-
Date submitted2024-03-11
-
Date accepted2024-11-07
-
Date published2025-04-25
Geochemical characteristics of weathering crusts on the Dzhezhimparma Ridge and the Nemskaya Upland (South Timan)
Numerous local varieties of weathering crusts are known in the South Timan. They differ in their position in the section, type of weathering products, substrates, and occurrence. The aim of the research is to identify patterns in the distribution of rock-forming, rare and rare earth elements and the composition of clay minerals in clay formations of the weathering crusts. The main task is to describe the occurrence and geochemical features that enable determining the genetic type and formation conditions of weathering crusts. The paper presents the results of a study of the distribution of petrogenic, rare earth, rare elements, and clay minerals in weathering crust of different ages, genetic types and occurrence conditions on the Dzhezhimparma Ridge and the Nemskaya Upland in the South Timan. We found that hydromica-kaolinite-type weathering crust is developed after the Late Riphean Dzhezhim Fm. rocks in the basement-cover contact zone on the Dzhezhimparma Upland, and the layer of fine-grained rock at the base of the Devonian section previously considered a weathering crust was formed as a result of mechanical destruction of the Devonian sandstones during movement in the thrust zone. In the Vadyavozh quarry located on the Nemskaya Upland, we studied and described the formations of Mesozoic-Cenozoic areal and linear weathering crusts after the Late Riphean Dzhezhim Fm. rocks. We found that micaceous siltstones in the siltstone-sandstone strata of the Dzhezhim Fm. are associated with the Riphean stage of crust formation and are composed of weathering crust material redeposited in the epicontinental basin.
-
Date submitted2024-05-03
-
Date accepted2024-10-14
-
Date published2024-11-12
Genetic geological model of diamond-bearing fluid magmatic system
The article proposes a genetic geological model of diamond deposit formation associated with kimberlites and lamproites. It is based on the synthesis of published data on diamond-bearing kimberlite systems and an original study of the ontogenetic features of diamond crystals. Deep diamond crystallization, its upward transportation and subsequent concentration in near-surface kimberlite-lamproite bodies and other rocks, including those brought to the surface by high-amplitude uplifts of crystalline basement rocks, are combined in a single system. An assumption is made about the primary sources of the Anabar placer diamonds. The possibility of hydrocarbon generation at mantle levels corresponding to diamond formation areas and their transportation to the upper crustal zones by a mechanism similar to the mantle-crust migration of diamond-bearing fluidized magmas is shown. The high rate of their upward movement allows transportation to the surface without significant loss as a result of dissolution in melts and sorption on the surface of mineral phases. The significant role of fluid dynamics at all stages of this system is noted.
-
Date submitted2024-04-24
-
Date accepted2024-09-24
-
Date published2024-11-12
Study and justification of the combination of beneficiation processes for obtaining flake graphite from technogenic carbon-containing dusts
The most important task of modern production development is to provide the mineral and raw materials sector of the economy with resources included in the list of strategic raw materials, including flake graphite. In addition to natural raw materials, the source of its obtaining can be metallurgical production wastes not involved in processing. Development of metallurgical dust beneficiation technology will solve the problem of obtaining high-purity flake graphite with a crystal structure close to ideal and in demand in the production of high-tech materials. It will allow creating a renewable raw material base of graphite and utilising metallurgical production wastes. The research included the study of dust beneficiation by coarseness, magnetic and flotation methods, the influence of dust disintegration processes on beneficiation indicators. Based on the established technological properties of the components of dusts, magnetic, flotation and gravity beneficiation methods can be applied for their separation in different sequence. It is shown that dusts from different sites have different enrichability by these methods, and it should be taken into account when developing a complex technology of their processing. The degree of beneficiation increases in a row of dusts from the blast furnace shop (BF) – electric steel smelting shop (ESS) – oxygen-converter shop (OCS). The method of grinding has a significant influence on the separation indicators – at dry grinding in a centrifugal-impact mill with subsequent pneumatic classification the quality of graphite concentrates increases by 22.7 % of carbon for BF dust and by 13.48 % of carbon for ESS dust. OCS dust beneficiation indicators are high at coarse grinding with steel medium – mass fraction of carbon 96.1 %.
-
Date submitted2022-03-01
-
Date accepted2024-06-03
-
Date published2024-12-25
Study of the possibility of using high mineralization water for hydraulic fracturing
The results of laboratory studies aimed at developing hydraulic fracturing fluid based on alternative sources of high mineralization water are presented. It is shown that Cenomanian sources have the most stable mineralization parameters, while bottom water and mixed waters collected from pressure maintenance systems differ significantly in their properties, with iron content varying several times, and hardness and mineralization undergoing substantial changes. The quality of the examined hydraulic fracturing fluids based on alternative water sources is confirmed by their impact on residual permeability, as well as residual proppant pack conductivity and permeability. The experimental results show similar values for these parameters. The comprehensive laboratory studies confirm the potential for industrial use of high mineralization water in hydraulic fracturing operations.
-
Date submitted2023-09-29
-
Date accepted2023-10-25
-
Date published2024-08-26
Laboratory studies of transformation of porosity and permeability and chemical composition of terrigenous reservoir rocks at exposure to hydrogen (using the example of the Bobrikovskii formations in the oil field in the northeast Volga-Ural oil and gas province)
The article describes the methodology for laboratory studies of reservoir rock exposure to hydrogen. The stages of sample research and the instruments used in the experiments are considered. A comparative analysis of the results of studies on porosity and permeability of core samples was performed. It was shown that after exposure to hydrogen, the porosity decreased by 4.6 %, and the permeability by 7.9 %. The analysis of correlation dependencies demonstrated a typical change in the relationship of these characteristics: after the samples exposure to hydrogen the scatter of the values increased and the correlation coefficient decreased, which indicates a change in the structure of the void space. Based on the research results, it was concluded that the decrease in porosity and permeability of the core samples occurred due to their minor compaction under the action of effective stresses. The chemical analysis of the rock showed no major difference in the composition of the basic oxides before and after exposure to hydrogen, which points to the chemical resistance of the studied formation to hydrogen. The experimental results showed that the horizon under consideration can be a storage of the hydrogen-methane mixture.
-
Date submitted2023-06-21
-
Date accepted2023-12-27
-
Date published2024-12-25
Peculiarities of formation, isomorphism and geochemistry of trace elements of sphalerite and wurtzite unusual varieties from the Goniatite occurrence (Pai-Khoi Ridge, Nenets Autonomous District)
A unique Mn-, Cd-bearing sphalerite from quartz-calcite veins in the coal-bearing series (Visean C1v) marine sediments in a 50 km segment of the middle course of the Silova-Yakha River in the Arctic zone of the European part of Russia (Pai-Khoi Ridge) has been studied. The veins have a conformable and cross-cutting occurrence in two types of rocks: gray limestones and black siliceous-carbonaceous shales, the area is known as the Goniatite occurrence. The sulfide content in vein samples ranges from 0.1 to 2 vol.%. The chemical composition of 27 monomineral samples of Mn-, Cd-bearing sphalerites was studied, 82 points were analyzed. Correlations between typomorphic elements-impurities were revealed and correlation matrix was constructed. Cu, V, Ga, In, Sn, As, Sb, Bi, Pb, Tl, Se, Ag, Au, Ni are positively correlated with each other; Cd, Mn and Ge are negatively correlated with each other. The hydrothermal fluid involved in crystallization of sphalerite is characterized by low temperature (164-211 °С) and average salinity of 5-6 wt.% eq. NaCl. An updated “portrait” of typomorphic features (composition and properties) of sphalerite of the Pai-Khoi province was obtained. The features allowing to determine the type of impurity entering the sphalerite structure – in the form of isomorphic impurity or in the form of microinclusions of paragenetic association minerals – have been established. Submicron inclusions of sulvanite and colusite, invisible by other methods, were detected in sphalerite (by LA-ICP-MS method).The cathodoluminescence data of sphalerite from the Pai-Khoi province were typified. In contrast to other provinces, ZnS crystals here are characterized by almost complete absence of isomorphic iron. This allowed us to study pure isomorphism schemes of ZnS↔MnS, ZnS↔CdS, namely cathodoluminescence and other types of luminescence. The presence of a rare wurtzite-4H polytype in assemblage with sphalerite was revealed. High contents of strategic metals Cd, Ga, In, Ge in the ZnS matrix, as well as sulvanite (V, Cu) in a single paragenesis were found. A serious reassessment of the potential for industrial use of this mineralization will be required.
-
Date submitted2023-08-14
-
Date accepted2023-12-27
-
Date published2024-12-25
Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons
In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.
-
Date submitted2022-09-26
-
Date accepted2023-09-20
-
Date published2024-04-25
Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer
The peculiarity of the geological structure of carbonate reservoirs is their complex permeability and porosity characteristics, reflecting the simultaneous presence of cavities variety (fractures, caverns, pores). Loss of circulation during penetration of fractured rock intervals significantly increases well construction time due to lack of efficient plugging isolation compositions. The main disadvantages of traditional compositions are high sensitivity to dilution in the process of their injection into the absorption zone, as well as insufficient structural strength to prevent the isolation composition from spreading during the induction period. For efficient isolation of catastrophic absorption zones in conditions of high opening of absorption channels a new cross-linking plugging isolation composition has been developed, which allows to exclude disadvantages of traditional isolation compositions. Application of the composition will allow to reduce the injection volume of the isolation composition and the time of isolation works due to its resistance to dilution and movement of formation water in the absorption interval.
-
Date submitted2022-11-29
-
Date accepted2023-03-02
-
Date published2023-10-27
New data on the composition of growth medium of fibrous diamonds from the placers of the Western Urals
This article presents the results of studying microinclusions of fluids/melts in diamonds from the placers of the Krasnovishersky District (western slope of the Middle/Northern Urals), which make it possible to establish the evolution of diamond-forming media in the subcontinental lithospheric mantle of the eastern margin of the East European craton. Impurity composition of the studied crystals reveals three different types of diamonds, the formation of which was associated with separated metasomatic events. Microinclusions in B-type diamonds containing A and B nitrogen defects reflect an older metasomatic stage characterized by the leading role of silicic and low-Mg carbonatitic fluids/melts. The second stage is associated with the growth of A-type diamonds containing nitrogen exclusively in the form of A-centers. At this stage, the formation of diamonds was related with low-Mg carbonatitic media, more enriched in MgO, CaO, CO2, and Na2O compared to B-type diamonds. The third stage probably preceded the eruption of the transporting mantle melt and led to the formation of C-type diamond containing A and C nitrogen defect centers and microinclusions of silicic to low-Mg carbonatitic composition. The recorded trend in the evolution of diamond-forming fluids/melts is directed towards more carbonatitic compositions. Fluids/melts are probably sourced from eclogitic and pyroxenitic mantle substrates.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator
In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.
-
Date submitted2022-12-01
-
Date accepted2023-01-19
-
Date published2023-12-25
Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis
The mineralogical and geochemical features of diamond-bearing tourmaline crystals (schorl-uvite series) from garnet-clinopyroxene rocks of the Kumdy-Kol deposit (Northern Kazakhstan) have been studied in detail. The formation of the main rock-forming minerals (garnet + K-bearing clinopyroxene) occurred in the diamond stability field at 4-6 GPa and 950-1000 °C. Crystallization of K-bearing clinopyroxene at these parameters is possible in the presence of an ultra-potassic fluid or melt formed because of crustal material melting in subduction zones. Tourmaline crystals (up to 1 cm) containing diamond inclusions perform veins crosscutting high-pressure associations. The composition of individual zones varies from schorl to uvite within both a single grain and the sample as a whole. The potassium content in this tourmaline does not exceed 0.1 wt.% K2O, and the isotopic composition of boron δ11B varies from –10 to –15.5 ‰, which significantly differs from the previously established isotopic composition of boron in maruyamaite crystals (δ11B 7.7 ‰ in the core and –1.2 ‰ in the rim) of the same deposit. Analysis of the obtained data on δ11B in the tourmalines from the diamond-grade metamorphic rocks within the Kumdy-Kol deposit suggests the existence of two boron sources that resulted in crystallization of K-bearing tourmaline crystals (maruyamaite-dravite series) and potassium-free tourmalines of the schorl-uvite series.
-
Date submitted2022-08-10
-
Date accepted2023-02-28
-
Date published2024-02-29
Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors
The task of sludge removal to the surface during construction of directional and horizontal wells and strongly curved radial channels is relevant. For stable operation of technical system “Perfobore”, it is proposed to use a circulating sub that ensures efficient cleaning of channel wellbore from the drilled rock. Two schemes of technical system “Perfobore” are considered, consisting of two seven-meter coiled tubing, a positive displacement motor, a bit and one circulating sub in the first scheme and two subs in the second scheme. For each of the schemes CFD modeling was implemented to determine values of pressure and speed. It was found out that the use of two circulating subs in the assembly is more efficient. In order to confirm the numerical experiment, bench tests were carried out. It was determined that the designed circulating sub can eject up to 25 % of pumped drilling fluid. The bench tests of full-size technical system “Perfobore” for drilling 14-meter channels with two circulating subs showed that the axial load on positive displacement motor produced by hydraulic loader was 3000 N and pressure drop depending on flow rate was 1.5-2.0 MPa. This allows the motor to operate at maximum power.
-
Date submitted2022-03-24
-
Date accepted2022-07-21
-
Date published2022-12-29
A probabilistic study on hole cleaning optimization
- Authors:
- Seyyed Shahab Tabatabaee Moradi
Hole cleaning is considered as one of the most important drilling fluid functions. An efficient hole cleaning ensures a reliable well drilling practice with minimum troublesome problems. In this study, two main steps of hole cleaning, i.e., cuttings removal from under the bit and cuttings transport to the surface are discussed based on the drilling data of a shale formation. The traditional models for optimization of each step are presented. As the models require variety of input data, which are usually subjected to some extent of errors and uncertainties, the output of the model is also an uncertain parameter. Using Monte Carlo simulation, a simple probabilistic study was conducted to quantify the certainty level of the obtained results. Based on the result of this study, it is shown that for the proposed well, a good hole cleaning is expected. However, a more reliable decision for further hole cleaning optimization should be made considering the results of uncertainty analysis.
-
Date submitted2022-03-01
-
Date accepted2022-05-25
-
Date published2022-12-29
Study on the rheological properties of barite-free drilling mud with high density
Improved drilling and reservoir penetration efficiency is directly related to the quality of the drilling mud used. The right choice of mud type and its components will preserve formation productivity, stability of the well walls and reduce the probability of other complications. Oil and gas operators use barite, less often siderite or hematite weighting agent as a weighting component in the composition of drilling muds for the conditions of increased pressure. But the use of these additives for the penetration of the productive formation leads to the reduction of filtration characteristics of the reservoir, as it is almost impossible to remove them from the pore channels. Therefore, barite-free drilling mud of increased density based on formic acid salts with the addition of carbonate weighting agent as an acid-soluble bridging agent is proposed. The results of experimental investigations on rheological parameters of barite-free solutions are given and the obtained data are analyzed. Based on the comparison of results it is recommended to use high-density drilling mud on the basis of formic acid salts (sodium and potassium formate) and with the addition of partially hydrolyzed polyacrylamide with molecular mass of 27 million.
-
Date submitted2022-04-12
-
Date accepted2022-11-17
-
Date published2022-12-29
Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)
Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.
-
Date submitted2022-05-12
-
Date accepted2022-09-15
-
Date published2022-12-29
Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well
- Authors:
- Vasiliy I. Nikitin
Modern drilling fluids are non-linear viscous media with an initial shear stress. In classical scientific works on hydromechanical modeling of drilling fluids motion in pipes and annular channels the Shvedov – Bingham approximation and Ostwald – de Waale power-law model were used, which did not fully account for behavior of technological fluids in a wide range of shear rates. This article presents a numerical solution for a mathematical model of drilling fluid motion of the three-parameter Herschel – Bulkley rheological model in the annular space of the well. The Herschel – Bulkley model in the rheological equation takes into account the presence of initial shear stress and a tendency for viscosity to change with shear rate, which distinguishes it from the Ostwald – de Waale and Shvedov – Bingham models. The target function in solving the equation of motion is the velocity distribution in the radial direction of the upward flow of the flushing fluid. The analysis of obtained solution is based on the theory of velocity profile influence on quality of cuttings removal during wellbore cleaning. Due to peculiarities of mathematical statement of the task, which supposes necessity of differential equation of motion solution, Wolfram Mathematica computational software has been used as a calculation tool. The analysis of numerical solution allowed to draw conclusions about the possibility of its application in evaluation of velocity profile when drilling fluid moves in annular space of the well. The possibility for application of modified excess coefficient as a relative quantitative parameter for evaluation of velocity profile uniformity was substantiated.
-
Date submitted2021-02-12
-
Date accepted2022-07-26
-
Date published2022-11-10
Manifestation of incompatibility of marine residual fuels: a method for determining compatibility, studying composition of fuels and sediment
- Authors:
- Radel R. Sultanbekov
- Andrey M. Schipachev
The results of studying the problem of active sediment formation when mixing residual fuels, caused by manifestation of incompatibility, are presented. A laboratory method has been developed for determining the compatibility and stability of fuels allowing identification of a quantitative characteristic of sediment formation activity. Laboratory studies were performed, and incompatible fuel components were identified. Tests were made to determine the quality indicators of samples and group individual composition of fuels. Results on the content of total and inorganic carbon in the obtained sediments were determined using Shimadzu TOC-V SSM 5000A. Chemical composition was determined and calculated on LECO CHN-628 analyser. Group composition of hydrocarbon fuels contained in the sediment was studied by gas chromato-mass spectrometry on GCMS-QP2010 Ultra Shimadzu. To obtain additional information on the structural group composition of fuel sediment, IR spectrometry was performed on IR-Fourier spectrometer IRAffinity-1. X-ray diffraction analysis of sediment samples was made using X-ray diffractometer XRD-7000 Shimadzu; interplanar distances d002 and d100 as well as Lс and Lа crystallite sizes served as the evaluation criteria. Microstructural analysis of total sediment was performed by scanning electron microscopy. The results of the research confirmed that the content of normal alkanes in the fuel mixture mainly affects sediment formation. Recommendations were drawn on preserving the quality of fuels and reducing sediment formation during storage and transportation.
-
Date submitted2022-02-24
-
Date accepted2022-05-25
-
Date published2022-07-26
Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies
Mineralogical, petrophysical and geochemical studies have been carried out to determine the sequence and formation conditions of uranium mineralization within the Litsa ore occurrence (Kola Region). Mineralogical studies show the following formation sequence of ore minerals: uraninite – sulfides – uranophane, coffinite, pitchblende. Two stages of uranium mineralization are distinguished: Th-U (1.85-1.75 Ga) and U (400-300 Ma). The distribution of physical properties of rocks in the area is consistent with the presence of two temporal stages in the formation of mineralization with different distribution and form of uranium occurrence in rocks. The factors that reduce rock anisotropy are the processes of migmatization and hydrothermal ore mineralization, which heal pores and cracks. Fluid inclusions in quartz studied by microthermometry and Raman spectroscopy contain gas, gas-liquid and aqueous inclusions of different salinity (1.7-18.4 wt.% NaCl-eq.). According to homogenization temperatures of inclusions in liquid phase, the temperature of the Paleoproterozoic and Paleozoic stages of uranium mineralization at the Litsa ore occurrence is ~ 300 and 200 °С, respectively. Correlations of the spatial distribution of elastic anisotropy index with an elevated radioactive background allow using this petrophysical feature as one of the prognostic criteria for uranium and complex uranium mineralization when carrying out uranium predictive work.
-
Date submitted2021-09-17
-
Date accepted2022-04-07
-
Date published2022-12-29
Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover
Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.
-
Date submitted2021-09-16
-
Date accepted2022-02-24
-
Date published2022-04-29
Production of microfluidic chips from polydimethylsiloxane with a milled channeled surface for modeling oil recovery during porous rock waterflooding
Microfluidic chips with porous structures are used to study the flow of oil-containing emulsion in the rock. Such chips can be made from polydimethylsiloxane by casting into a master mold. At the initial stages of research, fast and cheap prototyping of a large number of different master molds is often required. It is proposed to use milling to make a channeled surface on a polymethyl methacrylate plate, from which a negative image should be taken, which is the master mold for casting positive polydimethylsiloxane chips in it. Several epoxy compositions have been tested to make this master mold. The main requirement in the search for the material was the exact replication of the geometry and sufficiently low adhesion to polymethyl methacrylate and polydimethylsiloxane for removing the product with minimal damage to the mold. It was possible to make master molds from all the materials used, but with defects and various degrees of damage. One of the epoxy compositions was found suitable for making a master mold with many elements simulating the grains of a porous medium (height to width ratio 2:3). The developed method makes it possible to use polydimethylsiloxane for prototyping chips simulating the porous structure of an oil rock.
-
Date submitted2021-08-05
-
Date accepted2021-11-30
-
Date published2021-12-27
Morozkinskoye gold deposit (southern Yakutia): age and ore sources
The paper presents the results of the comprehensive isotope geochemical (Re-Os, Pb and δ 34 S) study of sulfide mineralization of the Morozkinskoye deposit. The ore zones of the deposit are localized in the syenite massif of Mount Rudnaya, which is located within the Central Aldan ore region (southern Yakutia). Gold mineralization is represented by vein-disseminated or vein type mineralization and is manifested in acidic low-temperature metasomatites – beresites (Qz-Ser-Ank-Py). For the first time we obtained an age estimate of the gold mineralization ~ 129 ± 3 Ma, which the synchronism of the hydrothermal ore process in the beresites, which formed the Morozkinskoye deposit, and magmatic crystallization of the syenites of Mount Rudnaya (~130 Ma). The osmium initial isotopic composition of the studied sulfides indicates a mixed mantle-crustal source of sulfide mineralization. New lead isotopic data of syenites indicate the predominance of mantle lead and an insignificant role of the lower – crust lead, while the isotopic composition of pyrite denotes the presence of the upper crustal material in the ore genesis. The sulfide δ 34 S values vary from –2.3 to +0.6 ‰ and indicate a predominantly magmatic source of sulfur in the ores.
-
Date submitted2021-02-28
-
Date accepted2021-11-30
-
Date published2021-12-27
Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation
- Authors:
- Alexander K. Nikolaev
- Natalia А. Zaripova
One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.
-
Date submitted2021-03-18
-
Date accepted2021-09-10
-
Date published2021-12-16
Development of blocking compositions with a bridging agent for oil well killing in conditions of abnormally low formation pressure and carbonate reservoir rocks
- Authors:
- Dmitrii V. Mardashov
Production well killing before workover operations in late-stage oil and gas-condensate fields can be complicated by abnormally low formation pressure, carbonate type of reservoir rocks, and high gas-oil ratio. These complications lead to the intensive absorption of technological fluids by the formation and gas ingresses, which, in its turn, increases the time of killing wells and putting them on production, reduction of productivity, and additional costs. Therefore, it is crucial to develop a high-performance well-killing composition that would allow improving the efficiency of killing wells in complicated geological, physical, and technological conditions at the expense of reliable overlapping of the perforation interval (or open wellbore) to prevent gas intakes and gas outflow from the formation. To develop blocking compounds, a set of laboratory tests has been carried out, including physical and chemical (determination of density, viscosity, thermal stability, sedimentation stability, etc.) and research of blocking and filtration properties of compositions during simulation of a fractured reservoir. In the course of laboratory tests, the choice of fractional composition and polymer filler concentration was substantiated in the blocking emulsion and polymer compositions to increase the efficiency of their application under the complicated conditions of killing oil wells. As a result of laboratory research and field tests, the emulsion and polymer blocking compositions containing bridging agent (microcalcite) were developed, which increase the oil well killing efficiency by preventing the absorption of technological fluids in the formations and, as a result, preserving its productivity.
-
Date submitted2021-02-09
-
Date accepted2021-07-27
-
Date published2021-10-21
Development of an algorithm for determining the technological parameters of acid composition injection during treatment of the near-bottomhole zone, taking into account economic efficiency
Relevance of the research is due to the low proportion of successful hydrochloric acid treatments of near-bottomhole zones of carbonate reservoirs in the Perm region caused by insufficiently careful design and implementation of measures to stimulate oil production. Within the framework of this article, the development of a program is presented, which is based on an algorithm that allows determining the volume and rate of injection for an acid composition into a productive formation corresponding to the maximum economic efficiency during hydrochloric acid treatment. Essence of the proposed algorithm is to find the greatest profit from measures to increase oil recovery, depending on the cost of its implementation and income from additionally produced oil. Operation of the algorithm is carried out on the principle of enumerating the values of the volume and rate of injection for the acid composition and their fixation when the maximum difference between income and costs, corresponding to the given technological parameters of injection, is reached. The methodology is based on Dupuis's investigations on the filtration of fluids in the formation and the results of the experiments by Duckord and Lenormand on the study of changes in the additional filtration resistance in the near-well zone of the formation when it is treated with an acid composition. When analyzing and including these investigations into the algorithm, it is noted that the developed technique takes into account a large number of factors, including the lithological and mineralogical composition of rocks, technological parameters of the injection of a working agent and its properties, well design, filtration properties of the formation, properties of well products. The article provides an algorithm that can be implemented without difficulty using any programming language, for example, Pascal. Selection of the optimal values for the volume and rate of injection is presented in this paper, using the example of a production well at the Chaikinskoye oil field, located within the Perm region. Introduction of the developed algorithm into the practice of petroleum engineering will allow competent and effective approach to the design of hydrochloric acid treatments in carbonate reservoirs without a significant investment of time and additional funds.
-
Date submitted2021-03-31
-
Date accepted2021-09-29
-
Date published2021-10-21
Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials
- Authors:
- Boris Yu. Zuev
The research purpose is to develop a methodology that increases the reliability of reproduction and research on models made of equivalent materials of complex nonlinear processes of deformation and destruction of structured rock masses under the influence of underground mining operations to provide a more accurate prediction of the occurrence of dangerous phenomena and assessment of their consequences. New approaches to similarity criterion based on the fundamental laws of thermodynamics; new types of equivalent materials that meet these criteria; systems for the formation of various initial and boundary conditions regulated by specially developed computer programs; new technical means for more reliable determination of stresses in models; new methods for solving inverse geomechanical problems in the absence of the necessary initial field data have been developed. Using the developed methodology, a number of complex nonlinear problems have been solved related to estimates of the oscillatory nature of changes in the bearing pressure during dynamic roof collapse processes; ranges of changes in the frequency of processes during deformation and destruction of rock mass elements, ranges of changes in their accelerations; parameters of shifts with a violation of the continuity of the rock mass under the influence of mining: secant cracks, delaminations, gaping voids, accounting for which is necessary to assess the danger of the formation of continuous water supply canals in the water-protection layer.