Submit an Article
Become a reviewer

Search articles for by keywords:
diamond-bearing fluid magmatic system

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-09-06
  • Date accepted
    2025-01-28
  • Date published
    2025-03-27

Results of aeromagnetic survey using unmanned aerial system at the Bunger Hills and Highjump Archipelago, Wilkes Land, East Antarctica

Article preview

The paper focuses on the technique and results of an aeromagnetic survey conducted using a fixed-wing unmanned aerial system (UAS) in East Antarctica at the Bunger Hills and Highjump Archipelago (Wilkes Land) during the 69th Russian Antarctic Expedition. The above survey was carried out at a 250-meter distance between flight lines (scale 1:25,000) over the area of 600 km 2 to increase the geological knowledge of the area. The magnetic anomaly map obtained after data processing is more detailed than any of known published geological maps of the area. The size of anomalies detected varies from dozens of meters up to large, kilometer-scale structures traced within the entire area under survey. The data analysis shows that the surveyed region is characterized by morphological heterogeneity and amplitude variability of anomalous magnetic field. Along with relatively calm zones one can observe strong gradient ones. Even the fluent analysis of aeromagnetic survey results proves their high information content. The UAS-based survey results demonstrate that the technique implemented is an important tool of applied geophysics and can effectively solve tasks of geological mapping in harsh weather conditions of Antarctica. It can adequately replace conventional aeromagnetic surveys that are now done using manned aircraft.

How to cite: Simakov A.E., Gutorov F.G., Leitchenkov G.L., Golynskii A.V., Antsev V.G., Golynskii D.A. Results of aeromagnetic survey using unmanned aerial system at the Bunger Hills and Highjump Archipelago, Wilkes Land, East Antarctica // Journal of Mining Institute. 2025. p. EDN TYGGUW
Energy industry
  • Date submitted
    2024-04-11
  • Date accepted
    2024-11-07
  • Date published
    2025-01-17

Thyristor booster device for voltage fluctuation reduction in power supply systems of ore mining enterprises

Article preview

The article is devoted to solving the problem of voltage fluctuations in the power supply systems of ore mining enterprises. The connection of high-power consumers with abruptly variable operating mode (for example, high-voltage mining excavators) causes voltage fluctuations and sags, disabling electrical equipment, communication, and automation devices in the 6-10 kV distribution network, which disrupts technological processes, etc. The use of existing solutions and methods to reduce voltage variations caused by dynamic loads is not effective. To solve the problem, booster transformers with high-speed thyristor switches can be used to work out switching the control steps towards increasing or decreasing the voltage. The authors offer a new circuitry solution for a thyristor booster device (TBD) with a pulse-phase control method. The purpose of the research is to determine the control laws of TBD, which enable to effectively reduce voltage fluctuations from dynamic load in the power supply systems of mining enterprises. The article provides a schematic diagram of the TBD and describes the principle of operation of the device. Some modes of increasing and decreasing the output voltage of the TBD, as well as the basic mode (without voltage addition) are provided. Mathematical modeling of TBD control processes was carried out and adjustment characteristics were set taking into account the load power factor. On a simulation computer model of a 6 kV electric network with a dynamic load, the verification of the adjustment characteristics of TBD obtained during mathematical modeling was carried out. Based on the research results, the laws for regulating the output voltage of TBD were established. The TBD effective control range with normal permissible limits of odd harmonics have been determined. The conducted research will make it possible to implement the device control system.

How to cite: Sosnina E.N., Asabin A.A., Bedretdinov R.S., Kryukov E.V., Gusev D.A. Thyristor booster device for voltage fluctuation reduction in power supply systems of ore mining enterprises // Journal of Mining Institute. 2025. p. EDN UIBVZK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-16
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources

Article preview

The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.

How to cite: Kontorovich A.E., Burshtein L.M., Gubin I.A., Parfenova T.M., Safronov P.I. Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources // Journal of Mining Institute. 2024. Vol. 269. p. 721-737. EDN WDBEOS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-10-14
  • Date published
    2024-11-12

Genetic geological model of diamond-bearing fluid magmatic system

Article preview

The article proposes a genetic geological model of diamond deposit formation associated with kimberlites and lamproites. It is based on the synthesis of published data on diamond-bearing kimberlite systems and an original study of the ontogenetic features of diamond crystals. Deep diamond crystallization, its upward transportation and subsequent concentration in near-surface kimberlite-lamproite bodies and other rocks, including those brought to the surface by high-amplitude uplifts of crystalline basement rocks, are combined in a single system. An assumption is made about the primary sources of the Anabar placer diamonds. The possibility of hydrocarbon generation at mantle levels corresponding to diamond formation areas and their transportation to the upper crustal zones by a mechanism similar to the mantle-crust migration of diamond-bearing fluidized magmas is shown. The high rate of their upward movement allows transportation to the surface without significant loss as a result of dissolution in melts and sorption on the surface of mineral phases. The significant role of fluid dynamics at all stages of this system is noted.

How to cite: Kozlov A.V., Vasilev E.A., Ivanov A.S., Bushuev Y.Y., Kolyadina A.I. Genetic geological model of diamond-bearing fluid magmatic system // Journal of Mining Institute. 2024. Vol. 269. p. 708-720. EDN CFZLAK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-03-01
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Study of the possibility of using high mineralization water for hydraulic fracturing

Article preview

The results of laboratory studies aimed at developing hydraulic fracturing fluid based on alternative sources of high mineralization water are presented. It is shown that Cenomanian sources have the most stable mineralization parameters, while bottom water and mixed waters collected from pressure maintenance systems differ significantly in their properties, with iron content varying several times, and hardness and mineralization undergoing substantial changes. The quality of the examined hydraulic fracturing fluids based on alternative water sources is confirmed by their impact on residual permeability, as well as residual proppant pack conductivity and permeability. The experimental results show similar values for these parameters. The comprehensive laboratory studies confirm the potential for industrial use of high mineralization water in hydraulic fracturing operations.

How to cite: Sultanov S.K., Mukhametshin V.S., Stabinskas A.P., Veliev E.F., Churakov A.V. Study of the possibility of using high mineralization water for hydraulic fracturing // Journal of Mining Institute. 2024. Vol. 270. p. 950-962. EDN SLRNDJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-07
  • Date accepted
    2023-12-27
  • Date published
    2024-08-26

Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method

Article preview

Landslides are one of the most frequent natural disasters that cause significant damage to property in Vietnam, which is characterized by mountainous terrain covering three-quarters of the territory. In 17 northern mountainous provinces of the country, over 500 communes are at a high to very high landslide hazard. The main goal of this study was to establish landslide hazard maps and conduct a comparative evaluation of the efficiency of the methods employed in Tinh Tuc town, Cao Bang province. The landslide hazard assessment was carried out in this study using the combined Fractal-frequency ratio (FFR) and the Frequency ratio (FR) methods. The FR method is based on the actualist principle, which assumes that future landslides may be caused by the same factors that contributed to slope failure in the past and present. The FFR method is based on the determination of the fractal dimension, which serves as a measure of the landslide filling density in the study area. Eight landslide-related factors were considered and presented in cartographic format: elevation, distance to roads, slope, geology, distance to faults, land use, slope aspect, and distance to drainage. Determining the area under the receiver operating characteristic curve (ROC-AUC) and verification index (LRclass) was performed to assess the performance of prediction models and the accuracy of the obtained maps. As a result, five zones were identified for the study area, characterized by very low, low, moderate, high, and very high landslide hazards. The analysis of the reliability of the obtained landslide hazard maps using the AUC and LRclass indices revealed that the FFR model has a higher degree of reliability (AUC = 86 %, LRclass = 86 %) compared to the FR model (AUC = 72 %, LRclass = 73 %); therefore, its use is more effective.

How to cite: Duong B.V., Fomenko I.K., Nguyen K.T., Zerkal O.V., Sirotkina O.N., Vu D.H. Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method // Journal of Mining Institute. 2024. Vol. 268. p. 613-624. EDN HTDPXJ
Energy industry
  • Date submitted
    2024-06-12
  • Date accepted
    2024-07-18
  • Date published
    2024-07-26

Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities

Article preview

The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.

How to cite: Tokarev I.S. Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities // Journal of Mining Institute. 2024. p. EDN UIZSOQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-07
  • Date accepted
    2024-06-14
  • Date published
    2024-07-04

Anomaly detection in wastewater treatment process for cyber resilience risks evaluation

Article preview

Timely detection and prevention of violations in the technological process of wastewater treatment caused by threats of different nature is a highly relevant research problem. Modern systems are equipped with a large number of technological sensors. Data from these sensors can be used to detect anomalies in the technological process. Their timely detection, prediction and processing ensures the continuity and fault tolerance of the technological process. The aim of the research is to improve the accuracy of detection of such anomalies. We propose a methodology for the identification and subsequent assessment of cyber resilience risks of the wastewater treatment process, which includes the distinctive procedure of training dataset generation and the anomaly detection based on deep learning methods. The availability of training datasets is a necessary condition for the efficient application of the proposed technology. A distinctive feature of the anomaly detection approach is a new method of processing input sensor data, which allows the use of computationally efficient analytical models with high accuracy of anomaly detection, and outperforms the efficiency of previously published methods.

How to cite: Novikova E.S., Fedorchenko E.V., Bukhtiyarov M.A., Saenko I.B. Anomaly detection in wastewater treatment process for cyber resilience risks evaluation // Journal of Mining Institute. 2024. Vol. 267. p. 488-500. EDN TBPPHN
Energy industry
  • Date submitted
    2024-02-01
  • Date accepted
    2024-05-02
  • Date published
    2024-06-18

Methodology for managing energy development of production facilities in the gas industry

Article preview

The current stage of Russia's development is characterized by dynamic changes in the operating conditions of gas industry enterprises, which leads, among other things, to significant adjustments in approaches to the development of energy production facilities. The article examines on the system level the ways to improve energy supply, taking into account the goals and objectives of the development of production facilities from the conditions of solving a single technological problem of the gas industry – high-quality gas supply to consumers. The optimal functioning of energy supply systems, taking into account the peculiarities of technological processes at production facilities, presupposes the development models coordination of production facilities energy complexes with the gas industry enterprises parameters based on an integrated unified information space at all stages of their life cycle. The structure of production facility energy complex and the connections of its elements with related systems are justified taking into account the purposes of their creation and the requirements for production facilities. Problem solving for each system element as well as the exchange of information between equivalent systems is done on the basis of a developed hierarchy of optimization problems adjusted depending on the type of tasks of energy supply improvement of a production facility. Determining the values of parameters and indicators of energy complexes, as well as optimizing the lists and content of work to improve the energy supply of production facilities, is planned to be carried out in accordance with the methodology under consideration using a set of mathematical models.

How to cite: Shapovalo A.A. Methodology for managing energy development of production facilities in the gas industry // Journal of Mining Institute. 2024. p. EDN XWKKKQ
Geology
  • Date submitted
    2023-06-21
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

Peculiarities of formation, isomorphism and geochemistry of trace elements of sphalerite and wurtzite unusual varieties from the Goniatite occurrence (Pai-Khoi Ridge, Nenets Autonomous District)

Article preview

A unique Mn-, Cd-bearing sphalerite from quartz-calcite veins in the coal-bearing series (Visean C1v) marine sediments in a 50 km segment of the middle course of the Silova-Yakha River in the Arctic zone of the European part of Russia (Pai-Khoi Ridge) has been studied. The veins have a conformable and cross-cutting occurrence in two types of rocks: gray limestones and black siliceous-carbonaceous shales, the area is known as the Goniatite occurrence. The sulfide content in vein samples ranges from 0.1 to 2 vol.%. The chemical composition of 27 monomineral samples of Mn-, Cd-bearing sphalerites was studied, 82 points were analyzed. Correlations between typomorphic elements-impurities were revealed and correlation matrix was constructed. Cu, V, Ga, In, Sn, As, Sb, Bi, Pb, Tl, Se, Ag, Au, Ni are positively correlated with each other; Cd, Mn and Ge are negatively correlated with each other. The hydrothermal fluid involved in crystallization of sphalerite is characterized by low temperature (164-211 °С) and average salinity of 5-6 wt.% eq. NaCl. An updated “portrait” of typomorphic features (composition and properties) of sphalerite of the Pai-Khoi province was obtained. The features allowing to determine the type of impurity entering the sphalerite structure – in the form of isomorphic impurity or in the form of microinclusions of paragenetic association minerals – have been established. Submicron inclusions of sulvanite and colusite, invisible by other methods, were detected in sphalerite (by LA-ICP-MS method).The cathodoluminescence data of sphalerite from the Pai-Khoi province were typified. In contrast to other provinces, ZnS crystals here are characterized by almost complete absence of isomorphic iron. This allowed us to study pure isomorphism schemes of ZnS↔MnS, ZnS↔CdS, namely cathodoluminescence and other types of luminescence. The presence of a rare wurtzite-4H polytype in assemblage with sphalerite was revealed. High contents of strategic metals Cd, Ga, In, Ge in the ZnS matrix, as well as sulvanite (V, Cu) in a single paragenesis were found. A serious reassessment of the potential for industrial use of this mineralization will be required.

How to cite: Makeyev A.B., Vikentyev I.V., Kovalchuk E.V., Abramova V.D., Prokofyev V.Y. Peculiarities of formation, isomorphism and geochemistry of trace elements of sphalerite and wurtzite unusual varieties from the Goniatite occurrence (Pai-Khoi Ridge, Nenets Autonomous District) // Journal of Mining Institute. 2024. Vol. 270. p. 861-876. EDN CCJVMG
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-14
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons

Article preview

In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.

How to cite: Kusochkova E.V., Indrupskii I.M., Surnachev D.V., Alekseeva Y.V., Drozdov A.N. Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons // Journal of Mining Institute. 2024. Vol. 270. p. 904-918. EDN QBQQCT
Geology
  • Date submitted
    2022-11-29
  • Date accepted
    2023-03-02
  • Date published
    2023-10-27

New data on the composition of growth medium of fibrous diamonds from the placers of the Western Urals

Article preview

This article presents the results of studying microinclusions of fluids/melts in diamonds from the placers of the Krasnovishersky District (western slope of the Middle/Northern Urals), which make it possible to establish the evolution of diamond-forming media in the subcontinental lithospheric mantle of the eastern margin of the East European craton. Impurity composition of the studied crystals reveals three different types of diamonds, the formation of which was associated with separated metasomatic events. Microinclusions in B-type diamonds containing A and B nitrogen defects reflect an older metasomatic stage characterized by the leading role of silicic and low-Mg carbonatitic fluids/melts. The second stage is associated with the growth of A-type diamonds containing nitrogen exclusively in the form of A-centers. At this stage, the formation of diamonds was related with low-Mg carbonatitic media, more enriched in MgO, CaO, CO2, and Na2O compared to B-type diamonds. The third stage probably preceded the eruption of the transporting mantle melt and led to the formation of C-type diamond containing A and C nitrogen defect centers and microinclusions of silicic to low-Mg carbonatitic composition. The recorded trend in the evolution of diamond-forming fluids/melts is directed towards more carbonatitic compositions. Fluids/melts are probably sourced from eclogitic and pyroxenitic mantle substrates.

How to cite: Gubanov N.V., Zedgenizov D.A., Vasilev E.A., Naumov V.A. New data on the composition of growth medium of fibrous diamonds from the placers of the Western Urals // Journal of Mining Institute. 2023. Vol. 263. p. 645-656. EDN RYMYTJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-14
  • Date accepted
    2023-08-02
  • Date published
    2023-08-28

A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey

Article preview

The methodology of building a digital elevation model based on the results of aerial photogrammetric survey from an unmanned aircraft is proposed, which is based on the division of the initial point cloud into equal segments. This allows, having made an assumption of the linear character of change of height of points in a separate segment, to approximate them by separate planes. RMS errors of the models from the survey data were calculated according to the scattering of the points in relation to the approximating surfaces, which made it possible to reveal the dependence of the model construction error relative to the sizes of their constituent segments, as well as to propose a method for filtering the cells containing outliers with respect to the expected model error. The proposed method was tested on the models of three mining objects – limestone quarry, phosphogypsum dump, and peat cut. The experimental results showed a multiple reduction in model error compared to standard DEM models providing the required accuracy for mining documentation.

How to cite: Vystrchil M.G., Gusev V.N., Sukhov A.K. A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey // Journal of Mining Institute. 2023. Vol. 262. p. 562-570. EDN SZOFVD
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-20
  • Date accepted
    2022-07-21
  • Date published
    2023-12-25

Tribodynamic aspects of the resource of electric submersible vane pumps for oil production

Article preview

The operation of electric submersible vane pumps for oil production is accompanied by the presence of solid particles, corrosive substances, asphalt-resin-paraffin deposits in the reservoir fluid, leading to changes in performance characteristics and equipment failures. The reduction of the resource as a result of this is accompanied by an increase in the costs of repair and replacement of equipment. The main processes that negatively affect the failure are the wear of the seals of the working stages, the pump plain bearings and vibration, the level of which can significantly exceed the initial level. A test bench and methodology for testing pump sections for wear in water with an abrasive and simultaneous registration of vibration characteristics have been developed. Two main forms of wear of radial seals have been identified – one-sided and equal-dimensional. The one-sided form of sleeve wear is caused by synchronous shaft precession, whereas the equal-dimensional one is an asynchronous precession, and the vibration level increases with increasing wear. The wear distribution of radial seals along the length of the pump correlates with the shape of the elastic shaft line. The wear of the axial seals does not significantly increase the vibration level. During wear the frequency spectrum of vibrations changes; there occurs a frequency that can serve as a diagnostic sign of ultimate wear of the pump. The calculated dependence of the vibration velocity on the wear of the radial seals of the working stages is obtained, which makes it possible to predict the onset of a failure of functioning.

How to cite: Smirnov N.I., Drozdov A.N., Smirnov N.N. Tribodynamic aspects of the resource of electric submersible vane pumps for oil production // Journal of Mining Institute. 2023. Vol. 264. p. 962-970. EDN QNNAGA
Energy industry
  • Date submitted
    2021-05-12
  • Date accepted
    2022-05-11
  • Date published
    2023-07-19

Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption

Article preview

The article considers a cybernetic model for the price-dependent demand response (DR) consumed by an underground mining enterprise (UGME), in particular, the main fan unit (MFU). A scheme of the model for managing the energy consumption of a MFU in the DR mode and the implementation of the cybernetic approach to the DR based on the IoT platform are proposed. The main functional requirements and the algorithm of the platform operation are described, the interaction of the platform with the UGME digital model simulator, on which the processes associated with the implementation of the technological process of ventilation and electricity demand response will be simulated in advance, is shown. The results of modeling the reduction in the load on the MFU of a mining enterprise for the day ahead are given. The presented solution makes it possible to determine in advance the necessary power consumption for the operation of the main power supply unit, manage its operation in an energy-saving mode and take into account the predicted changes in the planned one (e.g., when men hoisting along an air shaft) and unscheduled (e.g., when changing outdoor air parameters) modes. The results of the study can be used to reduce the cost of UGME without compromising the safety of technological processes, both through the implementation of energy-saving technical, technological or other measures, and with the participation of enterprises in the DR market. The proposed model ensures a guaranteed receipt of financial compensation for the UGME due to a reasonable change in the power consumption profile of the MFU during the hours of high demand for electricity, set by the system operator of the Unified Energy System.

How to cite: Nikolaev A.V., Vöth S., Kychkin A.V. Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption // Journal of Mining Institute. 2023. Vol. 261. p. 403-414. DOI: 10.31897/PMI.2022.33
Editorial
  • Date submitted
    2023-07-19
  • Date accepted
    2023-07-19
  • Date published
    2023-07-19

Energy efficiency in the mineral resources and raw materials complex

Article preview

Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.

How to cite: Shklyarskiy Y.E., Skamyin A.N., Jiménez Carrizosa M. Energy efficiency in the mineral resources and raw materials complex // Journal of Mining Institute. 2023. Vol. 261. p. 323-324.
Energy industry
  • Date submitted
    2023-03-16
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator

Article preview

In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.

How to cite: Rakhutin M.G., Giang K.Q., Krivenko A.E., Tran V.H. Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator // Journal of Mining Institute. 2023. Vol. 261. p. 374-383. EDN OKWKUF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-08-10
  • Date accepted
    2023-02-28
  • Date published
    2024-02-29

Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors

Article preview

The task of sludge removal to the surface during construction of directional and horizontal wells and strongly curved radial channels is relevant. For stable operation of technical system “Perfobore”, it is proposed to use a circulating sub that ensures efficient cleaning of channel wellbore from the drilled rock. Two schemes of technical system “Perfobore” are considered, consisting of two seven-meter coiled tubing, a positive displacement motor, a bit and one circulating sub in the first scheme and two subs in the second scheme. For each of the schemes CFD modeling was implemented to determine values of pressure and speed. It was found out that the use of two circulating subs in the assembly is more efficient. In order to confirm the numerical experiment, bench tests were carried out. It was determined that the designed circulating sub can eject up to 25 % of pumped drilling fluid. The bench tests of full-size technical system “Perfobore” for drilling 14-meter channels with two circulating subs showed that the axial load on positive displacement motor produced by hydraulic loader was 3000 N and pressure drop depending on flow rate was 1.5-2.0 MPa. This allows the motor to operate at maximum power.

How to cite: Lyagov I.А., Lyagov A.V., Isangulov D.R., Lyagova А.А. Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors // Journal of Mining Institute. 2024. Vol. 265. p. 78-86. EDN ZBPWKU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-21
  • Date accepted
    2022-11-14
  • Date published
    2023-08-28

Strategy of mine ventilation control in optimal mode using fuzzy logic controllers

Article preview

The issues related to improving the efficiency of automatic ventilation control systems of mines that regulate the air supply to the mine in accordance with the need are considered. During the tests of such a system in the 3RU mine of OAO Belaruskali, the shortcomings of its existing, implementation, associated with the incorrect choice of the most difficult-to-ventilate direction, were revealed. The possibilities of implementing a control strategy, in which the system automatically determines the optimal configuration of the operating modes of fans and regulators, are demonstrated. As an alternative to the implemented algorithms, it is proposed to use a fuzzy control device to account for the nonlinearity of the dependence of the input and output parameters of ventilation equipment and to set the conditions for the optimal operating mode of the system in a declarative form. To assess the effectiveness of the proposed approach, the data of simulation modeling of the current ventilation mode and the transition from one ventilation mode to another are analyzed with comparison with the actual data of the system operation. The simulation results show that the use of an upgraded control scheme for the main ventilation fan based on fuzzy logic in the implementation of automatic ventilation control systems makes it possible to eliminate the possibility of a shortage of fresh air in the regulated directions of its movement, as well as excessive power consumption of the main ventilation fan.

How to cite: Kashnikov A.V., Kruglov Y.V. Strategy of mine ventilation control in optimal mode using fuzzy logic controllers // Journal of Mining Institute. 2023. Vol. 262. p. 594-605. DOI: 10.31897/PMI.2022.75
Economic Geology
  • Date submitted
    2022-06-28
  • Date accepted
    2023-01-19
  • Date published
    2023-02-27

Influence of mining rent on the efficiency of using natural potential: the paradox of plenty and its Russian specifics

Article preview

The most powerful potential of Russia's natural resources is only partially realized, and determining the reasons for the insufficient efficiency of its use is a current research topic. The exploitation of mineral resources that bring mining rent (primarily oil and gas) gives rise to the so-called “paradox of plenty” (PP), which in some cases manifests itself as a significant slowdown in economic development. The purpose of the article is to clarify the signs, degree and forms of PP manifestation and related problems (“resource curse”, “oil curse”, etc.) in the Russian economy. Since the causes of these phenomena are usually associated with rent extraction and peculiarities of the institutional structure of the economy, the works of leading economists who support the theories of “rent-oriented behavior” and the role of public institutions in the process of the PP emergence were critically analyzed. To determine the signs and degree of PP manifestation and related problems, an analysis of determining the shares of oil and gas in the structure of exports, revenues from their sale in the federal budget, and oil and gas products in the structure of GDP, was made. It is concluded that there are no sufficient grounds for ascertaining clear signs of a “rent-oriented” Russian economy and a “resource curse”; important counteracting factors that refute the unambiguous conclusions about the high degree of PP impact on the Russian economy were identified. The author's interpretation of the role of public institutions, the factors of formation and forms of PP manifestation, the specifics of differential mining rent and its role in the formation of PP are proposed; options for solving problems generated by PP – directions for improving the tax system in the field of oil and gas, etc.; substantiation of the need to develop a strategic state program for diversifying the sectoral structure of the Russian economy; directions for adjusting economic policy in the field of oil and gas industry development, etc.

How to cite: Lapinskas A.A. Influence of mining rent on the efficiency of using natural potential: the paradox of plenty and its Russian specifics // Journal of Mining Institute. 2023. Vol. 259. p. 79-94. DOI: 10.31897/PMI.2023.13
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-01
  • Date accepted
    2022-05-25
  • Date published
    2022-12-29

Study on the rheological properties of barite-free drilling mud with high density

Article preview

Improved drilling and reservoir penetration efficiency is directly related to the quality of the drilling mud used. The right choice of mud type and its components will preserve formation productivity, stability of the well walls and reduce the probability of other complications. Oil and gas operators use barite, less often siderite or hematite weighting agent as a weighting component in the composition of drilling muds for the conditions of increased pressure. But the use of these additives for the penetration of the productive formation leads to the reduction of filtration characteristics of the reservoir, as it is almost impossible to remove them from the pore channels. Therefore, barite-free drilling mud of increased density based on formic acid salts with the addition of carbonate weighting agent as an acid-soluble bridging agent is proposed. The results of experimental investigations on rheological parameters of barite-free solutions are given and the obtained data are analyzed. Based on the comparison of results it is recommended to use high-density drilling mud on the basis of formic acid salts (sodium and potassium formate) and with the addition of partially hydrolyzed polyacrylamide with molecular mass of 27 million.

How to cite: Leusheva E.L., Alikhanov N.T., Brovkina N.N. Study on the rheological properties of barite-free drilling mud with high density // Journal of Mining Institute. 2022. Vol. 258. p. 976-985. DOI: 10.31897/PMI.2022.38
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-24
  • Date accepted
    2022-07-21
  • Date published
    2022-12-29

A probabilistic study on hole cleaning optimization

Article preview

Hole cleaning is considered as one of the most important drilling fluid functions. An efficient hole cleaning ensures a reliable well drilling practice with minimum troublesome problems. In this study, two main steps of hole cleaning, i.e., cuttings removal from under the bit and cuttings transport to the surface are discussed based on the drilling data of a shale formation. The traditional models for optimization of each step are presented. As the models require variety of input data, which are usually subjected to some extent of errors and uncertainties, the output of the model is also an uncertain parameter. Using Monte Carlo simulation, a simple probabilistic study was conducted to quantify the certainty level of the obtained results. Based on the result of this study, it is shown that for the proposed well, a good hole cleaning is expected. However, a more reliable decision for further hole cleaning optimization should be made considering the results of uncertainty analysis.

How to cite: Tabatabaee Moradi S.S. A probabilistic study on hole cleaning optimization // Journal of Mining Institute. 2022. Vol. 258. p. 956-963. DOI: 10.31897/PMI.2022.67
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-04-12
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)

Article preview

Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.

How to cite: Gasumov R.А., Minchenko Y.S., Gasumov E.R. Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits) // Journal of Mining Institute. 2022. Vol. 258. p. 895-905. DOI: 10.31897/PMI.2022.99
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-15
  • Date published
    2022-12-29

Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well

Article preview

Modern drilling fluids are non-linear viscous media with an initial shear stress. In classical scientific works on hydromechanical modeling of drilling fluids motion in pipes and annular channels the Shvedov – Bingham approximation and Ostwald – de Waale power-law model were used, which did not fully account for behavior of technological fluids in a wide range of shear rates. This article presents a numerical solution for a mathematical model of drilling fluid motion of the three-parameter Herschel – Bulkley rheological model in the annular space of the well. The Herschel – Bulkley model in the rheological equation takes into account the presence of initial shear stress and a tendency for viscosity to change with shear rate, which distinguishes it from the Ostwald – de Waale and Shvedov – Bingham models. The target function in solving the equation of motion is the velocity distribution in the radial direction of the upward flow of the flushing fluid. The analysis of obtained solution is based on the theory of velocity profile influence on quality of cuttings removal during wellbore cleaning. Due to peculiarities of mathematical statement of the task, which supposes necessity of differential equation of motion solution, Wolfram Mathematica computational software has been used as a calculation tool. The analysis of numerical solution allowed to draw conclusions about the possibility of its application in evaluation of velocity profile when drilling fluid moves in annular space of the well. The possibility for application of modified excess coefficient as a relative quantitative parameter for evaluation of velocity profile uniformity was substantiated.

How to cite: Nikitin V.I. Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well // Journal of Mining Institute. 2022. Vol. 258. p. 964-975. DOI: 10.31897/PMI.2022.93
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-30
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies

Article preview

The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.

How to cite: Zemenkova M.Y., Chizhevskaya E.L., Zemenkov Y.D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies // Journal of Mining Institute. 2022. Vol. 258. p. 933-944. DOI: 10.31897/PMI.2022.105