Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis
- 1 — Ph.D., Dr.Sci. Chief Researcher V.S.Sobolev Institute of Geology and Mineralogy Siberian Branch RAS ▪ Orcid
- 2 — Ph.D. Senior Researcher V.S.Sobolev Institute of Geology and Mineralogy Siberian Branch RAS ▪ Orcid
- 3 — Ph.D. Head of Laboratory State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Science ▪ Orcid
- 4 — Academician Chinese of Science State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Science ▪ Orcid
Abstract
The mineralogical and geochemical features of diamond-bearing tourmaline crystals (schorl-uvite series) from garnet-clinopyroxene rocks of the Kumdy-Kol deposit (Northern Kazakhstan) have been studied in detail. The formation of the main rock-forming minerals (garnet + K-bearing clinopyroxene) occurred in the diamond stability field at 4-6 GPa and 950-1000 °C. Crystallization of K-bearing clinopyroxene at these parameters is possible in the presence of an ultra-potassic fluid or melt formed because of crustal material melting in subduction zones. Tourmaline crystals (up to 1 cm) containing diamond inclusions perform veins crosscutting high-pressure associations. The composition of individual zones varies from schorl to uvite within both a single grain and the sample as a whole. The potassium content in this tourmaline does not exceed 0.1 wt.% K 2 O, and the isotopic composition of boron δ 11 B varies from –10 to –15.5 ‰, which significantly differs from the previously established isotopic composition of boron in maruyamaite crystals (δ 11 B 7.7 ‰ in the core and –1.2 ‰ in the rim) of the same deposit. Analysis of the obtained data on δ 11 B in the tourmalines from the diamond-grade metamorphic rocks within the Kumdy-Kol deposit suggests the existence of two boron sources that resulted in crystallization of K-bearing tourmaline crystals (maruyamaite-dravite series) and potassium-free tourmalines of the schorl-uvite series.
References
- Melnik A.E., Korolev N.M., Skublov S.G. et al. Zircon in mantle eclogite xenoliths: a review // Geological Magazine. 2021. Vol. 158. Iss. 8. P. 1371-1382. DOI: 10.1017/S0016756820001387
- Skublov S.G., Rumyantseva N.A., Qiuli Li et al. Zircon Xenocrysts from the Shaka Ridge Record Ancient Continental Crust: New U-Pb Geochronological and Oxygen Isotopic Data // Journal of Earth Science. 2022. Vol. 33. Iss. 1. P. 5-16. DOI: 10.1007/s12583-021-1422-2
- Скублов С.Г., Макеев А.Б., Красоткина А.О. и др. Изотопно-геохимические особенности циркона из Пижемского титанового месторождения (Средний Тиман) как отражение гидротермальных процессов // Геохимия. 2022. Т. 67. № 9. С. 807-829. DOI: 10.31857/S0016752522090060
- Rizvanova N.G., Alenicheva A.A., Skublov S.G. et al. Early Ordovician Age of Fluorite-Rare-Metal Deposits at the Voznesensky Ore District (Far East, Russia): Evidence from Zircon and Cassiterite U-Pb and Fluorite Sm-Nd Dating Results // Minerals. 2021. Vol. 11. Iss. 11. № 1154. DOI: 10.3390/min11111154
- Скублов С.Г., Гаврильчик А.К., Березин А.В. Геохимия разновидностей берилла: сравнительный анализ и визуализация аналитических данных методами главных компонент (PCA) и стохастического вложения соседей с t-распределением (t-SNE) // Записки Горного института. 2022. Т. 255. С. 455-469. DOI: 10.31897/PMI.2022.40
- Abdel Gawad A.E., Ene A., Skublov S.G. et al. Trace Element Geochemistry and Genesis of Beryl from Wadi Nugrus, South Eastern Desert, Egypt // Minerals. 2022. Vol. 12. Iss. 2. № 206. DOI: 10.3390/min12020206
- Marschall H.R., Korsakov A.V., Luvizotto G.L. et al. On the occurrence and boron isotopic composition of tourmaline in (ultra) high-pressure metamorphic rocks // Journal of the Geological Society. 2009. Vol. 166. Iss. 4. P. 811-823. DOI: 10.1144/0016-76492008-042
- Berryman E.J., Dongzhou Zhang, Wunder B., Duffy T.S. Compressibility of synthetic Mg-Al tourmalines to 60 GPa // American Mineralogist. 2019. Vol. 104. Iss. 7. P. 1005-1015. DOI: 10.2138/am-2019-6967
- Marschall H.R., Shao-Yong Jiang. Tourmaline Isotopes: No Element Left Behind // Elements. 2011. Vol. 7. № 5. P. 313-319. DOI: 10.2113/gselements.7.5.313
- van Hinsberg V.J., Franz G., Wood B.J. Determining subduction-zone fluid composition using a tourmaline mineral probe // Geochemical Perspectives Letters. 2017. Vol. 3. № 1. P. 160-169. DOI: 10.7185/geochemlet.1719
- Trumbull R.B., Codeço M.S., Shao-Yong Jiang et al. Boron isotope variations in tourmaline from hydrothermal ore deposits: A review of controlling factors and insights for mineralizing systems // Ore Geology Reviews. 2020. Vol. 125. № 103682. DOI: 10.1016/j.oregeorev.2020.103682
- Da-Long Hu, Shao-Yong Jiang. In-situ elemental and boron isotopic variations of tourmaline from the Maogongdong deposit in the Dahutang W-Cu ore field of northern Jiangxi Province, South China: Insights into magmatic-hydrothermal evolution // Ore Geology Reviews. 2020. Vol. 122. № 103502. DOI: 10.1016/j.oregeorev.2020.103502
- Shimizu R., Ogasawara Y. Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP metamorphic rocks: A geochemical recorder from peak to retrograde metamorphic stages // Journal of Asian Earth Sciences. 2013. Vol. 63. P. 39-55. DOI: 10.1016/j.jseaes.2012.11.024
- Lussier A., Ball N.A., Hawthorne F.C. et al. Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure // American Mine-ralogist. 2016. Vol. 101. Iss. 2. P. 355-361. DOI: 10.2138/am-2016-5359
- Корсаков А.В., Травин А.В., Юдин Д.С., Маршал Х.Р. Турмалин, как 40Ar/39Ar геохронометр на примере метаморфических пород Кокчетавского массива (Казахстан) // Доклады Академии наук. 2009. Т. 424. № 4. С. 531-533.
- Мусияченко К.А., Корсаков А.В., Летников Ф.А. Новое проявление маруямаита // Доклады Российской Академии наук. Науки о Земле. 2021. Т. 498. № 1. С. 58-65. DOI: 10.31857/S268673972105011X
- Berryman E., Wunder B., Rhede D. Synthesis of K-dominant tourmaline // American Mineralogist. 2014. Vol. 99. № 2-3. P. 539-542. DOI: 10.2138/am.2014.4775
- Berryman E.J., Wunder B., Wirth R. et al. An experimental study on K and Na incorporation in dravitic tourmaline and insight into the origin of diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan // Contributions to Mineralogy and Petrology. 2015. Vol. 169. Iss. 3. № 28. DOI: 10.1007/s00410-015-1116-9
- Berryman E.J., Wunder B., Ertl A. et al. Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy // Physics and Chemistry of Minerals. 2016. Vol. 43. № 2. P. 83-102. DOI: 10.1007/s00269-015-0776-3
- Perchuk L.L., Safonov O.G., Yapaskurt V.O., Barton Jr J.M. Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review // Lithos. 2002. Vol. 60. Iss. 3-4. P. 89-111. DOI: 10.1016/S0024-4937(01)00072-X
- Сафонов О.Г., Перчук Л.Л., Литвин Ю.А. Равновесие калийсодержащего клинопироксена с расплавом как модель для барометрии глубинных ассоциаций // Геология и геофизика. 2005. Т. 46. № 12. С. 1318-1334.
- Шацкий В.С., Скузоватов С.Ю., Рагозин А.Л., Соболев Н.В. Подвижность элементов в зоне континентальной субдукции (на примере метаморфического комплекса сверхвысоких давлений Кокчетавского массива) // Геология и геофизика. 2015. Т. 56. № 7. С. 1298-1321. DOI: 10.15372/GiG20150704
- Shyh-Lung Hwang, Pouyan Shen, Hao-Tsu Chu et al. Crust-derived potassic fluid in metamorphic microdiamond // Earth and Planetary Science Letters. 2005. Vol. 231. Iss. 3-4. P. 295-306. DOI: 10.1016/j.epsl.2005.01.002
- Korsakov A.V., Hermann J. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks // Earth and Planetary Science Letters. 2006. Vol. 241. Iss. 1-2. P. 104-118. DOI: 10.1016/j.epsl.2005.10.037
- Васильев Е.А., Криулина Г.Ю., Гаранин В.К. Термическая история алмаза кимберлитовых трубок Архангельская и имени А.П.Карпинского-I // Записки Горного института. 2022. Т. 255. С. 327-336. DOI: 10.31897/PMI.2022.57
- Лаврова Л.Д., Печников В.А., Плешаков А.М. и др. Новый генетический тип алмазных месторождений. М.: Научный мир, 1999. 221 с.
- Sobolev N.V., Shatsky V.S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation // Nature. 1990. Vol. 343. Iss. 6260. P. 742-746. DOI: 10.1038/343742a0
- Dobretsov N.L., Sobolev N.V., Shatsky V.S. et al. Geotectonic evolution of diamondiferous paragneisses of the Kokchetav complex, Northern Kazakhstan – the geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt // The Island Arc. 1995. Vol. 4. Iss. 4. P. 267-279. DOI: 10.1111/j.1440-1738.1995.tb00149.x
- Shatsky V.S., Sobolev N.V., Vavilov M.A. Diamond-bearing metamorphic rocks of the Kokchetav massif (northern Kazakhstan) // Ultra-High Pressure Metamorphism. Cambridge: Cambridge University Press, 1995. P. 427-455.
- Шацкий В.С., Рагозин А.Л., Скузоватов С.Ю. и др. Изотопно-геохимические свидетельства природы протолитов алмазоносных пород Кокчетавской субдукционно-коллизионной зоны (Северный Казахстан) // Геология и геофизика. 2021. Т. 62. № 5. С. 678-689. DOI: 10.15372/GiG2020200
- Шацкий В.С., Скузоватов С.Ю., Рагозин А.Л. Изотопно-геохимические свидетельства коровой контаминации протолитов эклогитов Кокчетавской субдукционно-коллизионной зоны // Геология и геофизика. 2018. Т. 59. № 12. С. 1958-1978. DOI: 10.15372/GiG20181203
- Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. Электронно-зондовое определение состава минералов: микроанализатор или сканирующий электронный микроскоп? // Геология и геофизика. 2015. Т. 56. № 8. С. 1473-1482. DOI: 10.15372/GiG20150806
- Le Zhang, Zhong-Yuan Ren, Nichols A.R.L. et al. Lead isotope analysis of melt inclusions by LA-MC-ICP-MS // Journal of Analytical Atomic Spectrometry. 2014. Vol. 29. Iss. 8. P. 1393-1405. DOI: 10.1039/C4JA00088A
- Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // American Mineralogist. 2010. Vol. 95. № 1. P. 185-187. DOI: 10.2138/am.2010.3371
- Henry D.J., Novák M., Hawthorne F.C. et al. Nomenclature of the tourmaline-supergroup minerals // American Mineralogist. 2011. Vol. 96. № 5-6. P. 895-913. DOI: 10.2138/am.2011.3636
- Ota T., Kobayashi K., Kunihiro T., Nakamura E. Boron cycling by subducted lithosphere, insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt // Geochimica et Cosmochimica Acta. 2008. Vol. 72. Iss. 14. P. 3531-3541. DOI: 10.1016/j.gca.2008.05.002
- Ota T., Kobayashi K., Katsura T., Nakamura E. Tourmaline breakdown in a pelitic system: implications for boron cycling through subduction zones // Contributions to Mineralogy and Petrology. 2008. Vol. 155. Iss. 1. P. 19-32. DOI: 10.1007/s00410-007-0228-2
- Celata B., Stagno V., Capizzi L.S. et al. Schorl breakdown at upper mantle conditions: Insights from an experimental study at 3.5 GPa // Lithos. 2022. Vol. 438-439. № 106999. DOI: 10.1016/j.lithos.2022.106999
- Ballirano P., Celata B., Bosi F. In situ high-temperature behaviour and breakdown conditions of uvite at room pressure // Physics and Chemistry of Minerals. 2022. Vol. 49. Iss. 10. № 40. DOI: 10.1007/s00269-022-01216-3
- Hermann J., Spandler C.J. Sediment Melts at Sub-arc Depths: an Experimental Study // Journal of Petrology. 2008. Vol. 49. Iss. 4. P. 717-740. DOI: 10.1093/petrology/egm073
- Cheng L., Zhang C., Zhou Y. et al. Experiments reveal enrichment of 11B in granitic melt resulting from tourmaline crystallization // Geochemical Perspectives Letters. 2022. Vol. 20. P. 37-42. DOI: 10.7185/geochemlet.2206
- Селятицкий А.Ю., Ревердатто В.В. Термобарические условия эксгумации Ti-клиногумитовых гранатитов Кокчетавской субдукционно-коллизионной зоны (Северный Казахстан) // Геология и геофизика. 2022. Т. 63. № 8. С. 1051-1074. DOI: 10.15372/GiG2021147
- Xu J., Zhang G.B., Marschall H.R. et al. Boron isotopes of white mica and tourmaline in an ultra-high pressure metapelite from the western Tianshan, China: dehydration and metasomatism during exhumation of subducted ocean-floor sediments // Contributions to Mineralogy and Petrology. 2022. Vol. 177. Iss. 4. № 46. DOI: 10.1007/s00410-022-01916-7
- Jan C.M. De Hoog, Savov I.P. Boron Isotopes as a Tracer of Subduction Zone Processes // Boron Isotopes. Cham: Springer International Publishing, 2018. P. 217-247. DOI: 10.1007/978-3-319-64666-4_9
- Halama R., Konrad-Schmolke M., Jan C.M. De Hoog. Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid-rock interaction in white mica (Lago di Cignana, Western Alps) // Contributions to Mineralogy and Petrology. 2020. Vol. 175. Iss. 3. № 20. DOI: 10.1007/s00410-020-1661-8
- Stepanov A.S., Hermann J., Korsakov A.V., Rubatto D. Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions // Contributions to Mineralogy and Petrology. 2014. Vol. 167. Iss. 5. № 1002. DOI: 10.1007/s00410-014-1002-x