Submit an Article
Become a reviewer
Research article
Geology

Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis

Authors:
Andrey V. Korsakov1
Denis S. Mikhailenko2
Le Zhang3
Yi-Gang Xu4
About authors
  • 1 — Ph.D., Dr.Sci. Chief Researcher V.S.Sobolev Institute of Geology and Mineralogy Siberian Branch RAS ▪ Orcid
  • 2 — Ph.D. Senior Researcher V.S.Sobolev Institute of Geology and Mineralogy Siberian Branch RAS ▪ Orcid
  • 3 — Ph.D. Head of Laboratory State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Science ▪ Orcid
  • 4 — Academician Chinese of Science State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Science ▪ Orcid
Date submitted:
2022-12-01
Date accepted:
2023-01-19
Date published:
2023-05-18

Abstract

The mineralogical and geochemical features of diamond-bearing tourmaline crystals (schorl-uvite series) from garnet-clinopyroxene rocks of the Kumdy-Kol deposit (Northern Kazakhstan) have been studied in detail. The formation of the main rock-forming minerals (garnet + K-bearing clinopyroxene) occurred in the diamond stability field at 4-6 GPa and 950-1000 °C. Crystallization of K-bearing clinopyroxene at these parameters is possible in the presence of an ultra-potassic fluid or melt formed because of crustal material melting in subduction zones. Tourmaline crystals (up to 1 cm) containing diamond inclusions perform veins crosscutting high-pressure associations. The composition of individual zones varies from schorl to uvite within both a single grain and the sample as a whole. The potassium content in this tourmaline does not exceed 0.1 wt.% K 2 O, and the isotopic composition of boron δ 11 B varies from –10 to –15.5 ‰, which significantly differs from the previously established isotopic composition of boron in maruyamaite crystals (δ 11 B 7.7 ‰ in the core and –1.2 ‰ in the rim) of the same deposit. Analysis of the obtained data on δ 11 B in the tourmalines from the diamond-grade metamorphic rocks within the Kumdy-Kol deposit suggests the existence of two boron sources that resulted in crystallization of K-bearing tourmaline crystals (maruyamaite-dravite series) and potassium-free tourmalines of the schorl-uvite series.

Keywords:
tourmaline diamond boron isotopic composition silicate-carbonate rocks subduction high pressure metamorphism Kokchetav
Online First

References

  1. Melnik A.E., Korolev N.M., Skublov S.G. et al. Zircon in mantle eclogite xenoliths: a review // Geological Magazine. 2021. Vol. 158. Iss. 8. P. 1371-1382. DOI: 10.1017/S0016756820001387
  2. Skublov S.G., Rumyantseva N.A., Qiuli Li et al. Zircon Xenocrysts from the Shaka Ridge Record Ancient Continental Crust: New U-Pb Geochronological and Oxygen Isotopic Data // Journal of Earth Science. 2022. Vol. 33. Iss. 1. P. 5-16. DOI: 10.1007/s12583-021-1422-2
  3. Скублов С.Г., Макеев А.Б., Красоткина А.О. и др. Изотопно-геохимические особенности циркона из Пижемского титанового месторождения (Средний Тиман) как отражение гидротермальных процессов // Геохимия. 2022. Т. 67. № 9. С. 807-829. DOI: 10.31857/S0016752522090060
  4. Rizvanova N.G., Alenicheva A.A., Skublov S.G. et al. Early Ordovician Age of Fluorite-Rare-Metal Deposits at the Voznesensky Ore District (Far East, Russia): Evidence from Zircon and Cassiterite U-Pb and Fluorite Sm-Nd Dating Results // Minerals. 2021. Vol. 11. Iss. 11. № 1154. DOI: 10.3390/min11111154
  5. Скублов С.Г., Гаврильчик А.К., Березин А.В. Геохимия разновидностей берилла: сравнительный анализ и визуализация аналитических данных методами главных компонент (PCA) и стохастического вложения соседей с t-распределением (t-SNE) // Записки Горного института. 2022. Т. 255. С. 455-469. DOI: 10.31897/PMI.2022.40
  6. Abdel Gawad A.E., Ene A., Skublov S.G. et al. Trace Element Geochemistry and Genesis of Beryl from Wadi Nugrus, South Eastern Desert, Egypt // Minerals. 2022. Vol. 12. Iss. 2. № 206. DOI: 10.3390/min12020206
  7. Marschall H.R., Korsakov A.V., Luvizotto G.L. et al. On the occurrence and boron isotopic composition of tourmaline in (ultra) high-pressure metamorphic rocks // Journal of the Geological Society. 2009. Vol. 166. Iss. 4. P. 811-823. DOI: 10.1144/0016-76492008-042
  8. Berryman E.J., Dongzhou Zhang, Wunder B., Duffy T.S. Compressibility of synthetic Mg-Al tourmalines to 60 GPa // American Mineralogist. 2019. Vol. 104. Iss. 7. P. 1005-1015. DOI: 10.2138/am-2019-6967
  9. Marschall H.R., Shao-Yong Jiang. Tourmaline Isotopes: No Element Left Behind // Elements. 2011. Vol. 7. № 5. P. 313-319. DOI: 10.2113/gselements.7.5.313
  10. van Hinsberg V.J., Franz G., Wood B.J. Determining subduction-zone fluid composition using a tourmaline mineral probe // Geochemical Perspectives Letters. 2017. Vol. 3. № 1. P. 160-169. DOI: 10.7185/geochemlet.1719
  11. Trumbull R.B., Codeço M.S., Shao-Yong Jiang et al. Boron isotope variations in tourmaline from hydrothermal ore deposits: A review of controlling factors and insights for mineralizing systems // Ore Geology Reviews. 2020. Vol. 125. № 103682. DOI: 10.1016/j.oregeorev.2020.103682
  12. Da-Long Hu, Shao-Yong Jiang. In-situ elemental and boron isotopic variations of tourmaline from the Maogongdong deposit in the Dahutang W-Cu ore field of northern Jiangxi Province, South China: Insights into magmatic-hydrothermal evolution // Ore Geology Reviews. 2020. Vol. 122. № 103502. DOI: 10.1016/j.oregeorev.2020.103502
  13. Shimizu R., Ogasawara Y. Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP metamorphic rocks: A geochemical recorder from peak to retrograde metamorphic stages // Journal of Asian Earth Sciences. 2013. Vol. 63. P. 39-55. DOI: 10.1016/j.jseaes.2012.11.024
  14. Lussier A., Ball N.A., Hawthorne F.C. et al. Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure // American Mine-ralogist. 2016. Vol. 101. Iss. 2. P. 355-361. DOI: 10.2138/am-2016-5359
  15. Корсаков А.В., Травин А.В., Юдин Д.С., Маршал Х.Р. Турмалин, как 40Ar/39Ar геохронометр на примере метаморфических пород Кокчетавского массива (Казахстан) // Доклады Академии наук. 2009. Т. 424. № 4. С. 531-533.
  16. Мусияченко К.А., Корсаков А.В., Летников Ф.А. Новое проявление маруямаита // Доклады Российской Академии наук. Науки о Земле. 2021. Т. 498. № 1. С. 58-65. DOI: 10.31857/S268673972105011X
  17. Berryman E., Wunder B., Rhede D. Synthesis of K-dominant tourmaline // American Mineralogist. 2014. Vol. 99. № 2-3. P. 539-542. DOI: 10.2138/am.2014.4775
  18. Berryman E.J., Wunder B., Wirth R. et al. An experimental study on K and Na incorporation in dravitic tourmaline and insight into the origin of diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan // Contributions to Mineralogy and Petrology. 2015. Vol. 169. Iss. 3. № 28. DOI: 10.1007/s00410-015-1116-9
  19. Berryman E.J., Wunder B., Ertl A. et al. Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy // Physics and Chemistry of Minerals. 2016. Vol. 43. № 2. P. 83-102. DOI: 10.1007/s00269-015-0776-3
  20. Perchuk L.L., Safonov O.G., Yapaskurt V.O., Barton Jr J.M. Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review // Lithos. 2002. Vol. 60. Iss. 3-4. P. 89-111. DOI: 10.1016/S0024-4937(01)00072-X
  21. Сафонов О.Г., Перчук Л.Л., Литвин Ю.А. Равновесие калийсодержащего клинопироксена с расплавом как модель для барометрии глубинных ассоциаций // Геология и геофизика. 2005. Т. 46. № 12. С. 1318-1334.
  22. Шацкий В.С., Скузоватов С.Ю., Рагозин А.Л., Соболев Н.В. Подвижность элементов в зоне континентальной субдукции (на примере метаморфического комплекса сверхвысоких давлений Кокчетавского массива) // Геология и геофизика. 2015. Т. 56. № 7. С. 1298-1321. DOI: 10.15372/GiG20150704
  23. Shyh-Lung Hwang, Pouyan Shen, Hao-Tsu Chu et al. Crust-derived potassic fluid in metamorphic microdiamond // Earth and Planetary Science Letters. 2005. Vol. 231. Iss. 3-4. P. 295-306. DOI: 10.1016/j.epsl.2005.01.002
  24. Korsakov A.V., Hermann J. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks // Earth and Planetary Science Letters. 2006. Vol. 241. Iss. 1-2. P. 104-118. DOI: 10.1016/j.epsl.2005.10.037
  25. Васильев Е.А., Криулина Г.Ю., Гаранин В.К. Термическая история алмаза кимберлитовых трубок Архангельская и имени А.П.Карпинского-I // Записки Горного института. 2022. Т. 255. С. 327-336. DOI: 10.31897/PMI.2022.57
  26. Лаврова Л.Д., Печников В.А., Плешаков А.М. и др. Новый генетический тип алмазных месторождений. М.: Научный мир, 1999. 221 с.
  27. Sobolev N.V., Shatsky V.S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation // Nature. 1990. Vol. 343. Iss. 6260. P. 742-746. DOI: 10.1038/343742a0
  28. Dobretsov N.L., Sobolev N.V., Shatsky V.S. et al. Geotectonic evolution of diamondiferous paragneisses of the Kokchetav complex, Northern Kazakhstan – the geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt // The Island Arc. 1995. Vol. 4. Iss. 4. P. 267-279. DOI: 10.1111/j.1440-1738.1995.tb00149.x
  29. Shatsky V.S., Sobolev N.V., Vavilov M.A. Diamond-bearing metamorphic rocks of the Kokchetav massif (northern Kazakhstan) // Ultra-High Pressure Metamorphism. Cambridge: Cambridge University Press, 1995. P. 427-455.
  30. Шацкий В.С., Рагозин А.Л., Скузоватов С.Ю. и др. Изотопно-геохимические свидетельства природы протолитов алмазоносных пород Кокчетавской субдукционно-коллизионной зоны (Северный Казахстан) // Геология и геофизика. 2021. Т. 62. № 5. С. 678-689. DOI: 10.15372/GiG2020200
  31. Шацкий В.С., Скузоватов С.Ю., Рагозин А.Л. Изотопно-геохимические свидетельства коровой контаминации протолитов эклогитов Кокчетавской субдукционно-коллизионной зоны // Геология и геофизика. 2018. Т. 59. № 12. С. 1958-1978. DOI: 10.15372/GiG20181203
  32. Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. Электронно-зондовое определение состава минералов: микроанализатор или сканирующий электронный микроскоп? // Геология и геофизика. 2015. Т. 56. № 8. С. 1473-1482. DOI: 10.15372/GiG20150806
  33. Le Zhang, Zhong-Yuan Ren, Nichols A.R.L. et al. Lead isotope analysis of melt inclusions by LA-MC-ICP-MS // Journal of Analytical Atomic Spectrometry. 2014. Vol. 29. Iss. 8. P. 1393-1405. DOI: 10.1039/C4JA00088A
  34. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // American Mineralogist. 2010. Vol. 95. № 1. P. 185-187. DOI: 10.2138/am.2010.3371
  35. Henry D.J., Novák M., Hawthorne F.C. et al. Nomenclature of the tourmaline-supergroup minerals // American Mineralogist. 2011. Vol. 96. № 5-6. P. 895-913. DOI: 10.2138/am.2011.3636
  36. Ota T., Kobayashi K., Kunihiro T., Nakamura E. Boron cycling by subducted lithosphere, insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt // Geochimica et Cosmochimica Acta. 2008. Vol. 72. Iss. 14. P. 3531-3541. DOI: 10.1016/j.gca.2008.05.002
  37. Ota T., Kobayashi K., Katsura T., Nakamura E. Tourmaline breakdown in a pelitic system: implications for boron cycling through subduction zones // Contributions to Mineralogy and Petrology. 2008. Vol. 155. Iss. 1. P. 19-32. DOI: 10.1007/s00410-007-0228-2
  38. Celata B., Stagno V., Capizzi L.S. et al. Schorl breakdown at upper mantle conditions: Insights from an experimental study at 3.5 GPa // Lithos. 2022. Vol. 438-439. № 106999. DOI: 10.1016/j.lithos.2022.106999
  39. Ballirano P., Celata B., Bosi F. In situ high-temperature behaviour and breakdown conditions of uvite at room pressure // Physics and Chemistry of Minerals. 2022. Vol. 49. Iss. 10. № 40. DOI: 10.1007/s00269-022-01216-3
  40. Hermann J., Spandler C.J. Sediment Melts at Sub-arc Depths: an Experimental Study // Journal of Petrology. 2008. Vol. 49. Iss. 4. P. 717-740. DOI: 10.1093/petrology/egm073
  41. Cheng L., Zhang C., Zhou Y. et al. Experiments reveal enrichment of 11B in granitic melt resulting from tourmaline crystallization // Geochemical Perspectives Letters. 2022. Vol. 20. P. 37-42. DOI: 10.7185/geochemlet.2206
  42. Селятицкий А.Ю., Ревердатто В.В. Термобарические условия эксгумации Ti-клиногумитовых гранатитов Кокчетавской субдукционно-коллизионной зоны (Северный Казахстан) // Геология и геофизика. 2022. Т. 63. № 8. С. 1051-1074. DOI: 10.15372/GiG2021147
  43. Xu J., Zhang G.B., Marschall H.R. et al. Boron isotopes of white mica and tourmaline in an ultra-high pressure metapelite from the western Tianshan, China: dehydration and metasomatism during exhumation of subducted ocean-floor sediments // Contributions to Mineralogy and Petrology. 2022. Vol. 177. Iss. 4. № 46. DOI: 10.1007/s00410-022-01916-7
  44. Jan C.M. De Hoog, Savov I.P. Boron Isotopes as a Tracer of Subduction Zone Processes // Boron Isotopes. Cham: Springer International Publishing, 2018. P. 217-247. DOI: 10.1007/978-3-319-64666-4_9
  45. Halama R., Konrad-Schmolke M., Jan C.M. De Hoog. Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid-rock interaction in white mica (Lago di Cignana, Western Alps) // Contributions to Mineralogy and Petrology. 2020. Vol. 175. Iss. 3. № 20. DOI: 10.1007/s00410-020-1661-8
  46. Stepanov A.S., Hermann J., Korsakov A.V., Rubatto D. Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions // Contributions to Mineralogy and Petrology. 2014. Vol. 167. Iss. 5. № 1002. DOI: 10.1007/s00410-014-1002-x

Similar articles

A new diamond find and primary diamond potential of the Chetlas uplift (Middle Timan)
2023 Alexander M. Pystin, Yuriy V. Glukhov, Alexander A. Bushenev
Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap
2023 Кirill О. Тomskiy, Maria S. Ivanova
Tribodynamic aspects of the resource of electric submersible vane pumps for oil production
2023 Nikolay I. Smirnov, A. Nikolaevich Drozdov, N. Nikolaevich Smirnov
Trace elements in the silicate minerals of the Borodino Meteorite (Н5)
2023 Kristina G. Sukhanova
Combined method of phytoremediation and electrical treatment for cleaning contaminated areas of the oil complex
2023 Nikolay S. Shulaev, Ramil R. Kadyrov, Valeriya V. Pryanichnikova
Specifics of geotechnical risk control in the design of underground structures
2023 Elena Yu. Kulikova, Aleksandr G. Polyankin, Anna M. Potokina