tsvetnye Metally. 2004. N 4, p. 67-71.