-
Date submitted2024-05-28
-
Date accepted2024-11-07
-
Date published2024-12-25
Methods of intensification of pipeline transportation of hydraulic mixtures when backfilling mined-out spaces
The paper presents an analysis of the advantages and limitations of additional measures to intensify the transportation of the backfill hydraulic mixture flow. The results of the analysis of the conditions for using pumping equipment to move flows with different rheological properties are shown. Generalizations of the methods for influencing the internal resistance of backfill hydraulic mixtures by means of mechanical activation, as well as increasing fluidity due to the use of chemical additives are given. The article presents the results of studies confirming the feasibility of using pipes with polymer lining, which has proven its efficiency in pumping flows of hydraulic mixtures with different filler concentrations. An analytical model of hydraulic mixture movement in the pipeline of the stowage complex has been developed. The trends in pressure change required to ensure the movement of hydraulic mixture in pipelines of different diameters are exponential, provided that the flow properties are constant. The effect of particle size on the motion mode of the formed heterogeneous flow, as well as on the distribution of flow density over the cross-section, characterizing the stratification and change in the rheological properties of the backfill hydraulic mixture, is assessed. An analytical model of centralized migration of the dispersed phase of the hydraulic mixture flow is formulated, describing the effect of turbulent mixing of the flow on the behavior of solid particles. An assessment of the secondary dispersion of the solid fraction of the hydraulic mixture, which causes a change in the consistency of the flow, was performed. The studies of the influence of the coefficient of consistency of the flow revealed that overgrinding of the fractions of the filler of the hydraulic mixture contributes to an increase in the required pressure in the pipeline system.
-
Date submitted2024-04-16
-
Date accepted2024-09-24
-
Date published2024-11-12
Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources
The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.
-
Date submitted2023-11-15
-
Date accepted2024-09-24
-
Date published2024-12-25
Development and validation of an approach to the environmental and economic assessment of decarbonization projects in the oil and gas sector
- Authors:
- Nadezhda A. Sheveleva
This article addresses the problem of selecting a priority decarbonization project for an oil and gas company aiming to reduce greenhouse gas emissions. The wide range of decarbonization options and assessment methods prompted the development of a comprehensive ranking system for project selection. This system incorporates both internal and external factors of project implementation, a two-stage algorithm that filters out unsuitable projects taking into account sustainable development goals, and a quantitative evaluation approach using absolute and relative indicators. The proposed system evaluates decarbonization projects by considering not only the reduction of emissions in both absolute and relative terms, but also the broader environmental, social, and economic aspects relevant to the oil and gas company and the national economy. It includes a ranking mechanism for identifying priority projects and integrates carbon regulation incentives and green taxonomy tools into the economic assessment for more precise comparative analysis. The quantitative assessment in absolute terms involves a specialized net present value calculation, which accounts for revenue from both carbon credit sales and the potential sale of new low-carbon products, if applicable. The proposed assessment provides for targeted analysis of specific performance indicators, such as the cost per unit of emissions reduced, tax and social security contributions per unit of emissions reduced, energy efficiency improvements, and other indicators used for additional assessments of projects under otherwise equal conditions.
-
Date submitted2024-06-12
-
Date accepted2024-07-18
-
Date published2024-07-26
Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities
- Authors:
- Ivan S. Tokarev
The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.
-
Date submitted2023-07-07
-
Date accepted2023-12-27
-
Date published2024-12-25
A new insight into recording the mineral composition of carbonate reservoirs at well killing: experimental studies
Well killing operation remains an important technological stage before well workover or servicing, during which filtrate penetrates the bottomhole area of the formation. The impact of process fluids and their filtrate on rock has a significant influence on permeability and porosity of carbonate reservoirs, which decrease due to fines migration. There are few known scientific studies of the interaction of killing fluid filtrate with carbonate rock and fines migration. In our experiments, an aqueous phase was used which is the basis for well killing in pure form, for the preparation of blocking agents and is used in reservoir pressure maintenance system. Core samples taken from the pay of the reservoir were used to simulate the well killing process with generation of reservoir thermobaric conditions. Killing fluid filtrate was kept for seven days, which characterizes the average workover time at flowing wells in the fields of the Perm Territory. Using micro-X-ray tomography and scanning electron microscope, images were obtained before and after the experiment, which allowed confirming a decrease in total number of voids due to fines migration and, as a consequence, a decreasing permeability of samples. Measurement of pH and fines concentration in the aqueous phase was performed before and after the experiment and pointed to mineral reactions occurring as a result of rock dissolution. The results of experiments made it possible to record a decrease in permeability of carbonate samples by an average of 50 % due to clogging of void space and migration of fines (clayey and non-clayey).
-
Date submitted2023-11-27
-
Date accepted2023-12-27
-
Date published2024-02-29
Physico-chemical aspects and carbon footprint of hydrogen production from water and hydrocarbons
Physico-chemical aspects determine the efficiency and competitiveness of hydrogen production technologies. The indicator of water consumption is especially relevant, since water is one of the main sources of hydrogen in almost all methods of its production. The article analyzes comparative water consumption indicators for various technologies based on published research and actual data from production plants. The volume of water consumption depends on the quality of the source water, which should be taken into account when implementing hydrogen projects in order to minimize the negative impact on the environment. Based on the operating industrial plant, the material balance of hydrogen production by steam reforming was demonstrated, which made it possible to determine the proportion of hydrogen (48.88 %) obtained from water. Currently, the carbon footprint indicator is becoming more important, reflecting greenhouse gas emissions throughout the production chain. According to the results of the total greenhouse gas emissions assessment for hydrogen production by steam reforming (about 10.03 kg CO2-eq/kg H2), the carbon footprint of hydrogen from water (4.2-4.5 kg CO2-eq/kg H2) and hydrogen from methane (15.4-15.7 kg CO2-eq/kg H2) has been determined. Consequently, almost half of the hydrogen produced by steam reforming is produced from water, corresponds to the indicators of “low-carbon” hydrogen and can be considered as “renewable” hydrogen. To make management decisions, an objective assessment in terms of energy and water costs is necessary based on a system analysis by the development of hydrogen energy and the growth of global hydrogen production. The impact of these indicators on the water cycle and global water resources will increase.
-
Date submitted2023-08-02
-
Date accepted2023-12-27
-
Date published2024-04-25
Justification of the approaches to improve management strategy of the mining system based on the analysis of data on the mining of complex structural rock blocks
Long-term activity of mining enterprises causes the necessity to substantiate the strategies of management of the mining and technical system functioning in terms of improvement of ore quality control, which is determined by its change in the course of field development due to the priority development of the main reserves and, as a consequence, forced transition to the mining of complex structural rock blocks with a decrease in the recovery percentage, which is typical in case the ore component meets the requirements of the feasibility study in terms of grade at substandard capacity. In this case, it is possible to identify the recovery percentage and the potential for its increase by analyzing the long-term activity of the mining and industrial enterprise, namely, by analyzing the data of mining complex structural rock blocks with the subsequent establishment of the relationship between the primary data on mining and geological conditions and information on the quality of the mineral obtained from the technological equipment. Therefore, the purpose of the research was to substantiate the necessity of improving the management strategy of the mining-technical system functioning, which consists in the fact that on the basis of analyzing the mining data of complex structural rock blocks it is possible to determine the ore mass losses and their quantity and to lay the basis for the development of decisions on its extraction. For this purpose, the collected data on the mining of complex structural rock blocks, accounting the geological and industrial type of extracted ores, were considered in modeling the conditions and studying the parameters of technological processes, the implementation of which provides additional products. It was revealed that the ore mass from substandard thickness layers is delivered to the dumps, and ore mass losses have been estimated at 25-40 % per year. It is proved that determination of ore mass losses based on the analysis of data on mining of complex structural rock blocks, as well as timely solution of this issue can significantly increase the production efficiency of mining and technical system. Taking into account for the results obtained, the options for optimizing the production of the mining and engineering system were proposed.
-
Date submitted2023-01-16
-
Date accepted2023-06-20
-
Date published2024-04-25
Study on the thin layer drying and diffusion mechanism of low rank coal in Inner Mongolia and Yunnan
Coal is one of the world's most important energy substances. China is rich in coal resources, accounting for more than 90 % of all ascertained fossil energy reserves. The consumption share of coal energy reaches 56.5 % in 2021. Due to the high moisture content of low-rank coal, it is easy to cause equipment blockage in the dry sorting process. This paper considers low-rank coal coming from Inner Mongolia (NM samples) and Yunnan (YN samples). The weight loss performance of the samples was analyzed using thermogravimetric experiments to determine the appropriate temperature for drying experiments. Thin-layer drying experiments were carried out at different temperature conditions. The drying characteristics of low-rank coal were that the higher the drying temperature, the shorter the drying completion time; the smaller the particle size, the shorter the drying completion time. The effective moisture diffusion coefficient was fitted using the Arrhenius equation. The effective water diffusion coefficient of NM samples was 5.07·10–11 - 9.58·10–11 m2/s. The effective water diffusion coefficients of the three different particle sizes of YN samples were 1.89·10–11 - 4.92·10–11 (–1 mm), 1.38·10–10 - 4.13·10–10 (1-3 mm), 5.26·10–10 - 1.49·10–9 (3-6 mm). The activation energy of Inner Mongolia lignite was 10.97 kJ/mol (–1 mm). The activation energies of Yunnan lignite with different particle sizes were 17.97 kJ/mol (–1 mm), 33.52 kJ/mol (1-3 mm), and 38.64 kJ/mol (3-6 mm). The drying process was simulated using empirical and semi-empirical formulas. The optimal model for Inner Mongolia samples was the Two-term diffusion model, and Yunnan samples were the Hii equation was used.
-
Date submitted2021-01-21
-
Date accepted2023-09-20
-
Date published2023-12-25
Adaptation of transient well test results
Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.
-
Date submitted2022-09-30
-
Date accepted2023-04-03
-
Date published2024-02-29
Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap
- Authors:
- Кirill О. Тomskii
- Mariya S. Ivanova
The specific share of the reserves of hard-to-recover hydrocarbon raw materials is steadily growing. The search for technologies to increase the hydrocarbon recovery factor is one of the most urgent tasks facing the oil and gas industry. One of the methods to expand the coverage of oil reserves and increase oil recovery is to use the technology of drilling multilateral wells with a fishbone trajectory. In the Russian Federation, the most branched well was drilled in the Republic of Sakha (Yakutia) at the Srednebotuobinskoye oil and gas condensate field. The main object of development is the Botuobinsky horizon (Bt reservoir). About 75 % of the geological reserves of the reservoir are concentrated in a thin oil rim with an average oil-saturated layer thickness of 10 m with an extensive gas cap. This circumstance is one of the main complicating factors in the development of the Srednebotuobinskoye oil and gas condensate field. For such complex wells, one of the most important design stages is to determine the optimal location of the fishbone well in an oil-saturated reservoir. The article shows the results of sector modeling in the conditions of the Srednebotuobinskoye field to determine the optimal location of multilateral wells using Tempest simulator.
-
Date submitted2022-09-27
-
Date accepted2023-04-03
-
Date published2023-12-25
The study of displacing ability of lignosulfonate aqueous solutions on sand packed tubes
This paper presents the findings of laboratory studies of rheological properties and oil displacing ability of aqueous solutions of technical grade lignosulfonate done on the sand packed tube models. The solutions containing lignosulfonate can be useful as displacement agents in development of watered reservoirs with heterogeneous porosity and permeability. When used at high concentrations, technical grade lignosulfonate can achieve selective shut-off while maintaining the reservoir pressure. The oil displacement efficiency is improved by means of redistributing the flows and selective isolation of high-permeability zones. The use of such compositions allows increasing the sweep of low-permeability reservoir zones by created pressure differential and displacing the residual oil.
-
Date submitted2022-06-20
-
Date accepted2023-01-10
-
Date published2023-08-28
Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir
Results are discussed for evaluation of effectiveness of the cyclic geomechanical treatment (CGT) on a Tournaisian carbonate reservoir. Analysis of laboratory experiments performed according to a special program to assess permeability changes for Tournaisian samples under cyclic changes in pore pressure is presented. The main conclusion is the positive selectivity of the CGT: an increase in permeability is observed for samples saturated with hydrocarbons (kerosene) with connate water, and maximal effect is related to the tightest samples. For water-saturated samples, the permeability decreases after the CGT. Thus, the CGT improves the drainage conditions for tight oil-saturated intervals. It is also confirmed that the CGT reduces the fracturing pressure in carbonate reservoirs. Using flow simulations on detailed sector models taking into account the results of laboratory experiments, a possible increase in well productivity index after CGT with different amplitudes of pressure variation was estimated. Results of a pilot CGT study on a well operating a Tournaisian carbonate reservoir are presented, including the interpretation of production logging and well testing. The increase in the well productivity index is estimated at 44-49 % for liquid and at 21-26 % for oil, with a more uniform inflow profile after the treatment. The results of the field experiment confirm the conclusions about the mechanisms and features of the CGT obtained from laboratory studies and flow simulations.
-
Date submitted2022-10-26
-
Date accepted2023-02-13
-
Date published2023-07-19
Determination of the grid impedance in power consumption modes with harmonics
The paper investigates the harmonic impedance determination of the power supply system of a mining enterprise. This parameter is important when calculating modes with voltage distortions, since the determined parameters of harmonic currents and voltages significantly depend on its value, which allow the most accurate modeling of processes in the presence of distortions in voltage and current. The power supply system of subsurface mining is considered, which is characterized by a significant branching of the electrical network and the presence of powerful nonlinear loads leading to a decrease in the power quality at a production site. The modernization of the mining process, the integration of automated electrical drive systems, renewable energy sources, energy-saving technologies lead to an increase in the energy efficiency of production, but also to a decrease in the power quality, in particular, to an increase in the level of voltage harmonics. The problem of determining the grid harmonic impedance is solved in order to improve the quality of design and operation of power supply systems for mining enterprises, taking into account the peculiarities of their workload in the extraction of solid minerals by underground method. The paper considers the possibility of determining the grid impedance based on the measurement of non-characteristic harmonics generated by a special nonlinear load. A thyristor power controller based on phase regulation of the output voltage is considered as such a load. Simulation computer modeling and experimental studies on a laboratory test bench are used to confirm the proposed method. The recommendations for selecting load parameters and measuring device connection nodes have been developed.
-
Date submitted2022-10-17
-
Date accepted2023-02-13
-
Date published2023-04-25
Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste
Due to the constantly deteriorating environmental situation in the regions with mining enterprises, the article considers the topical issue of disposing the maximum possible volume of waste from the mining and processing of low-grade ferrous ores through the creation of an effective underground environmental geotechnology. Traditional procedure with descending mining of reserves with a caving system does not allow waste to be disposed of in a gob. The idea is to use geotechnology based on the ascending order of mining the ore body, room excavation, leaving truncated pillars, and staggered arrangement of adjacent rooms in height, which makes it possible to form containers for waste disposal in the form of a cementless backfill. The main characteristics of the proposed procedure are investigated and compared with the traditional procedure of low-grade iron ores mining. It was established that from the point of view of the complete extraction of reserves and the unit costs for the preparatory-development operations, the processes are comparable, while in terms of the mining quality, the proposed option is much more efficient. Evaluation of environmental geotechnology by the criterion of waste disposal, performed according to the proposed methodology, showed that the combination of these technical solutions ensures the placement in the formed gob from 80 to 140% of all waste generated during the mining and beneficiation of low-grade iron ores.
-
Date submitted2021-05-13
-
Date accepted2022-11-28
-
Date published2022-12-29
Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing
Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.
-
Date submitted2022-04-12
-
Date accepted2022-11-17
-
Date published2022-12-29
Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)
Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.
-
Date submitted2022-03-17
-
Date accepted2022-10-04
-
Date published2022-11-10
Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data
Landslides are among the most dangerous geological processes, posing a threat to all engineering structures. In order to assess the stability of slopes, complex engineering surveys are used, the results of which are necessary to perform computations of the stability of soil masses and assess the risks of landslide development. The results of integ-rated geological and geophysical studies of a typical landslide slope in the North-Western Caucasus spurs, composed of clayey soils, are presented. The purpose of the work is to increase the reliability of assessing the stability of a landslide mass by constructing a 3D model of the slope, including its main structural elements, identified using modern methods of engineering geophysics. Accounting for geophysical data in the formation of the computed 3D model of the slope made it possible to identify important structural elements of the landslide, which significantly affected the correct computation of its stability.
-
Date submitted2021-12-19
-
Date accepted2022-05-13
-
Date published2022-07-13
Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells
Implementation of SWAG technology by means of water-gas mixtures is a promising method of enhanced oil recovery. The use of associated petroleum gas as a gas component in the water-gas mixture allows to significantly reduce the amount of irrationally consumed gas and carbon footprint. Relevant task is to choose a simple, reliable and convenient equipment that can operate under rapidly changing operating conditions. Such equipment are pump-ejector systems. In order to create water-gas mixture it is proposed to use associated gas from the annulus space. This solution will reduce the pressure in the annulus space of the production well, prevent supply disruption and failure of well equipment. The paper presents a principal technological scheme of the pump-ejector system, taking into account the withdrawal of gas from the annulus space of several production wells. The layout of the proposed system enables more efficient implementation of the proposed technology, which expands the area of its application. Experimental investigations of pressure and energy characteristics of the ejector have been carried out. Analysis of the obtained data showed that it was possible to increase the value of maximum efficiency. The possibility of adapting the system in a wide range of changes in operating parameters has been established. Recommendations on selection of a booster pump depending on the values of working pressure and gas content are given.
-
Date submitted2021-12-16
-
Date accepted2022-04-07
-
Date published2022-07-13
The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis
- Authors:
- Regina E. Dashko
- Georgiy A. Lokhmatikov
The article reviews the issues concerned with correctness of the engineering-geological and hydrogeological assessment of the Upper Kotlin clays, which serve as the foundation or host medium for facilities of various applications. It is claimed that the Upper Kotlin clays should be regarded as a fissured-block medium and, consequently, their assessment as an absolutely impermeablestratum should be totally excluded. Presence of a high-pressure Vendian aquifer in the lower part of the geological profile of the Vendian sediments causes inflow of these saline waters through the fissured clay strata, which promotes upheaval of tunnels as well as corrosion of their lining. The nature of the corrosion processes is defined not only by the chemical composition and physical and chemical features of these waters, but also by the biochemical factor, i.e. the availability of a rich microbial community. For the first time ever, the effect of saline water inflow into the Vendian complex on negative transformation of the clay blocks was studied. Experimental results revealed a decrease in the clay shear resistance caused by transformation of the structural bonds and microbial activity with the clay’s physical state being unchanged. Typification of the Upper Kotlin clay section has been performed for the region of Saint Petersburg in terms of the complexity of surface and underground building conditions. Fissuring of the bedclays, the possibility of confined groundwater inflow through the fissured strata and the consequent reduction of the block strength as well as the active corrosion of underground load-bearing structures must be taken into account in designing unique and typical surface and underground facilities and have to be incorporated into the normative documents.
-
Date submitted2021-10-14
-
Date accepted2022-04-07
-
Date published2022-04-29
The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow
The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.
-
Date submitted2021-09-22
-
Date accepted2022-03-24
-
Date published2022-04-29
Predicting dynamic formation pressure using artificial intelligence methods
Determining formation pressure in the well extraction zones is a key task in monitoring the development of hydrocarbon fields. Direct measurements of formation pressure require prolonged well shutdowns, resulting in underproduction and the possibility of technical problems with the subsequent start-up of wells. The impossibility of simultaneous shutdown of all wells of the pool makes it difficult to assess the real energy state of the deposit. This article presents research aimed at developing an indirect method for determining the formation pressure without shutting down the wells for investigation, which enables to determine its value at any time. As a mathematical basis, two artificial intelligence methods are used – multidimensional regression analysis and a neural network. The technique based on the construction of multiple regression equations shows sufficient performance, but high sensitivity to the input data. This technique enables to study the process of formation pressure establishment during different periods of deposit development. Its application is expedient in case of regular actual determinations of indicators used as input data. The technique based on the artificial neural network enables to reliably determine formation pressure even with a minimal set of input data and is implemented as a specially designed software product. The relevant task of continuing the research is to evaluate promising prognostic features of artificial intelligence methods for assessing the energy state of deposits in hydrocarbon extraction zones.
-
Date submitted2021-05-28
-
Date accepted2021-11-30
-
Date published2021-12-27
Features of grouping low-producing oil deposits in carbonate reservoirs for the rational use of resources within the Ural-Volga region
A methodology has been developed and a procedure for selecting homogeneous groups has been implemented using a set of parameters characterizing the properties of formation fluids, layering conditions, geological and physical properties of formations at different levels of the hierarchy. An algorithm for identifying deposits for monitoring and justifying measures to improve the efficiency of development management is proposed. A justification for the selection of associative groups of long-term developed objects using the parameters of geological heterogeneity according to different tectonic-stratigraphic elements is presented. To reduce the degree of uncertainty in the evaluation of objects by the degree and nature of geological heterogeneity, the parameters reflecting the degree of uncertainty of the system using complex characteristics are proposed. For different deposit associations, a different influence of the features of the object structure on the degree of their division has been established. In the process of deposit drilling, as additional information about development objects is obtained, it is necessary to specify the nature of the distinguished groups of objects first of all based on the use of characteristics of geological heterogeneity. Comparison of various grouping options shows the need to take into account the geological heterogeneity of objects during their drilling. The identification of groups of objects using a limited number of parameters is approximate, but at the stage of drafting the first design documents, it is possible to solve certain tasks aimed at determining the strategy for the development of deposits
-
Date submitted2021-02-20
-
Date accepted2021-10-18
-
Date published2021-12-16
Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry
The article presents the principle of thermal protection of the contact overheadlineand substantiates the possibility of practical implementation of this principle for rail electric transport in the mining industry. The algorithm for the implementation of modern digital protection of the contact overhead line as one of the functions of the controller is described. A mathematical model of thermal protection is proposed, which follows from the solution of the heat balance equation. The model takes into account the coefficient of the electrical networktopology, as well as the coefficient of consumption of the current-carrying core of the cable, which determines the reduction in the conducting section from contact erosion and the growth of oxide films. Corrections for air flows are introduced when receiving data from an external anemometer, via telemechanics protocol. The mathematical model was tested by writing a real thermal protection program in the C programming language for the bay controller, based on the circuitry of which is the STM32F407IGT6 microcontroller for the microcontroller unit. Verification tests were carried out on a serial bay controller in 2020. The graphs for comparing the calculated and actual values of temperatures, with different flow rates of the current-carrying conductor of the DC cable, are given. To obtain data, telemechanics protocols IEC 60870-104 and Modbus TCP, PLC Segnetics SMH4 were used.
-
Date submitted2020-12-16
-
Date accepted2021-07-27
-
Date published2021-10-21
Features of the thermal regime formation in the downcast shafts in the cold period of the year
In the cold period of the year, to ensure the required thermal regime in underground mine workings, the air supplied to the mine is heated using air handling systems. In future, the thermodynamic state of the prepared air flow when it is lowered along the mine shaft changes due to the influence of a number of factors. At the same time, the processes of heat and mass exchange between the incoming air and its environment are of particular interest. These processes directly depend on the initial parameters of the heated air, the downcast shaft depth and the presence of water flows into the mine shaft. Based on the obtained experimental data and theoretical studies, the analysis of the influence of various heat and mass transfer factors on the formation of microclimatic parameters of air in the downcast shafts of the Norilsk industrial district mines is carried out. It is shown that in the presence of external water flows from the flooded rocks behind the shaft lining, the microclimatic parameters of the air in the shaft are determined by the heat transfer from the incoming air flow to the underground water flowing down the downcast shaft lining. The research results made it possible to describe and explain the effect of lowering the air temperature entering the underground workings of deep mines
-
Date submitted2021-03-11
-
Date accepted2021-05-21
-
Date published2021-09-20
The influence of solar energy on the development of the mining industry in the Republic of Cuba
Cuba is traditionally considered a country with an underdeveloped industry. The share of the mining and metallurgical industries in the gross industrial production of the republic is small – about 3 % of GDP. The development of deposits and the extraction of nickel ores is an important sector of the economy of the Republic of Cuba, since the largest reserves of nickel and cobalt on the North American continent are located on the territory of the country. The development of the country energy system can serve as a growth factor in this sector of the economy. Due to climatic features and impossibility of integrating new capacities into the energy system through the construction of hydroelectric power plants, solar energy is a promising direction. Determining the feasibility of using solar tracking systems to increase the generation of electricity from solar power plants is one of the main challenges faced by engineers and renewable energy specialists. Currently, there are no solar tracking systems in Cuba that can provide information to assess the effectiveness of this technology in the country. The lack of the necessary technologies, as well as the high cost of developing solar power plants with tracking systems, limit the widespread introduction of such complexes. Hence follows the task of creating an inexpensive experimental model that allows assessing the effectiveness of tracking systems in specific weather conditions of the Republic of Cuba. This model will allow in future to increase the efficiency of electrical complexes with solar power plants, which provide power supply to the objects of the mineral resource complex and other regions.