Submit an Article
Become a reviewer

Search articles for by keywords:
геофизические исследования скважин

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-29
  • Date accepted
    2024-11-07
  • Date published
    2025-04-25

Well killing with absorption control

Article preview

The development of new fields with low-permeability reservoirs required the introduction of new production technologies, of which the most significant for well killing and underground repair were multi-ton hydraulic fracturing, the simultaneous operation of two or three development sites by one well grid, and an increase in the rate of fluid extraction. These global decisions in field development have led to the need to search for new effective materials and technologies for well killing. The article is devoted to the analysis of problems associated with the process of killing production wells in fields characterized by increased fracturing, both natural and artificial (due to hydraulic fracturing), with reduced reservoir pressure and a high gas factor. The relevance of the analysis is due to the increase in the number of development sites where complications arise when wells are killed. Particular attention is paid to technical solutions aimed at preserving the filtration and capacity properties of the bottomhole formation zone, preventing the absorption of process fluid, and blocking the manifestation of gas. The classification of block-packs used in killing is given, based on the nature of the process fluid. Suspension thickened water-salt solutions are considered, forming a waterproof crust on the surface of the rock, which prevents the penetration of water and aqueous solutions into the formation. This approach ensures the safety and efficiency of killing operations, especially when working with formations in which maintaining water saturation and preventing the ingress of the water phase are of critical importance. Modern trends in the development of technology are revealed, and promising areas for further improvement of well killing with absorption control are outlined.

How to cite: Saduakasov D.S., Zholbasarova A.T., Bayamirova R.U., Togasheva A.R., Tabylganov M.T., Sarbopeeva M.D., Kasanova A.G., Gusakov V.N., Telin A.G. Well killing with absorption control // Journal of Mining Institute. 2025. Vol. 272 . p. 119-135. EDN SBXUTZ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-04-25

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. Vol. 272 . p. 110-118. EDN VOBTXU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-27
  • Date accepted
    2024-11-07
  • Date published
    2025-03-05

Comprehensive studies of the snow-firn layer in the area of the Russian Antarctic Vostok Station

Article preview

The article presents the findings from research conducted at Vostok Station during the 69th Russian Antarctic expedition. The primary goal of the research is to perform a thorough investigation of the snow-firn layer using both direct (drilling and core analysis) and indirect (georadiolocation and seismic exploration) methods. As part of the research, fundamental tasks related to the study of the structure and dynamics of the upper part of the ice sheet were addressed, as well as applied tasks aimed at justifying the depth of explosive charge placement for seismic work with the goal of conducting a detailed study of Lake Vostok and selecting the point for drilling access to the lake. Data on the microstructure and physical properties of the snow-firn layer were collected. The findings will allow for future improvements to the firn densification model, which is required to understand the evolution of ice grains during the early stages of metamorphism. The study's findings aided in the understanding of the structural features of the ice sheet's surface layer, allowing for more precise determination of the structural and physical characteristics of the snow-firn layer and ice, potentially leading to a better understanding of climatic and geological processes in Antarctica.

How to cite: Bolshunov A.V., Ignatev S.A., Gorelik G.D., Krikun N.S., Vasilev D.A., Rakitin I.V., Shadrin V.S. Comprehensive studies of the snow-firn layer in the area of the Russian Antarctic Vostok Station // Journal of Mining Institute. 2025. p. EDN KBAZNU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-31
  • Date accepted
    2024-11-07
  • Date published
    2025-01-24

Specifics of magnetotelluric studies in Antarctica

Article preview

One of the priority areas of scientific research in Antarctica is the study of its deep structure. Most of the continent is covered with a thick ice sheet, so the main geoscientific data are acquired using geophysical methods, among which magnetotelluric (MT) ones have the greatest penetration depth and insignificant environmental impact. The possibility of acquiring high-quality MT data in the conditions of the sixth continent has long been questioned. The work is aimed at studying the specifics of magnetotelluric survey in Antarctica. The following tasks were set: to summarize the world experience of studying Antarctica using MT sounding methods; to identify factors that negatively affect the high-quality data acquisition; to determine methods for minimizing the influence of these factors. The article analyses geophysical studies conducted by the magnetotelluric sounding method in the Antarctic region from 1964 to the present. The application of the method is complicated by the following: extremely low temperature affects the drop in the batteries capacity, freezing of the non-polarizing electrodes solution, and changes in the strength properties of materials. Electromagnetic noise occurs during strong winds; proximity to the magnetotelluric field source can violate the plane wave principle on which the method is based. The ice sheet covering most of Antarctica does not allow acquiring optimal values of the contact resistance of the electrode grounding; the extended coastline distorts the acquired data. Studies of the influence of factors complicating the MT sounding method in the coastal and central parts of Antarctica made it possible to formulate recommendations for preparing equipment and adapting the work procedure, modifying the processing flow and a set of measures to ensure safety, the implementation of which will both allow safe performance of geophysical investigations and high-quality data acquisition.

How to cite: Davydkina T.V., Yankilevich A.A., Naumova A.N. Specifics of magnetotelluric studies in Antarctica // Journal of Mining Institute. 2025. p. EDN XCUAZK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-03-01
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Study of the possibility of using high mineralization water for hydraulic fracturing

Article preview

The results of laboratory studies aimed at developing hydraulic fracturing fluid based on alternative sources of high mineralization water are presented. It is shown that Cenomanian sources have the most stable mineralization parameters, while bottom water and mixed waters collected from pressure maintenance systems differ significantly in their properties, with iron content varying several times, and hardness and mineralization undergoing substantial changes. The quality of the examined hydraulic fracturing fluids based on alternative water sources is confirmed by their impact on residual permeability, as well as residual proppant pack conductivity and permeability. The experimental results show similar values for these parameters. The comprehensive laboratory studies confirm the potential for industrial use of high mineralization water in hydraulic fracturing operations.

How to cite: Sultanov S.K., Mukhametshin V.S., Stabinskas A.P., Veliev E.F., Churakov A.V. Study of the possibility of using high mineralization water for hydraulic fracturing // Journal of Mining Institute. 2024. Vol. 270 . p. 950-962. EDN SLRNDJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-21
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Analysis of the assessment of the prospects for the burial of CO2 in unexplored aquifer complexes on the example of a facility in the Perm Region

Article preview

One of the most important problems of our time is the annual increase in greenhouse gas emissions into the atmosphere. It is possible to combat this phenomenon by reducing emissions or developing and applying technologies for capturing, storing, using and disposing of CO2. In this work, an assessment of the expediency and possibility of carbon dioxide burial in deep aquifers is considered, the study of which is carried out to a small extent and due to the lack of useful material in them. The parameters and results of CO2 injection into the aquifer of one of the oil fields of the Perm Region, the geological properties and characteristics of which are determined in this work, are studied. The criteria of applicability, methods of estimating the volume of the reservoir and laboratory studies to determine the properties of CO2 and the features of its interaction with the model of the reservoir fluid are considered. The injection object and reservoir volume were determined, PVT studies of the target gas were performed, and its solubility in reservoir water was determined. The duration of filling the full volume of the trap when capturing 400 thousand tons of CO2 per year from the target industrial facility is calculated to be 202 years. This conclusion signals the prospects for the burial of carbon dioxide in the underground deposits of an undeveloped aquifer complex in the Perm Region, which reflects the importance of studying such geological CO2 burial sites in order to achieve global carbon neutrality goals.

How to cite: Masoud R., Ilyushin P.Y., Baldina T.R., Sannikova N.S., Kozlov A.V., Ravelev K.A. Analysis of the assessment of the prospects for the burial of CO2 in unexplored aquifer complexes on the example of a facility in the Perm Region // Journal of Mining Institute. 2024. Vol. 270 . p. 931-940. EDN SCSESI
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-06-21
  • Date accepted
    2023-10-25
  • Date published
    2024-08-26

Specific action of collector from phosphoric acid alkyl esters class in flotation of apatite-nepheline ores

Article preview

Increasing amount of apatite-nepheline ores with complex mineral composition involved in processing, growing content of the associated minerals in ore which are similar in their floatability to apatite lead to the necessity of using highly selective collectors. Non-frothing flotation method gave a comparative assessment of floatability of pure minerals and demonstrated a high selectivity of the action of phosphoric acid esters in relation to apatite. The effect of four reagent modes differing in the number of selective synthetic collectors was studied using the example of flotation of an apatite-nepheline ore sample containing 17.27 % apatite and 40.18 % nepheline. Mineralogical analysis of crushed ore showed that it contained two apatite varieties – coarse-grained free and finer poikilitic as inclusions in rock-forming minerals. Free apatite opens and occurs as open grains even in coarse-grained (+0.16 mm) grades. Poikilitic apatite occurs as intergrowths with different minerals, mainly with nepheline and its alteration products (natrolite, spreustein, sodalite, etc.), and pyroxene. Optical microscopy demonstrated that a growing share of reagent from the phosphoric acid oxyethylated esters class in the composition of the collector mixture allows improving the quality of the produced apatite concentrates by reducing the number of apatite intergrowths with nepheline and pyroxenes in the concentrates. In the concentrate obtained in the most selective reagent mode, the intergrowths are characterized by a 50/50 and higher ratio in favour of apatite. Concentrates of lower quality comprised intergrowths with lower apatite content, to 20/80 or less.

How to cite: Mitrofanova G.V., Chernousenko E.V., Kompanchenko A.A., Kalugin A.I. Specific action of collector from phosphoric acid alkyl esters class in flotation of apatite-nepheline ores // Journal of Mining Institute. 2024. Vol. 268 . p. 637-645. EDN CSNOBO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-04
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Localization and involvement in development of residual recoverable reserves of a multilayer oil field

Article preview

During waterflooding of a multilayer oil field there is a constant deterioration of the structure and composition of residual reserves due to geological and technological reasons. The largest share of residual reserves is localized in pillars, which arise from uneven development of the production facility and are undrained or poorly drained zones. The results of a quantitative assessment of the distribution of residual oil reserves in the Middle and Upper Devonian deposits of the Romashkinskoe oil field of the Republic of Tatarstan are presented. A retrospective method is proposed to identify reserves by analyzing and summarizing historical exploration data and the long history of reservoir development, and a calculation algorithm is proposed to quantify them. It has been established that residual oil reserves are localized in rows of dividing and injection wells, as well as in the central rows of producing wells in a three-line drive, in abandoned and piezometric wells, in the areas adjacent to the zones of reservoir confluence, pinch-out, oil-bearing contours, distribution of reservoirs with deteriorated porosity and permeability properties. Depending on geological conditions, algorithms for selecting geological and technical measures to include localized reserves in development and forecasting production profiles were proposed. According to the proposed method, residual recoverable reserves were identified and a number of wells were recommended for experimental works on their additional recovery: in well 16 (hereinafter in the text, conventional well numbers are used) after isolation of overlying high-water-cut formations, the additional perforation was carried out and oil flow was obtained. Additional perforation in well 6 resulted in oil recovery during development as well. Thus, the developed approaches to identifying residual recoverable reserves and patterns of their spatial distribution can be recommended in other multilayer oil fields with a long history of development.

How to cite: Burkhanov R.N., Lutfullin A.A., Raupov I.R., Maksyutin A.V., Valiullin I.V., Farrakhov I.M., Shvydenko M.V. Localization and involvement in development of residual recoverable reserves of a multilayer oil field // Journal of Mining Institute. 2024. Vol. 268 . p. 599-612. EDN DKXZSP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-09
  • Date accepted
    2023-09-20
  • Date published
    2024-02-29

Analysis of experience in the use of preformed particle polymer gels in the development of high-water-cut production facilities in low-temperature oil reservoirs

Article preview

Foreign practice of oil production in high-water-cut conditions suggests using the technology of injection of preformed particle gel (PPG) suspension into injection wells. After swelling, the polymer particles become elastic and are able to penetrate through highly permeable watered intervals into the remote reservoir zone, forming a polymer “plug”. Thus far, the domestic experience of application of this technology boiled down to testing foreign compounds. We have looked into the possibilities of PPG technology application in geological and technological conditions of high-water-cut fields of Perm Krai. The paper proposes PPG reagents effective in low-temperature reservoirs (20-35 °С) and at relatively high salinity of formation water (more than 200 g/l). The world experience of PPG technology application was analyzed to identify the principal scheme of reagent injection, to establish variants of sequence of injection of PPG particles of different sizes, as well as the possibility of regulating the morphological characteristics of polymer gel particles during synthesis depending on the porosity and permeability of the reservoir. A prerequisite for the technology is the ability to remove PPG particles after treatment from the bottom-hole zone of the formation; for this purpose, tests were carried out on a breaker compound based on sodium persulfate with synergizing additives. PPG technology is effective in reservoirs with high permeability heterogeneity. Two types of high-water-cut production facilities potentially promising for PPG realization have been identified for oil fields of Perm Krai. The first type includes carbonate Tournaisian-Famennian reservoirs with pronounced macrofracturing, in which the PPGs are used for colmatation of flushed large fractures. The second type is terrigenous Visean deposits with increased oil viscosity from 5 to 100 mPa∙s and high permeability of reservoirs (> 0.5 μm2). For both types of reservoirs, areas have been selected that are promising for the implementation of PPG technology.

How to cite: Galkin S.V., Rozhkova Y.A. Analysis of experience in the use of preformed particle polymer gels in the development of high-water-cut production facilities in low-temperature oil reservoirs // Journal of Mining Institute. 2024. Vol. 265 . p. 55-64. EDN CNCFIW
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-27
  • Date accepted
    2023-06-20
  • Date published
    2023-12-25

Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region

Article preview

This article presents the results of drilling, experimental filtration work and laboratory studies aimed at assessing the resources and quality of groundwater in the licensed area of Vysotsky Island located in the Leningrad region, in the Gulf of Finland in accordance with the requirements of regulatory documents. Analysis of the results of hydrochemical studies and their comparison with data on water intakes in adjacent areas gives the right to conclude that it is possible to classify a hydrogeological unit as a different type of resource formation than those located in the surrounding areas. Groundwater in this area is confined to an unexplored deep fractured regional high-pressure zone. According to the received data, the explored water intake can be attributed to a unique groundwater deposit, which has an uncharacteristic composition of groundwater in the north of the Leningrad region, which may be due to the mixing of modern sediments and relict waters of the Baltic glacial lake. The stability of groundwater characteristics is confirmed by long-term monitoring.

How to cite: Nikishin V.V., Blinov P.A., Fedorov V.V., Nikishina E.K., Tokarev I.V. Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region // Journal of Mining Institute. 2023. Vol. 264 . p. 937-948. EDN ZGVJSR
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-27
  • Date accepted
    2023-06-20
  • Date published
    2023-12-25

Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif

Article preview

The specificity of the behavior of the soil massif near the tunnel under construction in difficult mining conditions is considered. It was revealed through the joint interpretation of the results of geophysical measurements in the tunnel and computer simulation. The results of field geophysical studies to identify areas of decompacted soil behind the lining in two existing tunnels during successive drilling of two new tunnels under them are described. A method to analyze the response of the lining to impact was used providing for the calculation of its energy. It has been established that the decompaction zones are mainly located in the lateral lower areas of the tunnel. To substantiate the mechanism of formation of cavities, computer simulations were carried out using the finite element method with the COMSOL Multiphysics software. The finite element model is built on the Drucker – Prager criterion in the variant of a two-dimensional problem statement. It is shown that at the initial position of two old tunnels, the areas of decompaction can develop mainly on the sides. The position of the zones changes significantly when excavating two new tunnels. Soil decompaction zones appear between the tunnels and there is a tendency for the areas to spread to the upper point of the tunnel. According to geophysical data time delays in the impact of new tunnels on the existing line are noted, as well as a decrease in the size of decompacted soil areas over time. There is a satisfactory agreement between the positions of the decompaction areas and voids obtained by the geophysical method and the results of numerical simulation.

How to cite: Nabatov V.V., Voznesenskii A.S. Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif // Journal of Mining Institute. 2023. Vol. 264 . p. 926-936. EDN JNNOAW
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions

Article preview

The necessity of improving the drives of the sucker-rod hydraulic pump units (SRHP), operated in conditions of marginal and complicated wells, is substantiated. For complicated oil production conditions, it is promising to use the SRHP drive, which makes it possible to select and set rational operating modes for downhole equipment. The results of comparative tests of conventional mechanical and hydraulic actuators SRHP with pneumatic and electrodynamic balancing types are presented. A generalized indicator for evaluating the effectiveness of the advanced SRHP drives functioning, the energy efficiency coefficient, is proposed. It has been experimentally proven that the use of the SRHP drive with pneumatic balancing is characterized by low energy efficiency of the well fluid production process. The use of the tested SRHP hydraulic drive made it possible to successfully eliminate asphalt, resin, and paraffin deposits and minimize the well downtime. The results of the tests of the traditional SRHP mechanical drive and the hydraulic drive with electrodynamic balancing showed a satisfactory energy efficiency of the latter. The advantage of the SRHP drive with electrodynamic balancing is the simplicity of the design of the hydraulic part. The process of energy regeneration during the drive control system operation causes an increase in the reactive power component in the oil field network and the appearance of harmonic interference that adversely affects the consumers operation. Technical solutions aimed at improving the operation energy efficiency and increasing the operating time of SRHP drives in the conditions of marginal and complicated wells are proposed. The methodological bases for assessing the economic efficiency of the introduction of the advanced SRHP drives are given.

How to cite: Shishlyannikov D.I., Zverev V.Y., Zvonareva A.G., Frolov S.A., Ivanchenko A.A. Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions // Journal of Mining Institute. 2023. Vol. 261 . p. 349-362. EDN XLRCWN
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-30
  • Date accepted
    2023-04-03
  • Date published
    2024-02-29

Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap

Article preview

The specific share of the reserves of hard-to-recover hydrocarbon raw materials is steadily growing. The search for technologies to increase the hydrocarbon recovery factor is one of the most urgent tasks facing the oil and gas industry. One of the methods to expand the coverage of oil reserves and increase oil recovery is to use the technology of drilling multilateral wells with a fishbone trajectory. In the Russian Federation, the most branched well was drilled in the Republic of Sakha (Yakutia) at the Srednebotuobinskoye oil and gas condensate field. The main object of development is the Botuobinsky horizon (Bt reservoir). About 75 % of the geological reserves of the reservoir are concentrated in a thin oil rim with an average oil-saturated layer thickness of 10 m with an extensive gas cap. This circumstance is one of the main complicating factors in the development of the Srednebotuobinskoye oil and gas condensate field. For such complex wells, one of the most important design stages is to determine the optimal location of the fishbone well in an oil-saturated reservoir. The article shows the results of sector modeling in the conditions of the Srednebotuobinskoye field to determine the optimal location of multilateral wells using Tempest simulator.

How to cite: Тomskii К.О., Ivanova M.S. Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap // Journal of Mining Institute. 2024. Vol. 265 . p. 140-146. EDN XOVEYF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-31
  • Date accepted
    2023-03-02
  • Date published
    2023-12-25

Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps

Article preview

On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.

How to cite: Sidorenko A.A., Dmitriev P.N., Alekseev V.Y., Sidorenko S.A. Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps // Journal of Mining Institute. 2023. Vol. 264 . p. 949-961. EDN SCAFOE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-08-01
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field

Article preview

Permo-Carboniferous oil deposit of the Usinskoye field is characterized by an extremely complex type of the void space with intense cross-sectional distribution of cavernous and fractured rock. In this study, for this production site, the process of 3D geological modeling has been implemented. At the first stage, it provided for automated identification of reservoir volumes by comparing the data of core and well logging surveys; at the second stage, identification of rock lithotypes according to Dunham classification is performed on the basis of comparison of thin sections examination and well logging data. A large array of factual information enables the use of machine learning technology on the basis of Levenberg – Marquardt neural network apparatus toward achievement of our research goals. The prediction algorithms of reservoir and rock lithotype identification using well logging methods obtained on the basis of the training samples are applied to the wells without core sampling. The implemented approach enabled complementing the 3D geological model with information about rock permeability and porosity, taking into account the structural features of the identified lithotypes. For the Permo-Carboniferous oil deposit of the Usinskoye field, the volumetric zoning of the distribution of different rock lithotypes has been established. Taking into account the lithotypes identified based on machine learning algorithms, density and openness of fractures were determined, and fracture permeability in the deposit volume was calculated. In general, during the implementation, the machine learning errors remained within 3-5 %, which suggests reliability of the obtained predictive solutions. The results of the research are incorporated in the existing 3D digital geological and process model of the deposit under study.

How to cite: Potekhin D.V., Galkin S.V. Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field // Journal of Mining Institute. 2023. Vol. 259 . p. 41-51. DOI: 10.31897/PMI.2022.101
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-23
  • Date accepted
    2022-07-21
  • Date published
    2023-02-27

Alluvial tin mining by spray-suction borehole method: a case study on remaining alluvial tin reserves in Bangka Belitung, Indonesia

Article preview

The area of the Bangka Belitung Islands, which is a potential area for alluvial tin deposits in Indonesia, has been affected by the destruction of tin reserves on the mainland due to rampant artisanal mining, which has left remnants of small-dimensional reserves. The remnants of these reserves can no longer be mined using the hydraulic mining of open pit method due to the small dimensions of the deposits. The hypothesis is that such sedimentary conditions can only be mined by the borehole method. This research aimed to design tools and perform test mining using the borehole method with a spray-suction mechanism. This research produced a novelty, namely, a method and parameters for alluvial tin deposits mining using borehole mining methods, such as the excavation capacity, excavation radius, mining recovery, and dilution factor. The benefit of this research is expected to provide an opportunity to increase the amount of onshore alluvial tin reserves to support tin production.

How to cite: Ichwan A., Wibowo A.P., Anggayana K., Widodo N.P. Alluvial tin mining by spray-suction borehole method: a case study on remaining alluvial tin reserves in Bangka Belitung, Indonesia // Journal of Mining Institute. 2023. Vol. 259 . p. 3-12. DOI: 10.31897/PMI.2022.70
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-15
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production

Article preview

The oil and gas industry has been an integral and fundamental sector of the Russian economy for the past few years. The main problems of this industry have traditionally been the deteriorating structure of oil reserves; depreciation of main assets; slowdown and decline in oil production. Recently these have been complicated by a number of new negative trends related to underinvestment, limited financial resources, deteriorating access to new equipment and technologies. The task of the research is to make a comprehensive assessment of hydraulic fracturing technology during well construction and to increase the recovery and intensification of hydrocarbons production. In this research, modeling techniques were used to assess the productivity of each fracture. Geophysical methods (seismic survey) were used to determine the geomechanical properties of the formation. Comprehensive assessment of hydraulic fracturing technology during well construction was carried out, which allowed to increase vertical permeability and unite disparate parts of the reservoir in practice, and to determine the development efficiency of the hydrocarbon field.

How to cite: Bosikov I.I., Klyuev R.V., Мayer А.V. Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production // Journal of Mining Institute. 2022. Vol. 258 . p. 1018-1025. DOI: 10.31897/PMI.2022.98
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-07-05
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation

Article preview

A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.

How to cite: Hosseini A., Najafi M., Morshedy A.H. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation // Journal of Mining Institute. 2022. Vol. 258 . p. 1050-1060. DOI: 10.31897/PMI.2022.106
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-09-01
  • Date accepted
    2022-10-07
  • Date published
    2022-12-29

Parameter determination of the method of directional unloading of the reservoir based on physical modelling on a true triaxial loading setup

Article preview

The article presents a theoretical and experimental substantiation of the method of directional unloading of the reservoir in fields with low-permeability reservoirs. The relevance of the article is due to the reduction of hydrocarbon resources in modern conditions and the need to create new efficient environmentally friendly technologies to develop hydrocarbon deposits with hard-to-recover reserves, primarily with low-permeability reservoirs. The results of a theoretical study of the stress-strain state in the vicinity of a well, both cased and open, are presented. They are necessary to develop programs for laboratory testing of core specimens from the studied fields. A technique for physical modelling of deformation processes in the bottomhole zone with a decrease in pressure at the well bottom in a true triaxial loading unit is described in order to determine the parameters of the process impact on the formation reservoir, leading to an increase in well productivity. The method was applied to the conditions of the low-permeability reservoir at the Verkhneviluchanskoye oil and gas condensate field in the southwest of the Republic of Sakha (Yakutia). Expe-rimental studies were carried out on a unique scientific unit for true triaxial loading, created at the IPMech RAS, the Triaxial Independent Loading Test System. The directional unloading method was adapted for the studied field, the process parameters of successful application of the method were determined: the bottomhole design, the drawdown values necessary to increase the permeability of the bottomhole formation zone.

How to cite: Karev V.I., Kovalenko Y.F., Khimulia V.V., Shevtsov N.I. Parameter determination of the method of directional unloading of the reservoir based on physical modelling on a true triaxial loading setup // Journal of Mining Institute. 2022. Vol. 258 . p. 906-914. DOI: 10.31897/PMI.2022.95
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-04-12
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)

Article preview

Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.

How to cite: Gasumov R.А., Minchenko Y.S., Gasumov E.R. Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits) // Journal of Mining Institute. 2022. Vol. 258 . p. 895-905. DOI: 10.31897/PMI.2022.99
Geology
  • Date submitted
    2021-12-21
  • Date accepted
    2022-06-20
  • Date published
    2022-11-10

Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling

Article preview

The article presents the results of analysing geological structure of the Famennian deposits (Devonian) in the Perm Region. Numerical modelling of the distribution of inhomogeneous stress field near the well was performed for the two considered types of perforation. With regard for the geometry of the forming perforation channels, numerical finite element models of near-wellbore zones were created considering slotted and cumulative perforation. It is ascertained that in the course of slotted perforation, conditions are created for a significant restoration of effective stresses and, as a result, restoration of reservoir rock permeability. Stress recovery area lies near the well within a radius equal to the length of the slots, and depends on the drawdown, with its increase, the area decreases. From the assessment of failure areas, it was found that in case of slotted perforation, the reservoir in near-wellbore zone remains stable, and failure zones can appear only at drawdowns of 10 MPa and more. The opposite situation was recorded for cumulative perforation; failure zones near the holes appear even at a drawdown of 2 MPa. In general, the analysis of results of numerical simulation of the stress state for two simulated types of perforation suggests that slotted perforation is more efficient than cumulative perforation. At the same time, the final conclusion could be drawn after determining the patterns of changes in permeability of the considered rocks under the influence of changing effective stresses and performing calculations of well flow rates after making the considered types of perforation channels.

How to cite: Chernyshov S.E., Popov S.N., Varushkin S.V., Melekhin A.A., Krivoshchekov S.N., Ren S. Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling // Journal of Mining Institute. 2022. Vol. 257 . p. 732-743. DOI: 10.31897/PMI.2022.51
Metallurgy and concentration
  • Date submitted
    2022-04-14
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions

Article preview

In-situ leaching of molybdenum and uranium is becoming an increasingly common process. The features of the material composition of ores, leading to a decrease in their filtration properties, were considered. Activation leaching with leaching solutions that have undergone electrophotochemical activation before contact with the ore mass were studied. Activation preparation of leaching solutions promotes the synthesis of clustered water molecules with collectivized protons and hydroxyl ions, as well as active forms of oxygen and hydrogen. Cell leaching of molybdenum from mature tailings of the Shakhtaminsk deposit was studied experimentally. After pre-oxidation with an active carbonate solution, a model borehole leaching was carried out with a chloride-hypochlorite solution. Molybdenum extraction on resin a was 85 % in 30 days. Experiments on the percolation leaching of uranium from the ores of the Uchkuduk and Sugraly deposits confirmed the potential possibility of a significant increase in the extraction of uranium by electrophotoactivated percarbonate solutions relative to aqueous solutions of sodium and ammonium carbonate. When leaching with carbonate solutions without an additional oxidizing agent, the extraction of uranium from the Sugraly deposit ore sample was 52 and 59 % (sodium carbonate and ammonium carbonate). The use of hydrogen peroxide as an oxidizing agent made it possible to achieve 87-88 % extraction into pregnant solutions in 21 days without pre-oxidation. The performed studies confirm the processing capability of extracting uranium and molybdenum by percolation leaching in columns and borehole leaching.

How to cite: Rasskazov I.Y., Sekisov A.G., Rasskazova A.V. In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions // Journal of Mining Institute. 2022. Vol. 256 . p. 623-631. DOI: 10.31897/PMI.2022.60
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-03-17
  • Date accepted
    2022-10-04
  • Date published
    2022-11-10

Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data

Article preview

Landslides are among the most dangerous geological processes, posing a threat to all engineering structures. In order to assess the stability of slopes, complex engineering surveys are used, the results of which are necessary to perform computations of the stability of soil masses and assess the risks of landslide development. The results of integ-rated geological and geophysical studies of a typical landslide slope in the North-Western Caucasus spurs, composed of clayey soils, are presented. The purpose of the work is to increase the reliability of assessing the stability of a landslide mass by constructing a 3D model of the slope, including its main structural elements, identified using modern methods of engineering geophysics. Accounting for geophysical data in the formation of the computed 3D model of the slope made it possible to identify important structural elements of the landslide, which significantly affected the correct computation of its stability.

How to cite: Glazunov V.V., Burlutsky S.B., Shuvalova R.A., Zhdanov S.V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data // Journal of Mining Institute. 2022. Vol. 257 . p. 771-782. DOI: 10.31897/PMI.2022.86
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-27
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Application of resonance functions in estimating the parameters of interwell zones

Article preview

It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.

How to cite: Batalov S.А., Andreev V.Е., Mukhametshin V.V., Lobankov V.М., Kuleshova L.S. Application of resonance functions in estimating the parameters of interwell zones // Journal of Mining Institute. 2022. Vol. 257 . p. 755-763. DOI: 10.31897/PMI.2022.85
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-31
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Filtration studies on cores and sand packed tubes from the Urengoy field for determining the efficiency of simultaneous water and gas injection on formation when extracting condensate from low-pressure reservoirs and oil from oil rims

Article preview

Oil rims as well as gas condensate reservoirs of Russia's largest Urengoy field are developed by depletion drive without formation pressure maintenance, which has led to serious complications in production of oil, gas and condensate. In addition, field development by depletion drive results in low values of oil and condensate recovery. These problems are also relevant for other oil and gas condensate fields. One of the possible solutions is simultaneous water and gas injection. Rational values of gas content in the mixture for affecting gas condensate fields and oil rims of oil and gas condensate fields should be selected using the data of filtration studies on core models. The article presents the results of filtration experiments on displacement of condensate and oil by water, gas and water-gas mixtures when simulating the conditions of the Urengoy field. Simultaneous water and gas injection showed good results in the experiments on displacement of condensate, residual gas and oil. It has been ascertained that water-gas mixtures with low gas content (10-20 %) have a better oil-displacement ability (9.5-13.5 % higher) than water. An experiment using a composite linear reservoir model from cemented core material, as regards the main characteristics of oil displacement, gave the same results as filtration experiments with sand packed tubes and demonstrated a high efficiency of simultaneous water and gas injection as a method of increasing oil recovery at oil and gas condensate fields.

How to cite: Drozdov N.A. Filtration studies on cores and sand packed tubes from the Urengoy field for determining the efficiency of simultaneous water and gas injection on formation when extracting condensate from low-pressure reservoirs and oil from oil rims // Journal of Mining Institute. 2022. Vol. 257 . p. 783-794. DOI: 10.31897/PMI.2022.71