-
Date submitted2024-07-28
-
Date accepted2024-11-26
-
Date published2024-12-12
From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry
- Authors:
- Oleg V. Zhdaneev
- Ivan R. Ovsyannikov
Achieving technological sovereignty implies accelerating innovation and reducing import dependence. An effective tool for addressing these challenges is local content policy (LCP). The purpose of this study is to assess the impact of LCP on innovation activity in oil and gas companies and to provide recommendations for enhancing the effectiveness of this policy in Russia. The paper analyzes the influence of LCP on innovation levels in the oil and gas sector, drawing on examples from 10 countries. A positive short-term impact of LCP on innovation was identified in Brazil, Malaysia, and Saudi Arabia, with long-term effects observed in China and South Africa. Recommendations for improving the effectiveness of LCP in Russia are supplemented with a methodology for calculating the level of technological sovereignty. A refinement of the method for solving the «responsiveness» problem, incorporating the level of localization, has been proposed.
-
Date submitted2023-02-07
-
Date accepted2023-06-20
-
Date published2024-02-29
Origin of carbonate-silicate rocks of the Porya Guba (the Lapland-Kolvitsa Granulite Belt) revealed by stable isotope analysis (δ18O, δ13C)
- Authors:
- Dmitrii P. Krylov
- Ekaterina V. Klimova
Carbonate-silicate rocks of unclear origin have been observed in granulites of the Porya Guba of the Lapland-Kolvitsa Belt within the Fennoscandinavian Shield. The present work aims to reconstruct possible protoliths and conditions of metamorphic transformation of these rocks based on oxygen and carbon isotopic ratios combined with phase equilibria modeling. Isotope analysis and lithochemical reconstructions suggest that carbonate-silicate rocks of the Porya Guba represent metamorphosed sediments (possibly marls) with the isotopic composition corresponding to the Precambrian diagenetically transformed carbonates (δ18O ≈ 17.9 ‰, SMOW and δ13C ≈ –3.4 ‰, PDB). The chemical composition varies depending on the balance among the carbonate, clay, and clastic components. Significant changes of the isotopic composition during metamorphism are caused by decomposition reactions of primary carbonates (dolomite, siderite, and ankerite) producing CO2 followed by degassing. These reactions are accompanied by δ18O and δ13C decrease of calcite in isotopic equilibrium with CO2 down to 15 ‰ (SMOW) and –6 ‰ (PDB), respectively. The isotopic composition is buffered by local reactions within individual rock varieties, thus excluding any pronounced influence of magmatic and/or metasomatic processes.
-
Date submitted2021-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps
On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.
-
Date submitted2022-05-31
-
Date accepted2022-11-17
-
Date published2022-12-29
Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field
Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.
-
Date submitted2022-04-02
-
Date accepted2022-11-28
-
Date published2022-12-29
Improving the energy-efficiency of small-scale methanol production through the use of microturboexpander units
The issue of improving the energy-efficiency of container-based gas chemical plants for methanol production in field conditions is considered. The relevance of the direction is determined by the necessity for development of remote Arctic hydrocarbon fields. The object of research is energy-efficient conversion of waste gases energy and surplus thermal energy in small-scale system of methanol production using technology of synthesis gas generation by non-catalytic partial oxidation of natural gas. Approaches to the design and analysis of structural solutions for microturboexpander units are considered. A technique combining traditional approaches to the calculation of equipment and modeling by the finite element method in ANSYS is proposed. The developed methodology facilitates calculation of design parameters for microturboexpanders and allows taking into account peculiarities of working medium, thermobaric conditions and gas flow characteristics.
-
Date submitted2022-11-06
-
Date accepted2022-11-29
-
Date published2022-12-29
Technological sovereignty of the Russian Federation fuel and energy complex
- Authors:
- Oleg V. Zhdaneev
The review to achieve technological sovereignty of the Russian fuel and energy complex (FEC) in the ongoing geopolitical situation is presented in the article. The main scope has been to identify the key technology development priorities, restrictions and internal resources to overcome these utilizing the developed by the author the innovative methodology that consists of novel approaches to calculate level of local content, digitalization, business continuity andinteractions with military-industrial complex. Some organizational changes have been proposed to intensify the development of hi-tech products for the FEC and related industries, including establishment of the state committee for science and technology and the project office of lead engineers for the critical missing technologies. Two successful examples to utilize the described in the paper methodology is presented: the first domestic hydraulic fracturing fleet and polycrystalline diamond compact cutter bit inserts.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-11-03
Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit)
Technological mineralogy of titanium ores is the basis for assessing their complexity. It enables, from a unified standpoint, to trace the entire course of changes in mineral matter through operating procedures, including beneficiation, processing, and obtaining target industrial products. The study targets are Pizhemskoye ilmenite-leucoxene sandstones, which are distinguished by a complex polymineral composition. Along with the main ore components, there are other metals with different speciation (isomorphic admixture, independent mineral phases). The optimal set of mineralogical analysis methods for the predictive assessment of their further use is substantiated exemplified by titanium ores of the Pizhemskoye deposit, which are complex, noted for a variable content of iron oxides and contain rare earth metals. Examinations by X-ray phase analysis and scanning electron microscopy confirm that the main titanium phases of sandstones are pseudorutile and a polymineral aggregate, “leucoxene”. Considering the granulometric peculiarities of the magnetic and non-magnetic fractions of the gravity concentrate, the prospects of technologies for processing titanium raw materials are discussed. Along with the problems of obtaining high-quality raw materials, the transformations of mineral phases as a result of extreme impacts and their physicochemical properties as a consequence of isomorphic substitution of a part of Ti atoms with natural modifier agents (Fe and V) in the synthesis of titanium oxide nanostructures for industrial applications are considered (photocatalytic nanoreactor).
-
Date submitted2022-05-03
-
Date accepted2022-07-21
-
Date published2022-11-03
Determination of rational steam consumption in steam-air mixture flotation of apatite-nepheline ores
Relevance of the study is determined by the decisions taken to increase the production volume of certain commercial products from mineral raw materials. The scale, impact and consequences of the projects on developing the resource-saving technologies for beneficiation of mineral raw materials are socially significant, and the economic growth of mining production complies with the sustainable development goals. The aim of the study is to develop the flotation circuit and mode that improve the technological performance of beneficiation of apatite-nepheline ores of the Khibiny Massif in the Kola Peninsula. The scientific idea of the work is to develop the flotation circuit, the movement of beneficiation products in which ensures a major increase in the content of the recovered component in the rougher flotation procedure with a simultaneous increase in dressability of the material. The above condition is met when mixing the feedstock with rough concentrate. Recovery of the valuable component from the resulting mixture is accomplished in a mode differing from the known ones in that the heat of steam condensation is used to increase water temperature in the interphase film between the particle and the bubble. For pulp aeration during flotation, a mixture of air and hot steam is used as the gas phase. A high recovery of the valuable component in ore flotation according to the developed circuit and mode is facilitated by increasing water temperature in wetting films due to the steam condensation heat. A high selectivity of flotation with a steam-air mixture can be explained using the concepts of a phonon component of disjoining pressure, the value and sign of which are associated with a difference in the dynamic structure of liquid in the wetting film and bulk liquid.
-
Date submitted2021-05-31
-
Date accepted2022-03-24
-
Date published2022-07-13
Mathematical model of linear and non-linear proppant concentration increase during hydraulic fracturing – a solution for sequential injection of a number of proppant types
It is known that much of the technology aimed at intensifying fluid inflow by means of hydraulic fracturing involves the use of proppant. In order to transport and position grains in the fracture, a uniform supply of proppant with a given concentration into the fracturing fluid is ensured. The aim of the operation is to eliminate the occurrence of distortions in the injection program of proppant HF. A mathematically accurate linear increase of concentration under given conditions is possible only if the transient concentration is correctly defined. The proposed approach allows to correctly form a proppant HF work program for both linear and non-linear increase in proppant concentration. The scientific novelty of the work lies in application of a new mathematical model for direct calculation of injection program parameters, previously determined by trial and error method. A mathematical model of linear and non-linear increase of proppant concentration during HF was developed. For the first time, an analytical solution is presented that allows direct calculation of parameters of the main HF stages, including transient concentrations for given masses of the various types of proppant. The application of the mathematical model in formation of a treatment plan allows maintaining correct proppant mass distribution by fractions, which facilitates implementation of information and analytical systems, data transfer directly from a work program into databases. It is suggested to improve spreadsheet forms used in production, which would allow applying mathematical model of work program formation at each HF process without additional labour costs. The obtained mathematical model can be used to improve the software applied in the design, modelling and engineering support of HF processes.
-
Date submitted2021-09-17
-
Date accepted2022-04-07
-
Date published2022-12-29
Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover
Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.
-
Date submitted2020-05-13
-
Date accepted2021-05-21
-
Date published2021-09-20
Increasing the efficiency of technological preparation for the production of the manufacture components equipment for the mineral resource complex
An increase of components production for the equipment intended for oil and gas production is a key factor for analyzing existing technological processes and searching for new technological solutions to improve the efficiency of the production process and the quality of components. The article presents a simulation model designed to determine the rational technological processing parameters for the production of the “Centralizer shell” part. The basis for optimizing the working cycle of a production line is synchronization based on the principle of proportionality, which involves equalizing the duration of all technological operations with the rhythm of the production line. Synchronization of technological operations on the production line is carried out by choosing rational cutting parameters for each technological transition (cutting speed, feedrate, number of working passes). The “Centralizer shell” part is made of titanium alloy VT16, which has high strength, corrosion resistance and ductility. For the part under consideration, the permissible values of the cutting parameters were determined based on the calculation of the total processing error, as well as the frequency of replacement of the worn cutting tool. The simulation model described in the article made it possible to increase the efficiency of the production process due to the synchronization of technological operations and the search for rational technological parameters, as well as to improve the manufacturing quality of the “Centralizer shell” part by analyzing the processing error at various parameters of the technological process.
-
Date submitted2020-05-21
-
Date accepted2020-10-05
-
Date published2020-11-24
Method of calculating pneumatic compensators for plunger pumps with submersible drive
- Authors:
- Eduard O. Timashev
One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .
-
Date submitted2020-02-19
-
Date accepted2020-04-17
-
Date published2020-10-08
Decrease in coal losses during mining of contiguous seams in the near-bottom part at Vorkuta deposit
- Authors:
- Oleg I. Kazanin
- Valeriy V. Yaroshenko
The problem of formation of extended zones with high rock pressure (HRP) from safety pillars at the boundaries of extraction pillars formed due to the mine layout of complex geometry is considered at the example of JSC Vorkutaugol mines. A detailed analysis of the remaining reserves of the near-bottom part of the deposit was carried out to estimate losses and the impact of HRP zones from the Chetvertyi protective seam to mining operations on the Troinoi upper seam along with the possibilities for the reduction of sizes of HRP zones at the account of expanding the underworked space. Due to research on the near-bottom part of the Vorkuta deposit, within the framework of the accepted layout, a zone at the Komsomolskaya mine and two zones at the Zapolyarnaya-2 mine were singled out, at which losses at the boundaries of the extraction pillars amount up to 13-22 % of the total resources of the mine field. The high volume of losses in these pillars indicates the relevance of research on the priority extraction impact of protective seams on the efficiency and safety of mining operations in the working area of underworked and HRP zones. Based on the analysis of foreign and Russian experience in the pillar cleaning-up at the boundaries of working areas and the methodical guidelines and instructions, a technological scheme was developed that allows increasing the coal mining recovery factor in the near-bottom part of the Vorkuta deposit from 0.75 to 0.9 without fundamental changing of the ventilation and transport networks and also without purchasing any additional mining equipment. The conducted economic calculations confirmed the effectiveness of implementing the new technological scheme for cleaning-up reserves at the boundaries of extraction districts. The economic effect is from 0.079 to1.381 billion rubles of additional profit from coaxial extraction pillars, depending on the mining and geological conditions and the size of the pillars.
-
Date submitted2020-05-26
-
Date accepted2020-06-10
-
Date published2020-06-30
Theoretical analysis of frozen wall dynamics during transition to ice holding stage
Series of calculations for the artificial freezing of the rock mass during construction of mineshafts for the conditions of a potash mine in development was carried out. Numerical solution was obtained through the finite element method using ANSYS software package. Numerical dependencies of frozen wall thickness on time in the ice growing stage and ice holding stage are obtained for two layers of the rock mass with different thermophysical properties. External and internal ice wall boundaries were calculated in two ways: by the actual freezing temperature of pore water and by the temperature of –8 °С, at which laboratory measurements of frozen rocks' strength were carried out. Normal operation mode of the freezing station, as well as the emergency mode, associated with the failure of one of the freezing columns, are considered. Dependence of a decrease in frozen wall thickness in the ice holding stage on the duration of the ice growing stage was studied. It was determined that in emergency operation mode of the freezing system, frozen wall thickness by the –8 °C isotherm can decrease by more than 1.5 m. In this case frozen wall thickness by the isotherm of actual freezing of water almost always maintains positive dynamics. It is shown that when analyzing frozen wall thickness using the isotherm of actual freezing of pore water, it is not possible to assess the danger of emergency situations associated with the failure of freezing columns.
-
Date submitted2019-07-09
-
Date accepted2019-09-26
-
Date published2020-04-24
Development of mathematical models to control the technological properties of cement slurries
Oil and gas producing enterprises are making increasingly high demands on well casing quality, including the actual process of injection and displacement of cement slurry, taking into account requirements for the annular cement level, eliminating possible hydraulic fracturing, with developing a hydraulic cementing program. It is necessary to prevent deep invasion of cement slurry filtrate into the formation to exclude bridging of productive layers. It is impossible to fulfill all these requirements at the same time without application of modifying additives; complex cement compositions are being developed and applied more often. Furthermore, need to adjust cement slurries recipes appears for almost every particular well. In order to select and justify cement slurries recipes and their prompt adjustment, taking into account requirements of well construction project, as well as geological and technical conditions for cementing casing strings, mathematical models of the main technological properties of cement slurries for cementing production casing strings in the Perm Region were developed. Analysis of the effect of polycarboxylic plasticizer (Pl) and a filtration reducer (fluid loss additive) based on hydroxyethyl cellulose (FR) on plastic viscosity (V), spreadability (S) and filtration (F) of cement slurries is conducted. Development of mathematical models is performed according to more than 90 measurements.
-
Date submitted2020-01-10
-
Date accepted2020-01-14
-
Date published2020-02-25
Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg
Soils and plants of Saint Petersburg are under the constant technogenic stress caused by human activity in industrial, residential, and recreational landscapes of the city. To assess the transformed landscapes of various functional zones, we studied utility, housing, and park districts with a total area of over 7,000 hectares in the southern part of the city during the summer seasons of 2016-2018. Throughout the fieldwork period, 796 individual pairs of soil and plant samples were collected.A complex of consequent laboratory studies performed in an accredited laboratory allowed the characterization of key biogeochemical patterns of urban regolith specimens and herbage samples of various grasses. Chemical analyses provided information on the concentrations of polluting metals in soils and plants of different land use zones.Data interpretation and calculation of element accumulation factors revealed areas with the most unfavorable environmental conditions. We believe that a high pollution level in southern city districts has led to a significant degree of physical, chemical, and biological degradation of the soil and vegetation cover. As of today, approximately 10 % of the Technosols in the study area have completely lost the ability to biological self-revitalization, which results in ecosystem malfunction and the urgent need for land remediation.
-
Date submitted2019-05-20
-
Date accepted2019-07-12
-
Date published2019-10-23
Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets
The article presents the results of scientific research and industrial experiments aimed at the development of technology to reduce the production cycle of high-strength hull steel. The technology includes an improved reduced heat treatment of ingots made using rare-earth metals and uphill teeming of large sheet ingots. The proposed technology for the preliminary heat treatment of ingots eliminates the high-temperature phase re- crystallization operation, which is unnecessary, according to the authors, since it does not allow partial crushing (grinding) of the metal dendritic structure and homogenization. When using the proposed technology of reduced pre- treatment, phase and structural stresses are sharply reduced. Experiments have shown that the modification of steel with rare-earth metals has a positive effect on the crystallization of ingots, changing the macro- and microstructure of alloy steel. The developed manufacturing technology of high-strength hull steel provides a high level of sheet quality and a reduction in the production cycle time by 10-12 %.
-
Date submitted2018-11-14
-
Date accepted2019-01-06
-
Date published2019-04-23
Prospects of geomechanics development in the context of new technological paradigm
- Authors:
- V. L. Trushko
- A. G. Protosenya
The article describes the role of geomechanics for forecasting the development of geosystems and ensuring the safety of mining operations during the transition to a new technological paradigm. The state and prospects of development of the mineral resource base, including the Arctic zone of the Russian Federation, are considered. The directions of technological breakthroughs and the possibility of transforming industrial production based on «cross-cutting» technology and the digital economy are presented. The analysis of geomechanical problems was carried out considering advanced technological changes and the rapid growth of requirements for the preservation of the Earth’s interior and natural landscapes. The concept of the development of geomechanics and geodynamics to ensure rational subsoil use in terms of the use of «breakthrough» technology is proposed, and the need to integrate scientific and industry collaboration into the system of engineering and professional education is shown.
-
Date submitted2015-10-27
-
Date accepted2015-12-14
-
Date published2016-08-22
Studying the dependence of quality of coal fine briquettes on technological parameters of their production
- Authors:
- T. N. Aleksandrova
- A. V. Rasskazova
The study characterizes the role of coal in the fuel and energy balance of the Far East Region and points out the issue of losses of coal fines in the processes of coal mining, transportation and processing. To solve the problem of losses of coal fines, the mined coal is sorted into different size classes and fuel briquettes are produced from coal fines. Physical foundations are presented in short of briquetting solid combustible mineral resources. The dependences and variations of briquette compression strength limit are studied vs. charge humidity and briquetting pressure. Optimal parameters are retrieved for briquetting coal fines. The principal technological scheme is given of the process of briquette production. The developed technological solutions include sorting regular coal and briquetting coal fines, as well as the involvement of technogenic carbon-containing wastes from the hydrolysis production lines, plus residuals from oil refining.
-
Date submitted2014-11-24
-
Date accepted2015-01-02
-
Date published2015-10-26
Complex processing of apatite-nepheline ores based on the creation of closed-loop process flow sheets
- Authors:
- A. I. Alekseev
The article presents the chemical and engineering fundamentals of processing apatite and nepheline concentrates directly on the Kola Peninsula. Implementation of the existing separate processing of nepheline and apatite concentrates demonstrates inefficiency of these technologies due to the formation of waste calcium sulfate and calcium silicate, which have so far not found a practical use and are wastes stored in sludge repositories of the Russian Federation. Suggested new scientific and technical solutions will allow enterprises to significantly increase the volume of production of new in-demand marketable products due to rational and complex use of mineral raw materials of the Kola Peninsula, reduce their costs while decreasing the volume of rock extraction and eliminate waste creating a closed-loop technological cycle of processing apatite and nepheline ores.
-
Date submitted2014-10-01
-
Date accepted2014-12-11
-
Date published2015-08-25
Method of diagnostics of diesel engines in timing of the operating cycle
- Authors:
- A. S. Afanasev
- A. A. Tretyakova
To maintain diesel engines in working condition there have been developed methods of diagnosing local crankshaft rotation developed by each cylinder. Inoperative cylinder has an angular velocity of rotation that does not respond the technical conditions. The measuring and computing complex consisting of personal computers, diagnostic complex «MotoDoc III», software and a set of sensors was developed for measuring. The results of the measurement and analysis of time parameters are displayed on the monitor screen. The software facilitates the recording of a signal, its processing and storage, as well as the ability to display the results. The method of diagnosis involves a number of stages: preparation of a diesel engine and equipment, the holding of general and local diagnosis, diagnosing. Thus, it appears possible to carry out condition monitoring of diesel engines by CIP method.
-
Date submitted2013-07-28
-
Date accepted2013-09-08
-
Date published2014-03-17
Endogenous fire hazard Kuzbass mines
- Authors:
- A. A. Sidorenko
The analysis of a current state of a problem of emergence of endogenous fires is made at working off of coal layers in mines. Influence of mining-and-geological conditions on efficiency and safety of working off of the layers inclined to selfignition is considered. Need of an integrated approach to a solution of the problem of endogenous fires is shown at working off of stocks in difficult mining-and-geological conditions.
-
Date submitted2009-10-13
-
Date accepted2009-12-29
-
Date published2010-09-22
Assessment of the level of technological production of coal reserves in mine fields with intensive mining of fiat-lying coal seams
- Authors:
- S. G. Baranov
- M. A. Rozenbaum
The levels of technological production of coal reserves in the stoping faces have been determined depending on the main determining factors, such as suitability of conditions, their preparation and equipment of longwalls.
-
Date submitted2009-10-23
-
Date accepted2009-12-11
-
Date published2010-09-22
Aspects in geomechanics and safety in exploration of solid mineral deposits
- Authors:
- A. I. Perepelitsyn
The paper deals with the aspects of safety in mining at the ore mine «Norilsk nickel», the Yakovlevsky iron ore deposit, the Verkhnekamsk potassium-magnesium deposit of salts. It was shown that with due account of state of mining at the objects related to the utilization of the Earth's interior, the normative-legal support of mining regulation in the field of geomechanics is rather actual and it requires researches into the activities of mining enterprises as well as in the control work carried out by supervisory bodies of Mining Supervision.
-
Date submitted2009-09-22
-
Date accepted2009-11-23
-
Date published2010-06-25
Scientific-technical progress and innovation development in sociological science history
- Authors:
- V. N. Zavrazhin
The paper is dedicated to the consideration of interrelation of scientific-technical progress and social progress as one of the most important subjects of sociological science. Some classical and modern macrosociological theories are in the centre of attention, that develop progressive approach in understanding the place and role of scientific-technical progress and innovation development in the life of society. The emphasis is made on the actualization of macrosociological analysis of the problems stated in the paper in the current global economic crisis context.