Submit an Article
Become a reviewer
Vol 263
Download volume:
Research article

New data on the composition of growth medium of fibrous diamonds from the placers of the Western Urals

Nikolai V. Gubanov1
Dmitrii A. Zedgenizov2
Evgenii A. Vasilev3
Vladimir A. Naumov4
About authors
Date submitted:
Date accepted:
Date published:


This article presents the results of studying microinclusions of fluids/melts in diamonds from the placers of the Krasnovishersky District (western slope of the Middle/Northern Urals), which make it possible to establish the evolution of diamond-forming media in the subcontinental lithospheric mantle of the eastern margin of the East European craton. Impurity composition of the studied crystals reveals three different types of diamonds, the formation of which was associated with separated metasomatic events. Microinclusions in B-type diamonds containing A and B nitrogen defects reflect an older metasomatic stage characterized by the leading role of silicic and low-Mg carbonatitic fluids/melts. The second stage is associated with the growth of A-type diamonds containing nitrogen exclusively in the form of A-centers. At this stage, the formation of diamonds was related with low-Mg carbonatitic media, more enriched in MgO, CaO, CO 2 , and Na 2 O compared to B-type diamonds. The third stage probably preceded the eruption of the transporting mantle melt and led to the formation of C-type diamond containing A and C nitrogen defect centers and microinclusions of silicic to low-Mg carbonatitic composition. The recorded trend in the evolution of diamond-forming fluids/melts is directed towards more carbonatitic compositions. Fluids/melts are probably sourced from eclogitic and pyroxenitic mantle substrates.

diamond nitrogen aggregation state microinclusions fluid eclogite lithospheric mantle East European craton
Go to volume 263


  1. O’Reilly S.Y., Griffin W.L. Mantle Metasomatism // Metasomatism and the Chemical Transformation of Rock. Heidelberg: Springer, 2013. P. 471-533. DOI: 10.1007/978-3-642-28394-9_12
  2. Aulbach S., Massuyeau M., Garber J.M. et al. Ultramafic Carbonated Melt- and Auto‐Metasomatism in Mantle Eclogites: Compositional Effects and Geophysical Consequences // Geochemistry, Geophysics, Geosystems. 2020. Vol. 21. Iss. 5. № e2019GC008774. DOI: 10.1029/2019GC008774
  3. Skuzovatov S., Shatsky V.S., Ragozin A.L., Smelov A.P. The evolution of refertilized lithospheric mantle beneath the northeastern Siberian craton: Links between mantle metasomatism, thermal state and diamond potential // Geoscience Frontiers. 2022. Vol. 13. Iss. 6. № 101455. P. 1-17. DOI: 10.1016/j.gsf.2022.101455
  4. Melnik A.E., Korolev N.M., Skublov S.G. et al. Zircon in mantle eclogite xenoliths: a review // Geological Magazine. 2021. Vol. 158. Iss. 8. P. 1371-1382. DOI: 10.1017/S0016756820001387
  5. Ashchepkov I., Logvinova A., Spetsius Z. et al. Eclogite Varieties and Their Positions in the Cratonic Mantle Lithosphere beneath Siberian Craton and Archean Cratons Worldwide // Minerals. 2022. Vol. 12. № 1353. DOI: 10.3390/min12111353
  6. Kargin А.V., Sazonova L.V., Nosova A.A. et al. Phlogopite in mantle xenoliths and kimberlite from the Grib pipe, Arkhangelsk province, Russia: Evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite // Geoscience Frontiers. 2019. Vol. 10. Iss. 5. P. 1941-1959. DOI: 10.1016/j.gsf.2018.12.006
  7. Mikhailenko D., Golovin A., Korsakov A. et al. Metasomatic Evolution of Coesite-Bearing Diamondiferous Eclogite from the Udachnaya Kimberlite // Minerals. 2020. Vol. 10. Iss. 4. № 383. DOI: 10.3390/min10040383
  8. Stachel T., Luth R.W. Diamond formation – Where, when and how? // Lithos. 2015. Vol. 220-223. P. 200-220. DOI: 10.1016/j.lithos.2015.01.028
  9. Weiss Y., Czas J., Navon O. Fluid Inclusions in Fibrous Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. Iss. 1. P. 475-532. DOI: 10.2138/rmg.2022.88.09
  10. Stachel T., Aulbach S., Harris J.W. Mineral Inclusions in Lithospheric Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. Iss. 1. P. 307-391. DOI: 10.2138/rmg.2022.88.06
  11. Walter M.J., Thomson A.R., Smith E.M. Geochemistry of Silicate and Oxide Inclusions in Sublithospheric Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. Iss. 1. P. 393-450. DOI: 10.2138/rmg.2022.88.07
  12. Smit K.V., Timmerman S., Aulbach S. et al. Geochronology of Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. Iss. 1. P. 567-636. DOI: 10.2138/rmg.2022.88.11
  13. Gubanov N., Zedgenizov D., Sharygin I., Ragozin A. Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe // Minerals. 2019. Vol. 9. Iss. 12. № 734. DOI: 10.3390/min9120734
  14. Elazar O., Grütter H., Weiss Y. The A B C's of metasomatism in the North Atlantic Craton during Pangea breakup; characterized by fluid inclusions in Chidliak diamonds // Lithos. 2022. Vol. 422-423. № 106725. DOI: 10.1016/j.lithos.2022.106725
  15. Puchkov V.N. The evolution of the Uralian orogen // Geological Society, London, Special Publications. 2009. Vol. 327. P. 161-195. DOI: 10.1144/SP327.9
  16. Puchkov V.N. General features relating to the occurrence of mineral deposits in the Urals: What, where, when and why // Ore Geology Reviews. 2017. Vol. 85. P. 4-29. DOI: 10.1016/j.oregeorev.2016.01.005
  17. Konstantinovskii A.A. Epochs of Diamond Placer Formation in the Precambrian and Phanerozoic // Lithology and Mineral Resources. 2003. Vol. 38. № 6. P. 530-546. DOI: 10.1023/A:1027316611376
  18. Laiginhas F., Pearson D.G., Phillips D. et al. Re-Os and 40Ar/39Ar isotope measurements of inclusions in alluvial diamonds from the Ural Mountains: Constraints on diamond genesis and eruption ages // Lithos. 2009. Vol. 112. S. 2. P. 714-723. DOI: 10.1016/j.lithos.2009.03.003
  19. Sun J., Tappe S., Kostrovitsky S.I. et al. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields // Chemical Geology. 2018. Vol. 479. P. 228-240. DOI: 10.1016/j.chemgeo.2018.01.013
  20. Устинов В.Н., Микоев И.И., Пивень Г.Ф. Поисковые модели коренных месторождений алмазов севера Восточно-Европейской платформы // Записки Горного института. 2022. Т. 255. С. 299-318. DOI: 10.31897/PMI.2022.49
  21. Лукьянова Л.И., Жуков В.В., Кириллов В.А. и др. Субвулканические эксплозивные породы Урала – возможные коренные источники алмазных россыпей // Региональная геология и металлогения. 2000. № 12. С. 134-157.
  22. Васильев E.A., Клепиков И.В., Козлов А.В., Антонов A.В. Природа удлиненной формы кристаллов алмаза из россыпей Урала // Записки Горного института. 2019. Т. 239. С. 492-496. DOI: 10.31897/PMI.2019.5.492
  23. Nefedov Y.V., Klepikov I.V. Occurrence Regularities of Nitrogen Defects in the Ural Type Crystal Diamonds from Different Regions // Key Engineering Materials. 2018. Vol. 769. P. 201-206. DOI: 10.4028/
  24. Klepikov I.V., Vasilev E.A., Antonov A.V. The Defect-Impurity Composition of Diamond Crystals with 〈100〉Growth Pyramids from Placers of the Krasnovishersk District, the Urals // Geology of Ore Deposits. 2020. Vol. 62. № 8. P. 743-753. DOI: 10.1134/S107570152008005X
  25. Sobolev N.V., Logvinova A.M., Tomilenko A.A. et al. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions // Geochimica et Cosmochimica Acta. 2019. Vol. 266. P. 197-219. DOI: 10.1016/j.gca.2019.08.028
  26. Zaitsev A.M. Optical Properties of Diamond. Heidelberg: Springer, 2001. 502 p. DOI: 10.1007/978-3-662-04548-0
  27. Goss J.P., Briddon P.R., Hill V. et al. Identification of the structure of the 3107 cm−1 H-related defect in diamond // Journal of Physics: Condensed Matter. 2014. Vol. 26. № 14. № 145801. DOI: 10.1088/0953-8984/26/14/145801
  28. Weiss Y., Kiflawi I., Navon O. IR spectroscopy: Quantitative determination of the mineralogy and bulk composition of fluid microinclusions in diamonds // Chemical Geology. 2010. Vol. 275. Iss. 1-2. P. 26-34. DOI: 10.1016/J.CHEMGEO.2010.04.010
  29. Vasilev E.A., Klepikov I.V., Lukianova L.I. Comparison of Diamonds from the Rassolninskaya Depression and Modern Alluvial Placers of the Krasnovishersky District (Ural Region) // Geology of Ore Deposits. 2019. Vol. 61. № 7. P. 598-605. DOI: 10.1134/S1075701519070134
  30. Harris J.W., Smit K.V., Fedortchouk Y., Moore M. Morphology of Monocrystalline Diamond and its Inclusions // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. Iss. 1. P. 119-166. DOI: 10.2138/rmg.2022.88.02
  31. Taylor W.R., Jaques A.L., Ridd M. Nitrogen-defect aggregation characteristics of some Australasian diamonds: Time-temperature constraints on the source regions of pipe and alluvial diamonds // American Mineralogist. 1990. Vol. 75. № 11-12. P. 1290-1310.
  32. Taylor W.R., Canil D., Milledge H.J. Kinetics of Ib to IaA nitrogen aggregation in diamond // Geochimica et Cosmochimica Acta. 1996. Vol. 60. Iss. 23. P. 4725-4733. DOI: 10.1016/S0016-7037(96)00302-X
  33. Green B.L., Collins A.T., Breeding C.M. Diamond Spectroscopy, Defect Centers, Color, and Treatments // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. Iss. 1. P. 637-688. DOI: 10.2138/rmg.2022.88.12
  34. Fedorova E.N., Logvinova A.M., Luk’yanova L.I., Sobolev N.V. Typomorphic characteristics of the Ural diamonds (from FTIR spectroscopy data) // Russian Geology and Geophysics. 2013. Vol. 54. № 12. P. 1458-1470. DOI: 10.1016/j.rgg.2013.10.013
  35. Speich L., Kohn S.C., Wirth R. et al. The relationship between platelet size and the B′ infrared peak of natural diamonds revisited // Lithos. 2017. Vol. 278-281. P. 419-426. DOI: 10.1016/j.lithos.2017.02.010
  36. Зедгенизов Д.А., Рагозин А.Л., Шацкий В.С. и др. Карбонатные и силикатные среды кристаллизации волокнистых алмазов из россыпей северо-востока Сибирской платформы // Геология и геофизика. 2011. Т. 52. № 11. С. 1649-1664.
  37. Kosman C.W., Kopylova M.G., Stern R.A. et al. Cretaceous mantle of the Congo craton: Evidence from mineral and fluid inclusions in Kasai alluvial diamonds // Lithos. 2016. Vol. 265. P. 42-56. DOI: 10.1016/j.lithos.2016.07.004
  38. Timmerman S., Yeow H., Honda M. et al. U-Th/He systematics of fluid-rich ‘fibrous’ diamonds – Evidence for pre- and syn-kimberlite eruption ages // Chemical Geology. 2019. Vol. 515. P. 22-36. DOI: 10.1016/j.chemgeo.2019.04.001
  39. Weiss Y., Kessel R., Griffin W.L. et al. A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea // Lithos. 2009. Vol. 112. P. 660-674. DOI: 10.1016/j.lithos.2009.05.038
  40. Ширяев А.А., Израэли Е.С., Хаури Э.Г. и др. Химические, оптические и изотопные особенности волокнистых алмазов из Бразилии // Геология и геофизика. 2005. Т. 46. № 12. С. 1207-1222.
  41. Luth R.W., Palyanov Y.N., Bureau H. Experimental Petrology Applied to Natural Diamond Growth // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. Iss. 1. P. 755-808. DOI: 10.2138/rmg.2022.88.14
  42. Elazar O., Frost D., Navon O., Kessel R. Melting of H2O and CO2-be aring eclogite at 4-6 GPa and 900-1200 °C: implications for the generation of diamond-forming fluids // Geochimica et Cosmochimica Acta. 2019. Vol. 255. P. 69-87. DOI: 10.1016/j.gca.2019.03.025
  43. Klein-BenDavid O., Logvinova A.M., Schrauder M. et al. High-Mg carbonatitic microinclusions in some Yakutian diamonds – a new type of diamond-forming fluid // Lithos. 2009. Vol. 112. S. 2. P. 648-659. DOI: 10.1016/j.lithos.2009.03.015
  44. Hammouda T., Keshav S. Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites // Chemical Geology. 2015. Vol. 418. P. 171-188. DOI: 10.1016/j.chemgeo.2015.05.018
  45. Kogiso T., Hirschmann M.M., Pertermann M. High-pressure Partial Melting of Mafic Lithologies in the Mantle // Journal of Petrology. 2004. Vol. 45. № 12. P. 2407-2422. DOI: 10.1093/petrology/egh057
  46. Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds // Gondwana Research. 2015. Vol. 28. Iss. 1. P. 106-120. DOI: 10.1016/

Similar articles

250 years in the service of the Fatherland: Empress Catherine II Saint Petersburg Mining University in facts and figures
2023 Sergei N. Rudnik, Vladimir G. Afanasev, Ekaterina A. Samylovskaya
Mineral composition and thermobarometry of metamorphic rocks of Western Ny Friesland, Svalbard
2023 Yurii L. Gulbin, Sima A. Akbarpuran Khaiyati, Aleksandr N. Sirotkin
Structure maintenance experience and the need to control the soils thermal regime in permafrost areas
2023 Anatolii V. Brushkov, Andrei G. Alekseev, Svetlana V. Badina, Dmitrii S. Drozdov, Vladimir A. Dubrovin, Oleg V. Zhdaneev, Mikhail N. Zheleznyak, Vladimir P. Melnikov, Sergei N. Okunev, Aleksei B. Osokin, Nikolai A. Ostarkov, Marat R. Sadurtinov, Dmitrii O. Sergeev, Roman Yu. Fedorov, Konstantin N. Frolov
Pink-violet diamonds from the Lomonosov mine: morphology, spectroscopy, nature of colour
2023 Galina Yu. Kriulina, Sergei V. Vyatkin, Evgenii A. Vasilev
Results of complex experimental studies at Vostok station in Antarctica
2023 Aleksei V. Bolshunov, Dmitrii A. Vasilev, Andrei N. Dmitriev, Sergei A. Ignatev, Vyacheslav G. Kadochnikov, Nikita S. Krikun, Danil V. Serbin, Vyacheslav S. Shadrin
Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia
2023 Vyacheslav А. Rudko, Renat R. Gabdulkhakov, Igor N. Pyagai